Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,345)

Search Parameters:
Keywords = hierarchical composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4030 KB  
Article
Determinants and Characteristics of Socio-Demographically Fragile Rural and Urban Areas in the Trascău Mountains, Romania
by Elena Bogan, Andreea-Loreta Cercleux and Elena Grigore
Sustainability 2026, 18(2), 954; https://doi.org/10.3390/su18020954 (registering DOI) - 16 Jan 2026
Abstract
Recent studies in the Romanian Western Carpathians have revealed increasing socio-demographic fragility in rural areas and small towns, driven by depopulation, population aging, and declining living standards. These trends stem from the legacy of forced collectivization and industrialization (1950–1990) and the post-1990 transition, [...] Read more.
Recent studies in the Romanian Western Carpathians have revealed increasing socio-demographic fragility in rural areas and small towns, driven by depopulation, population aging, and declining living standards. These trends stem from the legacy of forced collectivization and industrialization (1950–1990) and the post-1990 transition, which triggered extensive out-migration and the erosion of local socio-economic structures. This study examines the fragility of human communities in the Trascău Mountains in order to evaluate spatial, demographic, and economic recovery dynamics and to assess settlement vulnerability as a major obstacle to sustainable regional development. Fragility was measured using indicators of population density and change, age structure, accessibility, and socio-demographic dynamics, based on comparative data for the interval of 1977–2021. These variables were integrated into a composite development index (Id), derived from twelve indicators covering demography, economy, infrastructure, and living standards, enabling the hierarchical classification of settlements by degree of vulnerability. The methodological framework combines empirical and analytical methods, statistical, cartographic, bibliographic, and field-based analyses within evolutionary, structural–functional, and typological perspectives. The results identify the main drivers of decline, quantify their impacts, and outline development prospects and policy directions for reducing territorial disparities. Overall, fragile settlements emerge as critical pressure points that undermine sustainability, intensify regional instability, and increase risks related to migration and social cohesion. Full article
21 pages, 2890 KB  
Article
Tracking Control of Quadrotor UAVs with Prescribed Performance and Prescribed-Time Convergence Under Arbitrary Initial Conditions
by Tiantian Xiao, Jinlong Guo, Jintao Chen, Dawei Sun, Daochun Li and Jinwu Xiang
Electronics 2026, 15(2), 408; https://doi.org/10.3390/electronics15020408 (registering DOI) - 16 Jan 2026
Abstract
Quadrotor unmanned aerial vehicles demonstrate broad application prospects, yet existing research still lacks a comprehensive solution that simultaneously addresses efficiency, disturbance rejection, environmental adaptability, and precision in their control performance. To achieve prescribed-time convergence and prescribed tracking performance, this work proposes a composite [...] Read more.
Quadrotor unmanned aerial vehicles demonstrate broad application prospects, yet existing research still lacks a comprehensive solution that simultaneously addresses efficiency, disturbance rejection, environmental adaptability, and precision in their control performance. To achieve prescribed-time convergence and prescribed tracking performance, this work proposes a composite control scheme that integrates prescribed-performance control, disturbance estimation, and terminal sliding-mode control. First, a prescribed-time adaptive composite disturbance observer is developed to estimate and compensate for system composite disturbances, and a stability analysis shows that the disturbance estimation error converges to a small neighborhood of the origin within a prescribed time. Second, the system is decomposed into position and attitude subsystems, enabling tailored hierarchical control-law design and analysis based on their distinct dynamics. For position control, a prescribed-performance control method is employed, incorporating a prescribed-time performance function that accommodates large initial deviations, thereby guaranteeing convergence of the position-tracking errors to a small neighborhood within a specified time. For attitude control, a prescribed-time terminal sliding-mode surface and corresponding control law are designed to eliminate singularities and ensure convergence of the attitude errors to a small neighborhood within a predetermined time. The stability of both subsystems is rigorously substantiated through theoretical analysis. Finally, comparative simulation results confirm the effectiveness and superiority of the proposed control strategy. Full article
36 pages, 3844 KB  
Review
Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review
by Jovale Vincent Tongco and Armando G. McDonald
Bioresour. Bioprod. 2026, 2(1), 3; https://doi.org/10.3390/bioresourbioprod2010003 - 16 Jan 2026
Abstract
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed [...] Read more.
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed on biomimetics, emulating natural protective mechanisms, with discussions on relevant topics including hierarchical mineral deposition, free-radical formation and quenching, and selective metal ion binding, and relating them to lignocellulosic bio-based material property improvements, particularly against fire and fungi. This review evaluates the effectiveness of different bioinspired processes: mineralized and biomineralized composites improve thermal stability, nanocellulose and lignin nanoparticles provide physical, thermal, and chemical barriers, proteins offer biochemical inhibition and mineral templating, and chelators interfere with fungal oxidative pathways while simultaneously improving fire retardancy through selective binding with metal ions. Synergistic approaches integrating various mechanisms could potentially lead to long-lasting and multifunctional protection. This review also highlights the research gaps, challenges, and potential for future applications. Full article
Show Figures

Figure 1

14 pages, 32961 KB  
Article
Bioclimatic and Land Use/Land Cover Factors as Determinants of Crabronidae (Hymenoptera) Community Structure in Yunnan, China
by Nawaz Haider Bashir, Muhammad Naeem, Qiang Li and Huanhuan Chen
Insects 2026, 17(1), 100; https://doi.org/10.3390/insects17010100 - 15 Jan 2026
Abstract
Crabronid wasps (Hymenoptera: Crabronidae) are ecologically important predators that provide various ecological services by regulating the arthropod populations, enhancing soil processes through nesting, serving as sensitive indicators of habitat condition, and providing pollen transfer for plants. However, as other invertebrates face biodiversity threats, [...] Read more.
Crabronid wasps (Hymenoptera: Crabronidae) are ecologically important predators that provide various ecological services by regulating the arthropod populations, enhancing soil processes through nesting, serving as sensitive indicators of habitat condition, and providing pollen transfer for plants. However, as other invertebrates face biodiversity threats, these wasps might be under threat from environmental changes, and we need to assess the biodiversity patterns of these wasps in Yunnan Province. Unfortunately, no information is currently available about the pattern and factors responsible for the assemblages of these wasps within our study region. This study provides the first province-level assessment of habitat suitability, species richness, assemblage structure, and environmental determinants for Crabronidae in Yunnan by integrating species distribution modeling (SDM), multivariate clustering, and ordination analyses. More than 50 species were studied to assess habitat suitability in Yunnan using MaxEnt. Model performance was robust (AUC > 0.7). Suitability patterns varied distinctly among regions. Species richness peaked in southern Yunnan, particularly in the counties of Jinghong, Mengla, Menghai, and Jiangcheng Hani & Yi. Land use/land cover (LULC) variables were the dominant predictors for 90% of species, whereas precipitation-related variables contributed most strongly to the remaining 10%. Ward’s hierarchical clustering grouped the 125 counties into three community assemblage zones, with Zone III comprising the most significant area. A unique species composition was found within a particular zone, and clear separation among zones based on environmental variation was supported by Principal Component Analysis (PCA), which explained more than 70% variability among zones. Furthermore, Canonical Correspondence Analysis (CCA) indicated that both LULC and climatic factors shaped community structure assemblages, with axes 1 and 2 explaining 70% of variance (p = 0.001). The most relevant key factors in each zone were precipitation variables (bio12, bio14, bio17), which were dominant in Zone I; for Zone II, temperature and vegetation variables were most important; and urban, wetland, and water variables were most important in Zone III. Full article
Show Figures

Figure 1

29 pages, 2565 KB  
Article
Characterization of Low-Alcohol Wines Obtained by Post-Fermentative Reverse Osmosis and Vacuum Concentration
by Răzvan Vasile Filimon, Florin Dumitru Bora, Constantin Bogdan Nechita, Marius Niculaua, Cătălin Ioan Zamfir, Roxana Mihaela Filimon, Ancuţa Nechita and Valeriu V. Cotea
Foods 2026, 15(2), 321; https://doi.org/10.3390/foods15020321 - 15 Jan 2026
Abstract
In the context of climate change and the general trend toward a healthy lifestyle, reducing the alcoholic strength of wines poses a major challenge for producers. In order to obtain quality low-alcohol wines (LAWs), Muscat Ottonel conventional wine was subjected to reverse osmosis [...] Read more.
In the context of climate change and the general trend toward a healthy lifestyle, reducing the alcoholic strength of wines poses a major challenge for producers. In order to obtain quality low-alcohol wines (LAWs), Muscat Ottonel conventional wine was subjected to reverse osmosis followed by vacuum concentration of the hydroalcoholic permeate (ROVC) or to two-step vacuum concentration (TSVC), with the recovery of aromas as the first alcoholic fraction (F1). Beverages with alcoholic concentrations of 3.50, 5.50, and 8.50% vol. were obtained, with compositional characteristics and sensory properties varying significantly with alcoholic strength and dealcoholization technique applied. ROVC produced wines with organic acids, volatile constituents, extract, and color intensity decreasing progressively with the reduction in alcohol concentration. At similar alcohol concentration, TSVC LAW showed a significantly higher phenolic content, antioxidant activity, volatile compounds (including esters and terpenes), and overall structural balance, maintaining better the typicity of wines. In both processes, reducing alcohol below 5.50% vol. significantly affected the quality and acceptability of the final product. Hierarchical cluster analysis indicated that TSVC LAWs were statistically closer to the conventional wine (control). These findings improve the understanding of how dealcoholization technologies affect the composition of wine, improving product quality, sustainability, and operational efficiency. Full article
Show Figures

Figure 1

19 pages, 2798 KB  
Article
Evaluation of Stratified Prediction Methods for Spatial Distribution of Groundwater Contaminants (Benzene, Total Petroleum Hydrocarbons, and MTBE) at Abandoned Petrochemical Sites
by Tianen Zhang, Zheng Peng, Fengying Xia, Rifeng Kang and Yan Ma
Sustainability 2026, 18(2), 888; https://doi.org/10.3390/su18020888 - 15 Jan 2026
Abstract
This study evaluates the accuracy of various Geographic Information System interpolation methods in predicting the stratified spatial distribution of organic pollutants (Benzene, Total Petroleum Hydrocarbons [TPH], and Methyl Tert-butyl Ether [MTBE]) in groundwater at a petrochemical-contaminated site. Given the limitations of traditional monitoring [...] Read more.
This study evaluates the accuracy of various Geographic Information System interpolation methods in predicting the stratified spatial distribution of organic pollutants (Benzene, Total Petroleum Hydrocarbons [TPH], and Methyl Tert-butyl Ether [MTBE]) in groundwater at a petrochemical-contaminated site. Given the limitations of traditional monitoring methods in predicting spatial distribution, this study focuses on the spatial computational prediction of volatile organic compound concentrations at a former petrochemical industrial site. Three interpolation methods—Inverse Distance Weighting (IDW), Radial Basis Function (RBF), and Ordinary Kriging (OK)—were applied and evaluated. Prediction accuracy was assessed using leave-one-out cross-validation, with performance quantified through key metrics: Root Mean Square Error, Coefficient of Determination, and Spearman’s Rank Correlation Coefficient. Results demonstrate significant variations in optimal prediction methods depending on pollutant type and depth stratum. For pollutants predominantly enriched in shallow and middle layers (Benzene, TPH), OK yielded the highest accuracy and stability. Conversely, for predictions of pollutants primarily concentrated in deeper layers, RBF achieved superior performance. IDW consistently underperformed across all strata and pollutants. All interpolation methods generally exhibited systematic overestimation of pollutant concentrations (mean cross-validation error > 0). Through a hierarchical evaluation of the accuracy and interpolation effectiveness of these methods, this study develops a more accurate modeling framework to describe the composite groundwater contamination patterns at petrochemical sites. This study systematically evaluates the spatial prediction accuracy of various non-aqueous phase liquid species under differing groundwater-table depths, identifies the most robust interpolation method, and thereby provides a benchmark for enhancing predictive fidelity in subsurface contaminant mapping. Full article
Show Figures

Figure 1

11 pages, 1910 KB  
Article
In Situ Growth of Metal–Organic Frameworks (MOFs) Within Porous Silicon Carbide (p-SiC) for Constructing Hierarchical Porous Composites
by Long Zhou, Guangzhi Liao, Tingting Lin, Wensong Huang, Jiawei Zhang, Ruiqi Fan, Yanghui Li, Xiaolin Zhang, Ziyun Cheng and Lizhi Xiao
Nanomaterials 2026, 16(2), 117; https://doi.org/10.3390/nano16020117 - 15 Jan 2026
Abstract
Metal–organic frameworks (MOFs) typically exist in the form of powders or dispersed crystals, which limits their direct application in practical engineering scenarios that require monolithic structures and processability. To address this issue, the present study successfully anchored MOF (zeolitic imidazolate framework-8, ZIF-8) nanocrystals [...] Read more.
Metal–organic frameworks (MOFs) typically exist in the form of powders or dispersed crystals, which limits their direct application in practical engineering scenarios that require monolithic structures and processability. To address this issue, the present study successfully anchored MOF (zeolitic imidazolate framework-8, ZIF-8) nanocrystals within a porous silicon carbide (p-SiC) substrate via a facile in situ growth strategy, achieving both stable macroscopic loading and intimate microscopic interfacial bonding. The resulting ZIF-8/p-SiC composite exhibits a hierarchical porous structure, with a specific surface area approximately 183 times higher than that of the raw p-SiC, alongside a substantially enhanced CO2 adsorption capacity. By utilizing a low-cost p-SiC support and mild ZIF-8 synthesis conditions, this work demonstrates excellent reproducibility and scalability, providing a facile and effective pathway for fabricating MOF/porous media composite systems that possess both superior mechanical properties and tailored pore structures. Additionally, the developed MOF/p-SiC composites can serve as controllable rock-analog porous media, offering new perspectives for investigating MOF-rock interfacial interactions and CO2 geological sequestration mechanisms, thereby establishing an organic link between fundamental materials science and geological engineering applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

8 pages, 4250 KB  
Communication
A Dual-Mode Flexible Sensor with Capacitive–Resistive Hybrid Response for Bolt Loosening Monitoring
by Yan Ping, Kechen Li, Chao Yuan, Ding Guo and Yuanyuan Yang
Sensors 2026, 26(2), 578; https://doi.org/10.3390/s26020578 - 15 Jan 2026
Abstract
The structural health monitoring of bolted connections is important for ensuring the safety and reliability of engineering systems, yet conventional sensing technologies struggle to balance detection range and sensitivity. This study presents a flexible sensor with a hybrid capacitive–resistive sensing mechanism, designed to [...] Read more.
The structural health monitoring of bolted connections is important for ensuring the safety and reliability of engineering systems, yet conventional sensing technologies struggle to balance detection range and sensitivity. This study presents a flexible sensor with a hybrid capacitive–resistive sensing mechanism, designed to overcome the limitations of single-mode sensors. By integrating a hierarchically structured composite layer with tailored material properties, the sensor achieves a seamless transition between sensing modes across different pressure ranges. It exhibits high sensitivity in both low-pressure and high-pressure regions, enabling the reliable detection of preload variations in bolted connections. Experimental validation confirms its cyclic durability and rapid response to mechanical changes, demonstrating good potential for real-time monitoring in aerospace and industrial systems. Full article
(This article belongs to the Special Issue Flexible Sensing in Robotics, Healthcare, and Beyond)
Show Figures

Figure 1

21 pages, 8110 KB  
Article
Study on the Performance of Bi2O3/BiOBrγIx Adsorptive Photocatalyst for Removal of 2,4-Dichlorophenoxyacetic Acid
by Rixiong Mo, Yuanzhen Li, Bo Liu, Yi Yang, Yaoyao Zhou, Yuxi Cheng, Haorong Shi and Guanlong Yu
Separations 2026, 13(1), 30; https://doi.org/10.3390/separations13010030 - 14 Jan 2026
Viewed by 20
Abstract
In this study, a novel Bi2O3/BiOBr0.9I0.1 (BO0.9−BBI0.1) composite photocatalyst was successfully synthesized via a single-pot solvothermal method for the efficient degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under visible light. The structure, morphology, and optical properties of the [...] Read more.
In this study, a novel Bi2O3/BiOBr0.9I0.1 (BO0.9−BBI0.1) composite photocatalyst was successfully synthesized via a single-pot solvothermal method for the efficient degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under visible light. The structure, morphology, and optical properties of the photocatalyst were characterized through X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), Steady-state photoluminescence (PL), and Electrochemical Impedance Spectroscopy (EIS). The composite exhibits a 3D hierarchical morphology with increased specific surface area and optimized pore structure, enhancing pollutant adsorption and providing more active sites. Under visible light irradiation, BO0.9−BBI0.1 achieved a 92.4% removal rate of 2,4-D within 2 h, with a reaction rate constant 5.3 and 4.6 times higher than that of pure BiOBr and BiOI, respectively. Mechanism studies confirm that photogenerated holes (h+) and superoxide radicals (·O2) are the primary active species, and the Z-scheme charge transfer pathway significantly promotes the separation of electron-hole pairs while maintaining strong redox capacity. The catalyst also demonstrated good stability over multiple cycles. This work provides a feasible dual-modification strategy for designing efficient bismuth-based photocatalysts for pesticide wastewater treatment. Full article
Show Figures

Figure 1

14 pages, 13034 KB  
Article
Hierarchical Design of EA ZnCo-LDH/NCS Electrode for Enhanced Electrochemical Performance
by Zeyi Liu, Huan Wang, Xuefeng Chu, Wanyue Diao, Chao Wang, Shiyi Wang, Zehao Zhang and Sa Lv
Coatings 2026, 16(1), 113; https://doi.org/10.3390/coatings16010113 - 14 Jan 2026
Viewed by 46
Abstract
Herein, an electrochemically activated zinc–cobalt-layered double hydroxide/nickel–cobalt-sulfide (EA ZnCo-LDH/NCS) hierarchical composite electrode was fabricated in situ via coupled hydrothermal synthesis and electrodeposition. The influence of electrolyte concentration on the activation efficiency was systematically analyzed, and the corresponding effects of electrochemical activation on each [...] Read more.
Herein, an electrochemically activated zinc–cobalt-layered double hydroxide/nickel–cobalt-sulfide (EA ZnCo-LDH/NCS) hierarchical composite electrode was fabricated in situ via coupled hydrothermal synthesis and electrodeposition. The influence of electrolyte concentration on the activation efficiency was systematically analyzed, and the corresponding effects of electrochemical activation on each component were elucidated. Benefiting from the introduction of the Zn component and subsequent electrochemical activation, the composite electrode exhibits a marked performance enhancement. The EA ZnCo-LDH/NCS electrode achieves a high areal specific capacitance (Cs) of 11.39 F cm−2 at 4 mA cm−2, maintains 70.15% of this value when the current density is increased ten-fold, and retains 80.05% of its initial capacity after 5000 cycles. Full article
Show Figures

Figure 1

23 pages, 4760 KB  
Article
Beyond the Bottleneck: Predicting Regeneration Potential in Sunflower Through Integrated Morphological and Statistical Profiling
by Kimon Ionas, Mirjana Vukosavljev, Emilija Bulić, Aleksandra Radanović, Siniša Jocić, Ankica Kondić-Špika and Dragana Miladinović
Int. J. Mol. Sci. 2026, 27(2), 809; https://doi.org/10.3390/ijms27020809 - 14 Jan 2026
Viewed by 63
Abstract
This study presents the first integrated analysis of genotype–medium interactions and temporal morphogenesis profiling in sunflower regeneration. It aims to characterize genotype-specific responses, identify predictive morphological markers, and develop a scalable framework for breeding and transformation. Eighteen sunflower genotypes were evaluated to assess [...] Read more.
This study presents the first integrated analysis of genotype–medium interactions and temporal morphogenesis profiling in sunflower regeneration. It aims to characterize genotype-specific responses, identify predictive morphological markers, and develop a scalable framework for breeding and transformation. Eighteen sunflower genotypes were evaluated to assess organogenic performance. The model genotype Ha-26-PR was used for a complementary experiment, testing varying sucrose concentrations to examine their influence on morphogenic outcomes. Hierarchical Cluster Analysis (HCA), guided by the Elbow method, identified four optimal clusters (K = 4). These aligned with three biologically meaningful categories: High Regenerators (Cluster 1), Moderate/Specific Regenerators (Clusters 2 and 3), and Non-Regenerators (Cluster 4). On S1 medium, NO-SU-12 and AS-1-PR showed superior shoot regeneration, while on R4 medium, HA-26-PR-SU and NO-SU-12 performed best. Genotypes such as NO-SU-12 and AS-1-PR consistently excelled across both media, whereas AB-OR-8 and FE-7 remained non-regenerators. Medium R4 supported superior regeneration, primarily through root formation, while S1 failed to induce roots in any genotype, highlighting the importance of hormonal composition. Although sucrose promoted callus induction, it did not trigger organogenesis. Callus was consistently present across media and time points, but its correlations with shoot and root formation were weak and temporally unstable, limiting its predictive value. Root formation at 14 days (Root 14D) emerged as a robust early predictor of organogenic success. This integration of morphological, temporal, and statistical analyses offers a genotype-tailored regeneration framework with direct applications in molecular breeding and CRISPR/Cas-based genome editing. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

16 pages, 6661 KB  
Article
Sol–Gel CaCO3/SiO2 Boost Anti-Flashover Silicones
by Ruiling Liao, Yan Liu, Sude Ma and Yue Zhang
Coatings 2026, 16(1), 105; https://doi.org/10.3390/coatings16010105 - 13 Jan 2026
Viewed by 80
Abstract
This study developed high-performance anti-flashover silicone coatings using sol–gel-synthesized CaCO3/SiO2 hierarchical fillers optimized via L16(45) orthogonal design. The optimal filler (Sample 5) was prepared under 70 vol% ethanol, with nTEOS:nCaCO3 = 1:1 and 0.2 mol/L [...] Read more.
This study developed high-performance anti-flashover silicone coatings using sol–gel-synthesized CaCO3/SiO2 hierarchical fillers optimized via L16(45) orthogonal design. The optimal filler (Sample 5) was prepared under 70 vol% ethanol, with nTEOS:nCaCO3 = 1:1 and 0.2 mol/L NH3·H2O, at 45 °C, for 18 h, featuring covalent Si-O-Ca bonding, a dual-scale microstructure (2–4 μm CaCO3 cores + 20–40 nm SiO2 nodules), a 14.44 m2/g specific surface area, and bimodal porosity (8–80 nm). Composite C7 (30 wt% filler, 3 wt% KH-570, 1:2 resin-to-filler ratio) achieved superhydrophobicity (a 153° contact angle via Cassie-Baxter stabilization), ultrahigh electrical insulation (3.20 × 1014 Ω·cm volume resistivity, 1.60 × 1013 Ω surface resistivity), and robust mechanical properties (Shore 3H hardness, 5B adhesion). Standardized IEC 60507:2020 tests showed that C7’s flashover voltages (14.8 kV for KMnO4, 14.3 kV for NaCl/KMnO4, 13 kV for NaCl) exceeded that of neat silicone resin (NSR) and conventional CaCO3-filled composite (SR-CC) by >135%. Additionally, C7 retained superhydrophobicity after 500 h UV aging and maintained a 124° contact angle after 12 months of outdoor exposure. The superior performance stems from synergistic hierarchical topology, tortuous discharge paths, and interfacial passivation. This work establishes a microstructure-driven design paradigm for grid protection materials in harsh environments. Full article
(This article belongs to the Special Issue Advanced Anti-Fouling and Anti-Corrosion Coatings)
Show Figures

Figure 1

39 pages, 4643 KB  
Review
Design and Applications of MOF-Based SERS Sensors in Agriculture and Biomedicine
by Alemayehu Kidanemariam and Sungbo Cho
Sensors 2026, 26(2), 499; https://doi.org/10.3390/s26020499 - 12 Jan 2026
Viewed by 215
Abstract
Metal–organic framework (MOF)-based surface-enhanced Raman scattering (SERS) sensors have emerged as a versatile platform for high-sensitivity and selective detection in agricultural, environmental, and biomedical applications. By integrating plasmonic nanostructures with tunable MOF architectures, these hybrid systems combine ultrahigh signal enhancement with molecular recognition, [...] Read more.
Metal–organic framework (MOF)-based surface-enhanced Raman scattering (SERS) sensors have emerged as a versatile platform for high-sensitivity and selective detection in agricultural, environmental, and biomedical applications. By integrating plasmonic nanostructures with tunable MOF architectures, these hybrid systems combine ultrahigh signal enhancement with molecular recognition, analyte preconcentration, and controlled hotspot distribution. This review provides a comprehensive overview of the fundamental principles underpinning MOF–SERS performance, including EM and chemical enhancement mechanisms, and highlights strategies for substrate design, such as metal–MOF composites, plasmon-free frameworks, ligand functionalization, and hierarchical or core–shell architectures. We further examine their applications in environmental monitoring, pesticide and contaminant detection, pathogen identification, biomarker analysis, and theranostics, emphasizing real-sample performance, molecular selectivity, and emerging integration with portable Raman devices and AI-assisted data analysis. Despite notable advances, challenges remain in reproducibility, quantitative reliability, matrix interference, scalability, and biocompatibility. Future developments are likely to focus on rational MOF design, sustainable fabrication, intelligent spectral interpretation, and multifunctional integration to enable robust, field-deployable sensors. Overall, MOF-based SERS platforms represent a promising next-generation analytical tool poised to bridge laboratory innovation and practical, real-world applications. Full article
Show Figures

Figure 1

46 pages, 6520 KB  
Review
A Comprehensive Review on Dual-Pathway Utilization of Coal Gangue Concrete: Aggregate Substitution, Cementitious Activity Activation, and Performance Optimization
by Yuqi Wang, Lin Zhu and Yi Xue
Buildings 2026, 16(2), 302; https://doi.org/10.3390/buildings16020302 - 11 Jan 2026
Viewed by 105
Abstract
Coal gangue, as a predominant solid byproduct of the global coal industry, poses severe environmental challenges because of its massive accumulation and low utilization rate. This review systematically synthesizes and analyzes published experimental and analytical studies on the dual-pathway utilization of coal gangue [...] Read more.
Coal gangue, as a predominant solid byproduct of the global coal industry, poses severe environmental challenges because of its massive accumulation and low utilization rate. This review systematically synthesizes and analyzes published experimental and analytical studies on the dual-pathway utilization of coal gangue in concrete, including Pathway 1 (aggregate substitution) and Pathway 2 (cementitious activity activation). While the application of coal gangue aggregates is traditionally limited by their inherent high porosity and lower mechanical strength than those of natural aggregates, this review demonstrates that performance barriers can be effectively overcome. Through multiscale modification strategies—including surface densification, biological mineralization (MICP), and matrix synergy—the interfacial defects are significantly mitigated, allowing for feasible substitution in structural concrete. Conversely, for the mineral admixture pathway, controlled thermal activation is identified as a key process to optimize the phase transformation of kaolinite, thereby significantly enhancing pozzolanic reactivity and long-term durability. According to reported studies, the partial replacement of natural aggregates or cement with coal gangue can reduce CO2 emissions by approximately tens to several hundreds of kilograms per ton of coal gangue utilized, depending on the substitution level and activation strategy, highlighting its considerable potential for carbon reduction in the construction sector. Nevertheless, challenges related to energy-intensive activation processes and variability in raw gangue composition remain. These limitations indicate the need for future research focusing on low-carbon activation technologies, standardized classification of coal gangue resources, and long-term performance validation under realistic service environments. Based on the synthesized literature, this review discusses hierarchical utilization concepts and low-carbon activation approaches as promising directions for promoting the sustainable transformation of coal gangue from an environmental liability into a carbon-reduction asset in the construction industry. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

11 pages, 238 KB  
Article
Sex Differences in Force, Velocity, and Power Percent Changes During Countermovement Jump Performance Following a Dynamic Warm-Up
by Gabriel J. Sanders, Maura Bennett, Roger O. Kollock and Corey A. Peacock
Muscles 2026, 5(1), 4; https://doi.org/10.3390/muscles5010004 - 9 Jan 2026
Viewed by 183
Abstract
Background: The study examined sex differences in countermovement jump (CMJ) force plate metrics and neuromuscular responses to a standardized dynamic warm-up in physically active college students. Methods: Forty-one participants (21 males, 20 females) completed pre- and post-warm-up assessments of CMJ performance [...] Read more.
Background: The study examined sex differences in countermovement jump (CMJ) force plate metrics and neuromuscular responses to a standardized dynamic warm-up in physically active college students. Methods: Forty-one participants (21 males, 20 females) completed pre- and post-warm-up assessments of CMJ performance using a dual force plate system. Body composition was measured via bioelectrical impedance analysis, and performance metrics included force, velocity, power, and other jump metrics. Percent change scores were calculated for all metrics. Results: Males demonstrated significantly greater improvements in braking force metrics compared to females, including force at minimum displacement (11.4% Δ male vs. 5.7% Δ female, p = 0.043), average braking force (10.6% Δ male vs. 5.0% Δ female, p = 0.043), and peak braking force (11.5% Δ male vs. 5.7% Δ female, p = 0.043). No significant sex differences were found in velocity, power, propulsive force, or other general CMJ performance variables. Hierarchical regression analyses revealed that sex was a significant (p ≤ 0.043 for all) predictor of changes in braking force metrics, while lean body mass did not enhance model fit or independently predict force changes. The addition of lean body mass slightly attenuated the sex effect but did not contribute meaningfully to the models. Conclusions: Findings suggest males may experience greater braking force adaptation to a dynamic warm-up, while other performance outcomes appear similar between sexes. These results may inform sex-specific warm-up strategies targeting neuromuscular readiness and braking force development. Full article
Back to TopTop