Advances on Conservation of Biodiversity, Monitoring Programs and Trend Assessment

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: 30 November 2025 | Viewed by 11299

Special Issue Editors


E-Mail Website
Guest Editor
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 15, 00015 Monterotondo, Italy
Interests: harvesting logistics; energy crops; crop by-products; agroforestry; agricultural engineering

E-Mail Website
Guest Editor
Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing, Via della Pascolare, 16, Monterotondo, 00015 Rome, Italy
Interests: precision agriculture; agricultural mechanization; biomass production and procurement chains; environmenatal sciences
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

A strong decline in insect biodiversity has been observed in past decades, related to intensive agricultural practices and the reduction in natural habitats, with consequences on ecosystem functions worldwide. Particular attention has been paid to environmental and biological threats to pollinators and the resulting impact on the ecosystem services they provide. Monitoring programs are important to understanding changes in species occurrence and richness that could be attributed to habitat destruction, intensified agriculture, invasive organisms, and climate change. Furthermore, new technologies and AI systems may provide significant support in finding new strategies to reduce adverse impacts on biodiversity.

Therefore, this Special Issue of Insects welcomes original research and/or review articles related to insect (soil and flying) biodiversity assessment, the application of new technologies, and AI systems to increase insect (including pollinators) health and biodiversity. The goal is to find new strategies across diverse landscapes to increase insect health and biodiversity, as well as to assess the effects of habitat destruction, intensified agriculture, invasive organisms, and climate change on insect populations worldwide.

Dr. Simone Bergonzoli
Dr. Antonio Scarfone
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • insect biodiversity
  • soil and flying
  • habitat destruction
  • insect populations
  • invasive pests
  • monitoring

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

17 pages, 979 KB  
Article
Ecological Preferences of Calliphoridae and Sarcophagidae (Diptera) in the Region Calabria (Southern Italy)
by Domenico Bonelli, Federica Mendicino, Francesco Carlomagno, Giuseppe Luzzi, Antonino Siclari, Federica Fumo, Erica Di Biase, Michele Mistri, Cristina Munari, Marco Pezzi and Teresa Bonacci
Insects 2025, 16(9), 886; https://doi.org/10.3390/insects16090886 - 25 Aug 2025
Viewed by 313
Abstract
Diptera belonging to the families Calliphoridae and Sarcophagidae are known for their diversified trophic preferences and for their forensic and medical-veterinary relevance. The ecological preferences (distribution, abundance and habitat) of these two families were investigated along four years in the Region Calabria (Southern [...] Read more.
Diptera belonging to the families Calliphoridae and Sarcophagidae are known for their diversified trophic preferences and for their forensic and medical-veterinary relevance. The ecological preferences (distribution, abundance and habitat) of these two families were investigated along four years in the Region Calabria (Southern Italy) in 17 sampling sites located in four areas: the Aspromonte National Park, the Sila National Park, the Natural Regional Park of Serre, and a suburban area at the University of Calabria (Rende, Cosenza, Italy). A total of 39,537 individuals were collected, with 36,253 belonging to 14 species of Calliphoridae and 3284 belonging to 35 species of Sarcophagidae. The most abundant species among Calliphoridae was Calliphora vomitoria (Linnaeus, 1758); among Sarcophagidae, it was Sarcophaga (Sarcophaga) croatica Baranov, 1941. The highest species richness and abundance of Calliphoridae were observed in forest areas and those of Sarcophagidae in open and humid environments. The results also show a close association between the distribution of both families and environmental factors such as altitude, vegetation type, season, and temperature. Full article
Show Figures

Figure 1

9 pages, 464 KB  
Article
Hymenoptera Catches of Traps with Synthetic Generic Lures from Transcarpathia (West Ukraine)
by Antal Nagy, Dóra Arnóczkyné Jakab, Attila Molnár, Zsolt Józan, Miklós Tóth and Szabolcs Szanyi
Insects 2025, 16(9), 885; https://doi.org/10.3390/insects16090885 - 25 Aug 2025
Viewed by 451
Abstract
Between 2014 and 2016, traps baited with synthetic generic lures were used to collect data on insect diversity, with a focus on Lepidoptera pest assemblages in the surroundings of Velyka Dobron’ in Transcarpathia, West Ukraine. Traps captured a large number of insects from [...] Read more.
Between 2014 and 2016, traps baited with synthetic generic lures were used to collect data on insect diversity, with a focus on Lepidoptera pest assemblages in the surroundings of Velyka Dobron’ in Transcarpathia, West Ukraine. Traps captured a large number of insects from various taxa, including Hymenoptera, providing valuable data on both the poorly known regional fauna and the attractiveness of the lures to different Hymenoptera groups. In total, 1214 individuals were recorded, representing 11 families and 39 species, of which 17 species are reported from Transcarpathia for the first time. The majority of the sample (97%) belonged to the families Apidae and Vespidae. The Apidae and Halictidae species were predominantly attracted to phenylacetaldehyde-based lures, while Vespidae species responded more to semisynthetic lures containing isoamyl alcohol. The parallel use of the tested lures with different selectivity appears to be an effective, user-friendly, standardized method for studying Hymenoptera assemblages. Furthermore, knowledge of lure selectivity allows for the target collection of species belonging to different ecotypes. Full article
Show Figures

Figure 1

14 pages, 7789 KB  
Article
Integrated Sampling Approaches Enhance Assessment of Saproxylic Beetle Biodiversity in a Mediterranean Forest Ecosystem (Sila National Park, Italy)
by Federica Mendicino, Francesco Carlomagno, Domenico Bonelli, Erica Di Biase, Federica Fumo and Teresa Bonacci
Insects 2025, 16(8), 812; https://doi.org/10.3390/insects16080812 - 6 Aug 2025
Viewed by 521
Abstract
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase [...] Read more.
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase the detection of species with varying ecological traits. We evaluated the effectiveness of integrative sampling methodologies to assess saproxylic beetle diversity within Sila National Park, a Mediterranean forest ecosystem of high conservation value, specifically in two beech forests and four pine forests. The sampling methods tested included Pan Traps (PaTs), Malaise Traps (MTs), Pitfall Traps (PTs), Bait Bottle Traps (BBTs), and Visual Census (VC). All specimens were identified to the species level whenever possible, using specialized dichotomous keys and preserved in the Entomological Collection TB, Unical. Various trap types captured a different number of species: the PaT collected 32 species, followed by the PT with 24, the MT with 16, the VC with 7, and the BBT with 5 species. Interestingly, biodiversity analyses conducted using PAST software version 4.17 revealed that PaTs and MTs recorded the highest biodiversity indices. The GLMM analysis, performed using SPSS software 29.0.1.0, demonstrated that various traps attracted different species with different abundances. By combining multiple trapping techniques, we documented a more comprehensive community composition compared to single-method approaches. Moreover, PaTs, MTs, and PTs recorded 20%, 40%, and 33% of the Near Threatened species, respectively. We report new records for Sila National Park, including the LC species Pteryngium crenulatum (Curculionidae) and the NT species Grynocharis oblonga (Trogossitidae). For the first time in Calabria, the LC species Triplax rufipes (Erotylidae) and the NT species Oxypleurus nodieri (Cerambycidae) and Glischrochilus quadrisignatus (Nitidulidae) were collected. Our results emphasize the importance of method diversity in capturing species with distinct ecological requirements and highlight the relevance of saproxylic beetles as indicators of forest health. These findings support the adoption of multi-method sampling protocols in forest biodiversity monitoring and management programs, especially in biodiversity-rich and structurally heterogeneous landscapes. Full article
Show Figures

Figure 1

19 pages, 5639 KB  
Article
Nesting and Hibernation Host Preference of Bamboo Carpenter Bee, Xylocopa (Biluna) tranquebarorum tranquebarorum, and Arthropods Co-Habiting and Re-Using the Bee Nest
by Natsumi Kanzaki, Keito Kobayashi, Keiko Hamaguchi and Yuta Fujimori
Insects 2025, 16(8), 807; https://doi.org/10.3390/insects16080807 - 4 Aug 2025
Viewed by 712
Abstract
The bamboo carpenter bee, Xylocopa (Biluna) tranquebarorum tranquebarorum, is native to continental China and Taiwan, and the species invaded Japan around 2006. The bee utilizes bamboo culm for its nesting and hibernation, thereby causing structural damage to bamboo fencing and [...] Read more.
The bamboo carpenter bee, Xylocopa (Biluna) tranquebarorum tranquebarorum, is native to continental China and Taiwan, and the species invaded Japan around 2006. The bee utilizes bamboo culm for its nesting and hibernation, thereby causing structural damage to bamboo fencing and sting injuries to humans. Serious economic and ecological impacts were not expected in the early stage of its invasion. However, its distribution is rapidly expanding in Japan, and thus, its potential impacts need to be evaluated. Since the basic biology of the bee has not been examined in detail, even in its natural range, we examined the basic biology of X. t. tranquebarorum in its invasive range by evaluating its nesting preference and hibernation in several bamboo species collections in Kyoto, Japan. The field survey revealed that the bee prefers dead bamboo internodes with approximately16–28 mm of external diameter, which is well-congruent with previous studies, and does not have strict preference concerning the bamboo species, though the bee prefers Bambusa multiplex and Phyllostachys spp. in its native range. The hibernating bees in the culm sometimes share their nests with other invertebrates, including Anterhynchium gibbifrons, Dinoderus japonicus, Crematogaster matsumurai, unidentified spiders, shield bugs, and lepidopteran larvae. Within these co-habitants, the former two possibly negatively affect nesting and hibernation of the bees. Full article
Show Figures

Figure 1

11 pages, 5750 KB  
Article
Management Diversification Increases Habitat Availability for Lepidoptera Papilionoidea in the Torretes Biological Station (Spain)
by Javier Quinto, Elena Espín and Eduardo Galante
Insects 2025, 16(7), 683; https://doi.org/10.3390/insects16070683 - 30 Jun 2025
Viewed by 1619
Abstract
Butterflies (Lepidoptera: Papilionoidea), considered bioindicators of habitat conservation status, are one of the groups used to assess the impact of habitat management and improvement efforts in the Biological Station of Torretes (Ibi, Alicante, Spain). This area also houses the Botanical Garden of the [...] Read more.
Butterflies (Lepidoptera: Papilionoidea), considered bioindicators of habitat conservation status, are one of the groups used to assess the impact of habitat management and improvement efforts in the Biological Station of Torretes (Ibi, Alicante, Spain). This area also houses the Botanical Garden of the University of Alicante. The study was focused on the period from autumn 2022 to late spring 2023, and data on butterfly diversity and abundance from the current study were compared with historical data. Our results highlight that open spaces and the availability of trophic resources (nutritional plants) were key factors influencing the richness and abundance of Papilionoidea. The program for the creation and maintenance of new habitats at the biological station has increased spatial heterogeneity and the availability of trophic resources, which has led to a significant increase in the richness and abundance of butterflies in a short period. To support the conservation of Mediterranean ecosystems, and entomofauna in general, the Papilionidae are proposed as model groups for designing conservation projects based on traditional habitat management. These projects should promote spatial heterogeneity, include programs to enrich plant diversity, and be complemented by environmental education and outreach initiatives. Full article
Show Figures

Figure 1

13 pages, 1112 KB  
Article
Spatial Distribution Characteristics and Driving Factors of Formicidae in Small Watersheds of Loess Hilly Regions
by Yu Tian, Fangfang Qiang, Guangquan Liu, Changhai Liu and Ning Ai
Insects 2025, 16(6), 630; https://doi.org/10.3390/insects16060630 - 15 Jun 2025
Viewed by 566
Abstract
This study takes the Jinfoping Small Watershed in the Loess Hilly Region as the research area. Through field investigation and laboratory analysis, combined with methods such as spatial autocorrelation analysis, the ordinary least squares method (OLS), and the geographically weighted regression model (GWR), [...] Read more.
This study takes the Jinfoping Small Watershed in the Loess Hilly Region as the research area. Through field investigation and laboratory analysis, combined with methods such as spatial autocorrelation analysis, the ordinary least squares method (OLS), and the geographically weighted regression model (GWR), it deeply explores the spatial distribution characteristics and driving factors of Formicidae in the study area. The research results are as follows: (1) Spatial autocorrelation analysis indicates that the distribution of Formicidae is significantly regulated by spatial dependence and has significant spatial autocorrelation (global Moran’s I = 0.332; p < 0.01). (2) The spatial visualization analysis of the GWR model reveals that soil physical and chemical properties and topographic factors have local influences on the spatial distribution of Formicidae. Available phosphorus (AP) and slope (SLP) were significantly positively correlated with the number of ants. Hydrogen peroxidase (HP) and topographic relief (TR) were significantly negatively correlated with the number of ants. This study reveals the spatial distribution pattern of Formicidae in the Loess Hilly Region and its complex relationship with environmental factors, and clarifies the importance of considering spatial heterogeneity when analyzing ecosystem processes. The research results provide a scientific basis for the protection and management of soil ecosystems, and also offer new methods and ideas for future related research. Full article
Show Figures

Figure 1

14 pages, 2768 KB  
Article
Chemosterilant Potential of Insect Growth Regulators for Management of Bactrocera cucurbitae (Diptera: Tephritidae)
by Iqra Kainat, Shafqat Saeed, Muhammad Asif Farooq, Wafa A. H. Alkherb, Asim Abbasi, Farrukh Baig, Umer Liaqat, Fawad Zafar Ahmad Khan, Muhammad Irfan Akram, Muhammad Hasnain and Nazih Y. Rebouh
Insects 2025, 16(2), 137; https://doi.org/10.3390/insects16020137 - 31 Jan 2025
Cited by 1 | Viewed by 1439
Abstract
The melon fruit fly, Bactrocera cucurbitae, is an important insect pest responsible for significant yield losses in vegetables. Conventional control methods, like pesticide applications, have certain limitations, including environmental contamination. This study evaluated the chemosterilant potential of five new insect growth regulators [...] Read more.
The melon fruit fly, Bactrocera cucurbitae, is an important insect pest responsible for significant yield losses in vegetables. Conventional control methods, like pesticide applications, have certain limitations, including environmental contamination. This study evaluated the chemosterilant potential of five new insect growth regulators (IGRs)—Pyriproxyfen; Novaluron; Lufenuron; Buprofezin; and Flubendiamide—at concentrations ranging from 50 to 300 ppm in a 5 mL diet against B. cucurbitae. Laboratory trials identified Lufenuron as the most effective IGR, which reduced fecundity by 68.4% and adult emergence by 70.97% at a 300 ppm concentration. Other IGRs, Pyriproxyfen; Novaluron; Buprofezin; and Flubendiamide, also significantly reduced fecundity and adult emergence at higher concentrations. Based on laboratory performance, Lufenuron was selected for field trials using six bait traps per 0.4 hectares. The field trials demonstrated a higher number of B. cucurbitae adult captures in Lufenuron-based bait traps compared to the control and reductions in crop damage, with fruit fly damage decreasing by 7.01% in August and 4.25% in September. This study highlights the potential of chemosterilant baited traps as a promising approach for integrated fruit fly management programs in cucurbitaceous vegetables. Full article
Show Figures

Figure 1

13 pages, 1331 KB  
Article
An AI-Based Digital Scanner for Varroa destructor Detection in Beekeeping
by Daniela Scutaru, Simone Bergonzoli, Corrado Costa, Simona Violino, Cecilia Costa, Sergio Albertazzi, Vittorio Capano, Marko M. Kostić and Antonio Scarfone
Insects 2025, 16(1), 75; https://doi.org/10.3390/insects16010075 - 14 Jan 2025
Cited by 1 | Viewed by 2365
Abstract
Beekeeping is a crucial agricultural practice that significantly enhances environmental health and food production through effective pollination by honey bees. However, honey bees face numerous threats, including exotic parasites, large-scale transportation, and common agricultural practices that may increase the risk of parasite and [...] Read more.
Beekeeping is a crucial agricultural practice that significantly enhances environmental health and food production through effective pollination by honey bees. However, honey bees face numerous threats, including exotic parasites, large-scale transportation, and common agricultural practices that may increase the risk of parasite and pathogen transmission. A major threat is the Varroa destructor mite, which feeds on honey bee fat bodies and transmits viruses, leading to significant colony losses. Detecting the parasite and defining the intervention thresholds for effective treatment is a difficult and time-consuming task; different detection methods exist, but they are mainly based on human eye observations, resulting in low accuracy. This study introduces a digital portable scanner coupled with an AI algorithm (BeeVS) used to detect Varroa mites. The device works through image analysis of a sticky sheet previously placed under the beehive for some days, intercepting the Varroa mites that naturally fall. In this study, the scanner was tested for 17 weeks, receiving sheets from 5 beehives every week, and checking the accuracy, reliability, and speed of the method compared to conventional human visual inspection. The results highlighted the high repeatability of the measurements (R2 ≥ 0.998) and the high accuracy of the BeeVS device; when at least 10 mites per sheet were present, the device showed a cumulative percentage error below 1%, compared to approximately 20% for human visual observation. Given its repeatability and reliability, the device can be considered a valid tool for beekeepers and scientists, offering the opportunity to monitor many beehives in a short time, unlike visual counting, which is done on a sample basis. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

22 pages, 1192 KB  
Review
Harnessing Electrostatic Forces: A Review of Bees as Bioindicators for Particulate Matter Detection
by Simone Meacci, Lorenzo Corsi, Eleonora Santecchia and Sara Ruschioni
Insects 2025, 16(4), 373; https://doi.org/10.3390/insects16040373 - 1 Apr 2025
Cited by 2 | Viewed by 1369
Abstract
Bees (Hymenoptera, Anthophila) are widely recognized for their essential ecological roles, including pollination and biodiversity maintenance. Recently, their ability to collect environmental particulate matter through electrostatic forces has been explored for biomonitoring purposes. This review integrates knowledge on electrostatic pollen adhesion with emerging [...] Read more.
Bees (Hymenoptera, Anthophila) are widely recognized for their essential ecological roles, including pollination and biodiversity maintenance. Recently, their ability to collect environmental particulate matter through electrostatic forces has been explored for biomonitoring purposes. This review integrates knowledge on electrostatic pollen adhesion with emerging insights into particulate matter adhesion to bees, emphasizing their potential as bioindicators. The mechanisms of electrostatic adhesion, influenced by factors such as the physicochemical properties of particulate matter and bee morphology, are discussed in detail. Additionally, the study evaluates the adhesion efficiency of pollutants, including heavy metals, microplastics, nanoplastics, pathogens, pesticides, radionuclides, and volatile organic compounds. This multidisciplinary approach underscores the role of bees in advancing environmental monitoring methodologies and offers innovative tools for assessing ecosystem health while addressing the drivers of bee decline. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

7 pages, 1025 KB  
Brief Report
Nontarget Catches of Green and Brown Lacewings (Insecta: Neuroptera: Chrysopidae, Hemerobiidae) Collected by Light- and Volatile-Baited Traps in the Transcarpathian Lowland (W Ukraine)
by Kálmán Szanyi, Antal Nagy, Aletta Ősz, Levente Ábrahám, Attila Molnár, Miklós Tóth and Szabolcs Szanyi
Insects 2025, 16(1), 74; https://doi.org/10.3390/insects16010074 - 14 Jan 2025
Viewed by 1255
Abstract
Distribution data on the lacewing fauna of the data-deficient Transcarpathian Lowland (West Ukraine) were provided. The attractivity of phenylacetaldehyde-(FLO) and isoamyl alcohol-based (SBL) lures designed for trapping lepidopteran pests to lacewings was also studied and compared to the efficiency of light traps traditionally [...] Read more.
Distribution data on the lacewing fauna of the data-deficient Transcarpathian Lowland (West Ukraine) were provided. The attractivity of phenylacetaldehyde-(FLO) and isoamyl alcohol-based (SBL) lures designed for trapping lepidopteran pests to lacewings was also studied and compared to the efficiency of light traps traditionally used in studies on neuropterans. In the three-year study, 374 individuals of 10 species were caught. Although the light trap was the most efficient method, the efficiency of the tested lures could also be proved. Regarding abundances, FLO was significantly more efficient than the SBL lure. The lures could supplement the checklist of the fauna with two species and attracted an especially high number of Chrysoperla species. In the case of parallel use with light traps, they serve as an efficient standardised combined method for trapping lacewings, both in faunistic studies and plant protection applications. Full article
Show Figures

Graphical abstract

Back to TopTop