Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review
Abstract
1. Introduction
2. Degradation Types
2.1. Biological Degradation
2.2. Thermal Degradation
3. Mineralization
3.1. Calcification
3.2. Silicification
3.3. Other Mineralization Types
4. Biomineralization
4.1. Background
4.2. Biomineral Formation
4.2.1. Intracellular Biomineralization
4.2.2. Extracellular Biomineralization
4.3. Biomineralization Types
4.3.1. Biologically Controlled
4.3.2. Biologically Influenced
4.3.3. Biologically Induced
4.4. Factors Affecting Biomineralization
4.4.1. pH
4.4.2. Temperature
4.4.3. Substrate Concentrations
4.5. Biomineralization Applications
5. Lignocellulosic Modifications
5.1. Cellulosic Nanoparticles
5.2. Lignin Nanoparticles
6. Proteins
6.1. Protein-Templated Mineralization
6.2. ε-Poly-L-Lysine
7. Metal Chelation
7.1. Chelation Mechanism
7.2. Phytic Acid
7.3. Polycarboxylic Acids
8. Chitosan
9. Synergistic Approaches and Treatment Permanence
10. Research Gaps, Challenges, Recommendations, and Future Outlook
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CA | Citric acid |
| CCA | Chromated copper arsenate |
| CNC | Cellulose nanocrystal |
| CNF | Cellulose nanofibril |
| CMF | Chelator-mediated Fenton |
| DMC | Dimethyl carbonate |
| EG | Expanded graphite |
| ε-PL | ε-poly-L-lysine |
| EPS | Extracellular polymeric substances |
| FR | Flame retardant |
| HRR | Heat release rate |
| LbL | Layer-by-layer (assembly) |
| LCA | Life cycle assessment |
| LNP | Lignin nanoparticle |
| LOI | Limiting oxygen index |
| MIC | Minimal inhibitory concentration |
| MICP | Microbially induced calcium precipitation |
| PA | Phytic acid |
| PF | Phenol-formaldehyde |
| PHRR | Peak heat release rate |
| P-N | Phosphorus–Nitrogen |
| SEM | Scanning electron microscopy |
| SPF | Sun protection factor |
| TA | Tartaric acid |
| TEOS | Tetraethoxysilane |
| THR | Total heat release |
| TSP | Total smoke production |
| UF | Urea-Formaldehyde |
| UL-94 | Underwriters Laboratories-94 Burning Test |
| UV | Ultraviolet |
References
- Dong, J.; Kim, D.; Yoo, C.G. Editorial: Biochemical/Biomaterial Production from Lignocellulosic Biomass. Front. Chem. Eng. 2023, 5, 1266904. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 2022, 14, 881. [Google Scholar] [CrossRef]
- Tongco, J.V. Lignocellulosic Biomass as Feedstock for Paper and Packaging Applications. In Polymers and Composite Materials for Packaging: Smart Food Packaging and Solutions; Verma, A., Gupta, H.S., Sethi, S.K., Eds.; Springer Nature: Singapore, 2025; pp. 323–335. ISBN 978-981-95-0677-4. [Google Scholar]
- Aguda, R.; Pamplona, R.; Jeuck, B.; Tongco, J.V. Circular Bioeconomy in the Packaging Industry Utilizing Coconut Processing Waste and By-Products. In Polymers and Composite Materials for Packaging: Smart Food Packaging and Solutions; Verma, A., Gupta, H.S., Sethi, S.K., Eds.; Springer Nature: Singapore, 2025; pp. 355–373. ISBN 978-981-95-0677-4. [Google Scholar]
- Ewurum, N.; Yusuf, S.B.; Appiah, H.; Tongco, J.V. Lignin-Based Biocomposites for Smart and Sustainable Food Packaging. In Polymers and Composite Materials for Packaging: Smart Food Packaging and Solutions; Verma, A., Gupta, H.S., Sethi, S.K., Eds.; Springer Nature: Singapore, 2025; pp. 273–296. ISBN 978-981-95-0677-4. [Google Scholar]
- Woźniak, A.; Kuligowski, K.; Świerczek, L.; Cenian, A. Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production. Sustainability 2025, 17, 287. [Google Scholar] [CrossRef]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass Waste Utilisation in Low-Carbon Products: Harnessing a Major Potential Resource. NPJ Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef]
- Kamdem Tamo, A.; Doench, I.; Deffo, G.; Zambou Jiokeng, S.L.; Doungmo, G.; Fotsop, C.G.; Tonleu Temgoua, R.C.; Montembault, A.; Serghei, A.; Njanja, E.; et al. Lignocellulosic Biomass and Its Main Structural Polymers as Sustainable Materials for (Bio)Sensing Applications. J. Mater. Chem. A Mater. 2025, 13, 24185–24253. [Google Scholar] [CrossRef]
- Dey, N.; Bhardwaj, S.; Maji, P.K. Recent Breakthroughs in the Valorization of Lignocellulosic Biomass for Advancements in the Construction Industry: A Review. RSC Sustain. 2025, 3, 3307–3357. [Google Scholar] [CrossRef]
- Xu, Y.J.; Zhang, K.T.; Wang, J.R.; Wang, Y.Z. Biopolymer-Based Flame Retardants and Flame-Retardant Materials. Adv. Mater. 2025, 37, 2414880. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Li, Y. Fungal Pretreatment of Lignocellulosic Biomass. Biotechnol. Adv. 2012, 30, 1447–1457. [Google Scholar] [CrossRef]
- Schrader, L.; Brischke, C.; Trautner, J.; Tebbe, C.C. Microbial Decay of Wooden Structures: Actors, Activities and Means of Protection. Appl. Microbiol. Biotechnol. 2025, 109, 59. [Google Scholar] [CrossRef]
- Yin, K.; Liu, M.; Shao, Z.; Chen, C.; Wu, W.; Tan, Y.; Wei, C.; Ma, X.; Dang, B.; Sun, Q. Enhancing Flame Retardancy and Smoke Suppression of Lignocellulose through Modification with Green Aqueous Flame Retardants. Ind. Crops Prod. 2025, 225, 120493. [Google Scholar] [CrossRef]
- Khademibami, L.; Bobadilha, G.S. Recent Developments Studies on Wood Protection Research in Academia: A Review. Front. For. Glob. Change 2022, 5, 793177. [Google Scholar] [CrossRef]
- Rajput, H.; Rajan, P.; Li, S.; Stratton, G.W.; Murray, G.; He, Q. Development of Wood Preservatives to Prevent Biodeterioration. J. Wood Chem. Technol. 2023, 43, 371–389. [Google Scholar] [CrossRef]
- Miranji, E.K.; Kipkemboi, P.K.; Kibet, J.K. A Review of Toxic Metals and Hazardous Organics in Wood Treatment Sites and Their Etiological Implications. J. Chem. Rev. 2022, 4, 40–66. [Google Scholar] [CrossRef]
- Townsend, T.; Solo-Gabriele, H.; Tolaymat, T.; Stook, K.; Hosein, N. Chromium, Copper, and Arsenic Concentrations in Soil Underneath CCA-Treated Wood Structures. Soil Sediment Contam. 2003, 12, 779–798. [Google Scholar] [CrossRef]
- Shaw, S.D.; Blum, A.; Weber, R.; Kannan, K.; Rich, D.; Lucas, D.; Koshland, C.P.; Dobraca, D.; Hanson, S.; Birnbaum, L.S. Halogenated Flame Retardants: Do the Fire Safety Benefits Justify the Risks? Rev. Environ. Health 2010, 25, 261–305. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, T.; Zhao, M.; Meng, X. The Degradation Mechanism Induced by Synergistic Salt Accumulation and Acid Hydrolysis on the Ancient Wood of Feiyun Pavilion. Int. J. Archit. Herit. 2025, 1–14. [Google Scholar] [CrossRef]
- Zhou, J.; Tian, Q.; Nie, J.; Cao, P.; Tan, Z. Mechanical Properties and Damage Mechanisms of Woods under Extreme Environmental Conditions. Case Stud. Constr. Mater. 2024, 20, e03146. [Google Scholar] [CrossRef]
- Hernandez, V.A.; Ovalle, C.; Fuentes, S.; Núñez-Decap, M. CaCO3 Radiata Pine Wood Mineralization: Weathering and Mold Resistance, and Effect on Mechanical and Adhesion Properties. Forests 2025, 16, 233. [Google Scholar] [CrossRef]
- González-Laredo, R.F.; Rosales-Castro, M.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Karchesy, J. Wood Preservation Using Natural Products. Madera Bosques 2015, 21, 63–76. [Google Scholar]
- Barthlott, W.; Mail, M.; Neinhuis, C. Superhydrophobic Hierarchically Structured Surfaces in Biology: Evolution, Structural Principles and Biomimetic Applications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20160191. [Google Scholar] [CrossRef]
- Bhushan, B. Bioinspired Materials and Surfaces for Green Science and Technology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180336. [Google Scholar] [CrossRef]
- Ma, Z.; Li, B.; Tang, R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. Chin. J. Chem. 2021, 39, 2071–2082. [Google Scholar] [CrossRef]
- Nudelman, F.; Sommerdijk, N.A.J.M. Biomineralization as an Inspiration for Materials Chemistry. Angew. Chem. 2012, 51, 6582–6596. [Google Scholar] [CrossRef]
- Yao, S.; Jin, B.; Liu, Z.; Shao, C.; Zhao, R.; Wang, X.; Tang, R. Biomineralization: From Material Tactics to Biological Strategy. Adv. Mater. 2017, 29, 1605903. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Gao, F.; Zhang, F.; Zhao, X.; Zhao, R. Biomineralization-Driven Advances in Materials Science and Biomedical Engineering. JACS Au 2025, 5, 4134–4154. [Google Scholar] [CrossRef] [PubMed]
- Merk, V.; Chanana, M.; Gierlinger, N.; Hirt, A.M.; Burgert, I. Hybrid Wood Materials with Magnetic Anisotropy Dictated by the Hierarchical Cell Structure. ACS Appl. Mater. Interfaces 2014, 6, 9760–9767. [Google Scholar] [CrossRef]
- Merk, V.; Chanana, M.; Keplinger, T.; Gaan, S.; Burgert, I. Hybrid Wood Materials with Improved Fire Retardance by Bio-Inspired Mineralisation on the Nano- and Submicron Level. Green Chem. 2015, 17, 1423–1428. [Google Scholar] [CrossRef]
- Kalia, S.; Thakur, K.; Kumar, A.; Celli, A. Laccase-Assisted Surface Functionalization of Lignocellulosics. J. Mol. Catal. B Enzym. 2014, 102, 48–58. [Google Scholar] [CrossRef]
- Chauhan, P.S. Lignin Nanoparticles: Eco-Friendly and Versatile Tool for New Era. Bioresour. Technol. Rep. 2020, 9, 100374. [Google Scholar] [CrossRef]
- Sienkiewicz, N.; Buultjens, T.E.J.; White, N.A.; Palfreyman, J.W. Serpula Lacrymans and the Heat-Shock Response. Int. Biodeterior. Biodegrad. 1997, 39, 217–224. [Google Scholar] [CrossRef]
- Martín, J.A.; López, R. Biological Deterioration and Natural Durability of Wood in Europe. Forests 2023, 14, 283. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G. Wood-Water Relationships and Their Role for Wood Susceptibility to Fungal Decay. Appl. Microbiol. Biotechnol. 2020, 104, 3781–3795. [Google Scholar] [CrossRef] [PubMed]
- Tongco, J.V.; Cai, L. Durability and Thermal Properties of Biomineralized Southern Yellow Pine (SYP) via Bacterium Sporosarcina Pasteurii. In 120th Annual Meeting of the American Wood Protection Association, Portland, ME, USA, 1 May 2024; American Wood Protection Association: Clermont, FL, USA, 2024; pp. 1–8. [Google Scholar]
- Karthäuser, J.; Treu, A.; Larnøy, E.; Militz, H.; Alfredsen, G. Fungal Decay Resistance, Formaldehyde Emission and Weathering Resistance of Plywood Modified with Phenol-Formaldehyde Resin with Partial Substitution of Phenol by Pyrolysis Cleavage Products of Softwood Kraft Lignin. Eur. J. Wood Wood Prod. 2025, 83, 138. [Google Scholar] [CrossRef]
- Altgen, M.; Kyyrö, S.; Paajanen, O.; Rautkari, L. Resistance of Thermally Modified and Pressurized Hot Water Extracted Scots Pine Sapwood against Decay by the Brown-Rot Fungus Rhodonia Placenta. Eur. J. Wood Wood Prod. 2019, 78, 161–171. [Google Scholar] [CrossRef]
- Binbuga, N.; Chambers, K.; Henry, W.P.; Schultz, T.P. Metal Chelation Studies Relevant to Wood Preservation. 1. Complexation of Propyl Gallate with Fe2+. Holzforschung 2005, 59, 205–209. [Google Scholar] [CrossRef]
- Karim, M.; Daryaei, M.G.; Torkaman, J.; Oladi, R.; Ghanbary, M.A.T.; Bari, E.; Yilgor, N. Natural Decomposition of Hornbeam Wood Decayed by the White Rot Fungus Trametes Versicolor. Acad. Bras. Cienc. 2017, 89, 2647–2655. [Google Scholar] [CrossRef]
- Bari, E.; Nazarnezhad, N.; Kazemi, S.M.; Tajick Ghanbary, M.A.; Mohebby, B.; Schmidt, O.; Clausen, C.A. Comparison between Degradation Capabilities of the White Rot Fungi Pleurotus Ostreatus and Trametes Versicolor in Beech Wood. Int. Biodeterior. Biodegrad. 2015, 104, 231–237. [Google Scholar] [CrossRef]
- Qin, X.; Su, X.; Luo, H.; Ma, R.; Yao, B.; Ma, F. Deciphering Lignocellulose Deconstruction by the White Rot Fungus Irpex Lacteus Based on Genomic and Transcriptomic Analyses. Biotechnol. Biofuels 2018, 11, 58. [Google Scholar] [CrossRef]
- Bao, M.; Zhang, W.; He, L.; Bao, Y.; Wu, Z.; Yu, W.; Chen, Y.; Li, N. Changes in Chemical Composition, Crystallinity, and Microstructure of Wood Fiber Mat-Reinforced Composite Caused by White-Rot Fungus Trametes Versicolor and Brown-Rot Fungus Gloeophyllum Trabeum. Wood Mater. Sci. Eng. 2023, 18, 1715–1723. [Google Scholar] [CrossRef]
- Li, X.; Han, C.; Li, W.; Chen, G.; Wang, L. Insights into the Cellulose Degradation Mechanism of the Thermophilic Fungus Chaetomium Thermophilum Based on Integrated Functional Omics. Biotechnol. Biofuels 2020, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Popescu, C.-M.; Tibirna, C.M.; Manoliu, A.L.; Gradinariu, P.; Vasile, C. Microscopic Study of Lime Wood Decayed by Chaetomium Globosum. Cellul. Chem. Technol. 2011, 45, 565–569. [Google Scholar]
- Caizán Juanarena, L.; Ter Heijne, A.; Buisman, C.J.N.; Van der Wal, A. Wood Degradation by Thermotolerant and Thermophilic Fungi for Sustainable Heat Production. ACS Sustain. Chem. Eng. 2016, 4, 6355–6361. [Google Scholar] [CrossRef]
- Dietenberger, M. Update for Combustion Properties of Wood Components. Fire Mater. 2002, 26, 255–267. [Google Scholar] [CrossRef]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.M.; Dubois, P. New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125. [Google Scholar] [CrossRef]
- Bouhamida, B.; Merzoug, A.; Sereir, Z.; Kilic, A.; Candan, Z. Chemical, Thermal, and Morphological Properties of Sustainable Lignocellulosic Biomaterial. Drv. Ind. 2024, 75, 431–440. [Google Scholar] [CrossRef]
- Jin, W.; Singh, K.; Zondlo, J. Pyrolysis Kinetics of Physical Components of Wood and Wood-Polymers Using Isoconversion Method. Agriculture 2013, 3, 12–32. [Google Scholar] [CrossRef]
- Sotoudehnia, F.; McDonald, A.G. Upgrading Mixed Agricultural Plastic and Lignocellulosic Waste to Liquid Fuels by Catalytic Pyrolysis. Catalysts 2022, 12, 1381. [Google Scholar] [CrossRef]
- Bonjour, P.V.B.; Alijó, P.H.R.; Paredes, M.L.L. Valorization of Lignocellulosic Biomass via Pyrolysis: Techno-Economic Analysis of Guaiacol and Levoglucosan Co-Production. Biomass Bioenergy 2025, 203, 108227. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Luo, Z.; Wen, L.; Cen, K. Mechanism Study on Cellulose Pyrolysis Using Thermogravimetric Analysis Coupled with Infrared Spectroscopy. Front. Energy Power Eng. China 2007, 1, 413–419. [Google Scholar] [CrossRef]
- Recio-Ruiz, M.d.C.; Ruiz-Rosas, R.; García-Mateos, F.J.; Valero-Romero, M.J.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. An Integrated Approach to the Valorization of Pyrolysis Products from Lignocellulosic Residues and By-Products. Biomass Bioenergy 2025, 196, 107676. [Google Scholar] [CrossRef]
- Cui, C.; Li, Y.; Wang, S.; Ren, M.; Yang, C.; Jiang, Z.; Zhang, J. Review on an Advanced Combustion Technology: Supercritical Hydrothermal Combustion. Appl. Sci. 2020, 10, 1645. [Google Scholar] [CrossRef]
- Jerzak, W.; Kuźnia, M. Examination of Inorganic Gaseous Species and Condensed Phases during Coconut Husk Combustion Based on Thermodynamic Equilibrium Predictions. Renew. Energy 2021, 167, 497–507. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Syrodoy, S.V.; Kostoreva, Z.A.; Kostoreva, A.A.; Purin, M.V.; Nigay, N.A.; Zamaltdinov, R.R. Features of the Mechanism of Gas-Phase Ignition of Wood Biomass Particles. Combust. Sci. Technol. 2025, 197, 2927–2954. [Google Scholar] [CrossRef]
- Kweon, S.W.; Lee, Y.J.; Lee, T.J.; Kim, H.J. Preparation of Flame-Retardant Cellulose Paper via Spray Coating with Lignin, Phytic Acid, and Sodium Silicate. BioResources 2025, 20, 3808–3825. [Google Scholar] [CrossRef]
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-Retardant Surface Treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Patel, R.; Chaudhary, M.L.; Patel, Y.N.; Chaudhari, K.; Gupta, R.K. Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation. Polymers 2025, 17, 1814. [Google Scholar] [CrossRef]
- Goliszek-Chabros, M.; Xu, T.; Bocho-Janiszewska, A.; Podkościelna, B.; Sevastyanova, O. Lignin Nanoparticles from Softwood and Hardwood as Sustainable Additives for Broad-Spectrum Protection and Enhanced Sunscreen Performance. Wood Sci. Technol. 2025, 59, 60. [Google Scholar] [CrossRef]
- Moya, R.; Gaitán-Álvarez, J.; Berrocal, A.; Araya, F. Effect of CaCO3 on the Wood Properties of Tropical Hardwood Species from Fast-Growth Plantation in Costa Rica. Bioresources 2020, 15, 4802–4822. [Google Scholar] [CrossRef]
- Pondelak, A.; Rosi, F.; Maurich, C.; Miliani, C.; Škapin, S.D.; Sever Škapin, A. The Role of Relative Humidity on Crystallization of Calcium Carbonate from Calcium Acetoacetate Precursor. Appl. Surf. Sci. 2020, 506, 144768. [Google Scholar] [CrossRef]
- Vilela, C.; Freire, C.S.R.; Marques, P.A.A.P.; Trindade, T.; Pascoal Neto, C.; Fardim, P. Synthesis and Characterization of New CaCO3/Cellulose Nanocomposites Prepared by Controlled Hydrolysis of Dimethylcarbonate. Carbohydr. Polym. 2010, 79, 1150–1156. [Google Scholar] [CrossRef]
- Pondelak, A.; Škapin, A.S.; Knez, N.; Knez, F.; Pazlar, T. Improving the Flame Retardancy of Wood Using an Eco-Friendly Mineralisation Process. Green Chem. 2021, 23, 1130–1135. [Google Scholar] [CrossRef]
- Singh, N.B.; Singh, N.P. Formation of CaO from Thermal Decomposition of Calcium Carbonate in the Presence of Carboxylic Acids. J. Therm. Anal. Calorim. 2007, 89, 159–162. [Google Scholar] [CrossRef]
- Berglund, L.A.; Burgert, I.; Berglund, L.A.; Burgert ETH Zürich, I.; Burgert, I. Bioinspired Wood Nanotechnology for Functional Materials. Adv. Mater. 2018, 30, 1704285. [Google Scholar] [CrossRef]
- Merk, V.; Chanana, M.; Gaan, S.; Burgert, I. Mineralization of Wood by Calcium Carbonate Insertion for Improved Flame Retardancy. Holzforschung 2016, 70, 867–876. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Wang, C.; Wang, Z.; Liu, D.; Yang, T.; Deng, Z.; Yuan, G. Performance Enhancement of the Poplar Wood Composites Mineralized by CaCO3. ACS Omega 2022, 7, 29465. [Google Scholar] [CrossRef]
- Repič, R.; Pondelak, A.; Kržišnik, D.; Humar, M.; Škapin, A.S. Combining Mineralisation and Thermal Modification to Improve the Fungal Durability of Selected Wood Species. J. Clean. Prod. 2022, 351, 131530. [Google Scholar] [CrossRef]
- Mustoe, G.E. Silicification of Wood: An Overview. Minerals 2023, 13, 206. [Google Scholar] [CrossRef]
- Goetze, J.; Möckel, R.; Langhof, N.; Hengst, M.; Klinger, M. Silicification of Wood in the Laboratory. Ceram. Silik. 2008, 52, 268–277. [Google Scholar]
- Tu, K.; Liu, J.; Li, J.; Li, S.; Zhang, X.; Li, S. Silicified Wood with Dual Fire Retardancy and Thermal Management Functionalities. Polymers 2025, 17, 2293. [Google Scholar] [CrossRef]
- Doubek, S.; Borůvka, V.; Zeidler, A.; Reinprecht, L. Effect of the Passive Chemical Modification of Wood with Silicon Dioxide (Silica) on Its Properties and Inhibition of Moulds. Wood Res. 2018, 63, 599–616. [Google Scholar]
- Meng, D.; Wang, K.; Wang, S.; Qiu, Y.; Gu, X.; Sun, J.; Li, H.; Zhang, S. Preparation of Ultra-Flame Retardant Wood Materials with Mechanical Reinforcement and Water Resistance through Biomimetic Mineralization of Carbonated Apatite. Cellulose 2022, 30, 525–537. [Google Scholar] [CrossRef]
- Guo, H.; Luković, M.; Mendoza, M.; Schlepütz, C.M.; Griffa, M.; Xu, B.; Gaan, S.; Herrmann, H.; Burgert, I. Bioinspired Struvite Mineralization for Fire-Resistant Wood. ACS Appl. Mater. Interfaces 2019, 11, 5427–5434. [Google Scholar] [CrossRef]
- Zhou, H.; Wen, D.; Hao, X.; Chen, C.; Zhao, N.; Ou, R.; Wang, Q. Nanostructured Multifunctional Wood Hybrids Fabricated via in Situ Mineralization of Zinc Borate in Hierarchical Wood Structures. Chem. Eng. J. 2023, 451, 138308. [Google Scholar] [CrossRef]
- Saka, S.; Ueno, T. Several SiO2 Wood-Inorganic Composites and Their Fire-Resisting Properties. Wood Sci. Technol. 1997, 31, 457–466. [Google Scholar] [CrossRef]
- Hübert, T.; Unger, B.; Bücker, M. Sol-Gel Derived TiO2 Wood Composites. J. Solgel Sci. Technol. 2010, 53, 384–389. [Google Scholar] [CrossRef]
- Dong, A.; Wang, Y.; Tang, Y.; Ren, N.; Zhang, Y.; Yue, Y.; Gao, Z. Zeolitic Tissue Through Wood Cell Templating. Adv. Mater. 2002, 14, 926–929. [Google Scholar] [CrossRef]
- Tampieri, A.; Sprio, S.; Ruffini, A.; Celotti, G.; Lesci, I.G.; Roveri, N. From Wood to Bone: Multi-Step Process to Convert Wood Hierarchical Structures into Biomimetic Hydroxyapatite Scaffolds for Bone Tissue Engineering. J. Mater. Chem. 2009, 19, 4973–4980. [Google Scholar] [CrossRef]
- Ojha, A.; Bandyopadhyay, T.K.; Das, D.; Dey, P. Microbial Carbonate Mineralization: A Comprehensive Review of Mechanisms, Applications, and Recent Advancements. Mol. Biotechnol. 2025, 1–27. [Google Scholar] [CrossRef]
- Brindavathy, R. Silicate Minerals Induced by Microorganisms. In Mineral Formation by Microorganisms; Berenjian, A., Seifan, M., Eds.; Springer Nature: London, UK, 2022; pp. 125–159. ISBN 978-3-030-80807-5. [Google Scholar]
- Jantschke, A. Non-Silicate Minerals (Carbonates, Oxides, Phosphates, Sulfur-Containing, Oxalates, and Other Organic Crystals) Induced by Microorganisms. In Mineral Formation by Microorganisms; Berenjian, A., Seifan, M., Eds.; Springer Nature: London, UK, 2022; pp. 161–241. ISBN 978-3-030-80807-5. [Google Scholar]
- Kim, G.; Kim, J.; Youn, H. Effect of Temperature, PH, and Reaction Duration on Microbially Induced Calcite Precipitation. Appl. Sci. 2018, 8, 1277. [Google Scholar] [CrossRef]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Front. Mater. 2019, 6, 126. [Google Scholar] [CrossRef]
- Han, P.P.; Geng, W.J.; Li, M.N.; Jia, S.R.; Yin, J.L.; Xue, R.Z. Improvement of Biomineralization of Sporosarcina Pasteurii as Biocementing Material for Concrete Repair by Atmospheric and Room Temperature Plasma Mutagenesis and Response Surface Methodology. J. Microbiol. Biotechnol. 2021, 31, 1311–1322. [Google Scholar] [CrossRef]
- Han, Z.; Wang, J.; Zhao, H.; Tucker, M.E.; Zhao, Y.; Wu, G.; Zhou, J.; Yin, J.; Zhang, H.; Zhang, X.; et al. Mechanism of Biomineralization Induced by Bacillus Subtilis J2 and Characteristics of the Biominerals. Minerals 2019, 9, 218. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Y.; Deveaux, J.G.; Masoud, M.A.; Chandra, F.S.; Chen, H.; Zhang, D.; Feng, L. Biomineralization Forming Process and Bio-Inspired Nanomaterials for Biomedical Application: A Review. Minerals 2019, 9, 68. [Google Scholar] [CrossRef]
- Benzerara, K.; Skouri-Panet, F.; Li, J.; Férard, C.; Gugger, M.; Laurent, T.; Couradeau, E.; Ragon, M.; Cosmidis, J.; Menguy, N.; et al. Intracellular Ca-Carbonate Biomineralization Is Widespread in Cyanobacteria. Proc. Natl. Acad. Sci. USA 2014, 111, 10933–10938. [Google Scholar] [CrossRef] [PubMed]
- Bosak, T.; Knoll, A.H.; Petroff, A.P. The Meaning of Stromatolites. Annu. Rev. Earth Planet. Sci. 2013, 41, 21–44. [Google Scholar] [CrossRef]
- Golubic, S.; Seong-Joo, L. Early Cyanobacterial Fossil Record: Preservation, Palaeoenvironments and Identification. Eur. J. Phycol. 2010, 34, 339–348. [Google Scholar] [CrossRef]
- De Wever, A.; Benzerara, K.; Coutaud, M.; Caumes, G.; Poinsot, M.; Skouri-Panet, F.; Laurent, T.; Duprat, E.; Gugger, M. Evidence of High Ca Uptake by Cyanobacteria Forming Intracellular CaCO3 and Impact on Their Growth. Geobiology 2019, 17, 676–690. [Google Scholar] [CrossRef]
- Benzerara, K.; Duprat, E.; Bitard-Feildel, T.; Caumes, G.; Cassier-Chauvat, C. A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria. Genome Biol. Evol. 2022, 14, evac026. [Google Scholar] [CrossRef]
- Li, J.; Oliver, I.M.; Cam, N.; Boudier, T.; Blondeau, M.; Leroy, E.; Cosmidis, J.; Skouri-Panet, F.; Guigner, J.M.; Férard, C.; et al. Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses. Minerals 2016, 6, 10. [Google Scholar] [CrossRef]
- Clapham, D.E. Calcium Signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef]
- Qin, W.; Wang, C.Y.; Ma, Y.-X.; Shen, M.J.; Li, J.; Jiao, K.; Tay, F.R.; Niu, L.-N. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. Adv. Mater. 2022, 34, 2109924. [Google Scholar] [CrossRef]
- Weiner, S.; Dove, P.M. An Overview of Biomineralization Processes and the Problem of the Vital Effect. Rev. Miner. Geochem. 2003, 54, 1–29. [Google Scholar] [CrossRef]
- Tang, S.; Dong, Z.; Ke, X.; Luo, J.; Li, J. Advances in Biomineralization-Inspired Materials for Hard Tissue Repair. Int. J. Oral Sci. 2021, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Dai, Y.; Han, X.; Huo, F.; Xie, L.; Yu, M.; Wang, Y.; An, N.; Li, Z.; Guo, W. Biomineralization-Inspired Mineralized Hydrogel Promotes the Repair and Regeneration of Dentin/Bone Hard Tissue. npj Regen. Med. 2023, 8, 11. [Google Scholar] [CrossRef]
- Beniash, E.; Aizenberg, J.; Addadi, L.; Weiner, S. Amorphous Calcium Carbonate Transforms into Calcite during Sea Urchin Larval Spicule Growth. Proc. R. Soc. B Biol. Sci. 1997, 264, 461. [Google Scholar] [CrossRef]
- Han, Z.; Gao, X.; Zhao, H.; Tucker, M.E.; Zhao, Y.; Yan, H. The Extracellular and Intracellular Biomineralization Induced by Bacillus Licheniformis DB1-9 at Different Mg/Ca Molar Ratios. Minerals 2018, 8, 585. [Google Scholar] [CrossRef]
- Ivanova, L.A.; Egorov, V.V.; Zabrodskaya, Y.A.; Shaldzhyan, A.A.; Baranchikov, A.Y.; Tsvigun, N.V.; Lykholay, A.N.; Yapryntsev, A.D.; Lebedev, D.V.; Kulminskaya, A.A. Matrix Is Everywhere: Extracellular DNA Is a Link between Biofilm and Mineralization in Bacillus Cereus Planktonic Lifestyle. npj Biofilms Microbiomes 2023, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, S.; Ghosh, T.; Montemagno, C.; Kumar, A. Sporosarcina Pasteurii Can Form Nanoscale Crystals on Cell Surface. bioRxiv 2017, 184184. [Google Scholar] [CrossRef]
- Bazylinski, D.A.; Frankel, R.B. Biologically Controlled Mineralization in Prokaryotes. Rev. Miner. Geochem. 2003, 54, 217–247. [Google Scholar] [CrossRef]
- Srivastava, V.K. Biomineralization from Nature to Applications. Saudi J. Med. Pharm. Sci. 2022, 8, 1–5. [Google Scholar] [CrossRef]
- Heim, C. Microbial Biomineralization. In Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; pp. 586–592. [Google Scholar]
- Minsky, A.; Shimoni, E.; Frenkiel-Krispin, D. Stress, Order and Survival. Nat. Rev. Mol. Cell Biol. 2002, 3, 50–60. [Google Scholar] [CrossRef]
- Frankel, R.B.; Bazylinski, D.A. Biologically Induced Mineralization by Bacteria. Rev. Miner. Geochem. 2003, 54, 95–114. [Google Scholar] [CrossRef]
- Stanaszek-Tomal, E. Bacterial Concrete as a Sustainable Building Material? Sustainability 2020, 12, 696. [Google Scholar] [CrossRef]
- Khushnood, R.A.; Qureshi, Z.A.; Shaheen, N.; Ali, S. Bio-Mineralized Self-Healing Recycled Aggregate Concrete for Sustainable Infrastructure. Sci. Total Environ. 2020, 703, 135007. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.G.; Al Disi, Z.; Zouari, N.; Al Nuaimi, N.; Kahraman, R.; Gencturk, B.; Rodrigues, D.F.; Yildirim, Y. Bio Self-Healing Concrete Using MICP by an Indigenous Bacillus Cereus Strain Isolated from Qatari Soil. Constr. Build. Mater. 2022, 328, 126943. [Google Scholar] [CrossRef]
- Arunachalam, K.D.; Sathyanarayanan, K.S.; Darshan, B.S.; Raja, R.B. Studies on the Characterisation of Biosealant Properties of Bacillus Sphaericus. Int. J. Eng. Sci. Technol. 2010, 2, 270–277. [Google Scholar]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological Precipitation of CaCO3. Soil. Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Fujita, Y.; Redden, G.D.; Ingram, J.C.; Cortez, M.M.; Ferris, F.G.; Smith, R.W. Strontium Incorporation into Calcite Generated by Bacterial Ureolysis. Geochim. Cosmochim. Acta 2004, 68, 3261–3270. [Google Scholar] [CrossRef]
- Ciurli, S.; Marzadori, C.; Benini, S.; Deiana, S.; Gessa, C. Urease from the Soil Bacterium Bacillus Pasteurii: Immobilization on Ca-Polygalacturonate. Soil. Biol. Biochem. 1996, 28, 811–817. [Google Scholar] [CrossRef]
- Coto, B.; Martos, C.; Peña, J.L.; Rodríguez, R.; Pastor, G. Effects in the Solubility of CaCO3: Experimental Study and Model Description. Fluid. Phase Equilib. 2012, 324, 1–7. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Effects of Temperature and Moisture on Urease Activity in Semi-Arid Tropical Soils. Plant Soil. 1984, 78, 401–408. [Google Scholar] [CrossRef]
- Anbu, P.; Kang, C.H.; Shin, Y.J.; So, J.S. Formations of Calcium Carbonate Minerals by Bacteria and Its Multiple Applications. Springerplus 2016, 5, 250. [Google Scholar] [CrossRef] [PubMed]
- Ferris, F.G.; Phoenix, V.; Fujita, Y.; Smith, R.W. Kinetics of Calcite Precipitation Induced by Ureolytic Bacteria at 10 to 20 °C in Artificial Groundwater. Geochim. Cosmochim. Acta 2004, 68, 1701–1710. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Synergistic Role of Bacterial Urease and Carbonic Anhydrase in Carbonate Mineralization. Appl. Biochem. Biotechnol. 2014, 172, 2552–2561. [Google Scholar] [CrossRef]
- Okwadha, G.D.O.; Li, J. Optimum Conditions for Microbial Carbonate Precipitation. Chemosphere 2010, 81, 1143–1148. [Google Scholar] [CrossRef]
- Yoshida, N. Bacterial Mineralization and Its Potential for Industrial Applications. Curr. Biotechnol. E 2012, 1, 125–134. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Kumari, D.; Zhang, Q. Biomineralization for Sustainable Construction—A Review of Processes and Applications. Earth Sci. Rev. 2015, 148, 1–17. [Google Scholar] [CrossRef]
- Lawter, A.; Qafoku, N. Calcium Carbonate Minerals as Scavengers of Metals and Radionuclides for Natural Attenuation and Remediation. Available online: https://www.pnnl.gov/projects/remplex/calcium-carbonate-minerals-scavengers-metals-and-radionuclides-natural-attenuation-and-remediation (accessed on 2 May 2023).
- Wierzba, S.; Makuchowska-Fryc, J.; Kłos, A.; Ziembik, Z.; Ochędzan-Siodłak, W. Role of Calcium Carbonate in the Process of Heavy Metal Biosorption from Solutions: Synergy of Metal Removal Mechanisms. Sci. Rep. 2022, 12, 17668. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, S.; Roh, Y. Effect of Divalent Cations (Cu, Zn, Pb, Cd, and Sr) on Microbially Induced Calcium Carbonate Precipitation and Mineralogical Properties. Front. Microbiol. 2021, 12, 646748. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Li, D.; Zhao, H.; Li, G.; Yan, H.; Han, Z.; Chi, X.; Meng, L.; Wang, J.; Xu, Y.; Tucker, M.E. Calcium Ion Biorecovery from Industrial Wastewater by Bacillus Amyloliquefaciens DMS6. Chemosphere 2022, 298, 134328. [Google Scholar] [CrossRef]
- Rajasekar, A.; Wilkinson, S.; Moy, C.K.S. MICP as a Potential Sustainable Technique to Treat or Entrap Contaminants in the Natural Environment: A Review. Environ. Sci. Ecotechnol. 2021, 6, 100096. [Google Scholar] [CrossRef]
- Omar, O.; Mousa, M.R.; Hassan, M.; Hungria, R.; Gavilanes, A.; Arce, G.; Milla, J.; Rupnow, T. Optimization of the Self-Healing Efficiency of Bacterial Concrete Using Impregnation of Three Different Precursors into Lightweight Aggregate. Transp. Res. Rec. J. Transp. Res. Board 2022, 2677, 1611–1624. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hora, R.N.; Ahenkorah, I.; Beecham, S.; Karim, M.R.; Iqbal, A. State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability 2020, 12, 6281. [Google Scholar] [CrossRef]
- Kawasaki, K.; Buchanan, A.V.; Weiss, K.M. Biomineralization in Humans: Making the Hard Choices in Life. Annu. Rev. Genet. 2009, 43, 119–142. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, Y.; Hao, H.; Zhang, Y.; Xu, X.; Tang, R. Therapeutic Potential of Biomineralization-Based Engineering. Adv. Ther. 2018, 1, 1800079. [Google Scholar] [CrossRef]
- Collins, M.T.; Marcucci, G.; Anders, H.J.; Beltrami, G.; Cauley, J.A.; Ebeling, P.R.; Kumar, R.; Linglart, A.; Sangiorgi, L.; Towler, D.A.; et al. Skeletal and Extraskeletal Disorders of Biomineralization. Nat. Rev. Endocrinol. 2022, 18, 473–489. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, C.S.; Chaussain, C.; Osdoby, P.; Brandi, M.L.; Clarke, B.; Thakker, R.V. The Role of Biomineralization in Disorders of Skeletal Development and Tooth Formation. Nat. Rev. Endocrinol. 2021, 17, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Gautron, J.; Stapane, L.; Le Roy, N.; Nys, Y.; Rodriguez-Navarro, A.B.; Hincke, M.T. Avian Eggshell Biomineralization: An Update on Its Structure, Mineralogy and Protein Tool Kit. BMC Mol. Cell Biol. 2021, 22, 11. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, R. The Mineralization of Molluscan Shells: Some Unsolved Problems and Special Considerations. Front. Mar. Sci. 2022, 9, 981. [Google Scholar] [CrossRef]
- Yang, H.; Yue, X.; Liu, Z.; Guan, Q.; Yu, S. Emerging Sustainable Structural Materials by Assembling Cellulose Nanofibers. Adv. Mater. 2025, 37, 2413564. [Google Scholar] [CrossRef] [PubMed]
- Raghuwanshi, V.S.; Garnier, G. Nanoparticle Decorated Cellulose Nanocrystals (CNC) Composites for Energy, Catalysis, and Biomedical Applications. Adv. Funct. Mater. 2025, 35, 2412869. [Google Scholar] [CrossRef]
- Gond, R.K.; Gupta, M.K.; Jawaid, M. Extraction of Nanocellulose from Sugarcane Bagasse and Its Characterization for Potential Applications. Polym. Compos. 2021, 42, 5400–5412. [Google Scholar] [CrossRef]
- Zhang, X.; Ni, H.; Xu, X.; Li, L.; Kang, H.; Li, D. Recent Advancements in the Synthesis, Functionalization, and Utilization of Cellulose Nanocrystals. Resour. Chem. Mater. 2025, 4, 100073. [Google Scholar] [CrossRef]
- Jurczyková, T.; Kmeťová, E.; Kačík, F.; Lexa, M.; Ťoupal, J. An Innovative Wood Fire-Retardant Coating Based on Biocompatible Nanocellulose Surfactant and Expandable Graphite. Coatings 2024, 14, 1036. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- Wang, L.; Kelly, P.V.; Ozveren, N.; Zhang, X.; Korey, M.; Chen, C.; Li, K.; Bhandari, S.; Tekinalp, H.; Zhao, X.; et al. Multifunctional Polymer Composite Coatings and Adhesives by Incorporating Cellulose Nanomaterials. Matter 2023, 6, 344–372. [Google Scholar] [CrossRef]
- García-Ramón, J.A.; Carmona-García, R.; Valera-Zaragoza, M.; Aparicio-Saguilán, A.; Bello-Pérez, L.A.; Aguirre-Cruz, A.; Alvarez-Ramirez, J. Morphological, Barrier, and Mechanical Properties of Banana Starch Films Reinforced with Cellulose Nanoparticles from Plantain Rachis. Int. J. Biol. Macromol. 2021, 187, 35–42. [Google Scholar] [CrossRef]
- Spagnuolo, L.; D’Orsi, R.; Operamolla, A. Nanocellulose for Paper and Textile Coating: The Importance of Surface Chemistry. Chempluschem 2022, 87, e202200204. [Google Scholar] [CrossRef]
- Tong, C.; Zhang, S.; Zhong, T.; Fang, Z.; Liu, H. Highly Fibrillated and Intrinsically Flame-Retardant Nanofibrillated Cellulose for Transparent Mineral Filler-Free Fire-Protective Coatings. Chem. Eng. J. 2021, 419, 129440. [Google Scholar] [CrossRef]
- Cheng, L.; Ren, S.; Brosse, N.; Ju, Z.; Li, S.; Lu, X. Synergic Flame-Retardant Effect of Cellulose Nanocrystals and Magnesium Hydroxide in Polyurethane Wood Coating. J. Wood Chem. Technol. 2022, 42, 297–304. [Google Scholar] [CrossRef]
- Wu, M.; Huang, Y.; Zhang, T.; Kuga, S.; Ewulonu, C.M. Cellulose Nanofibril-Based Flame Retardant and Its Application to Paper. ACS Sustain. Chem. Eng. 2020, 8, 10222–10229. [Google Scholar] [CrossRef]
- Mishra, R.K.; Sabu, A.; Tiwari, S.K. Materials Chemistry and the Futurist Eco-Friendly Applications of Nanocellulose: Status and Prospect. J. Saudi Chem. Soc. 2018, 22, 949–978. [Google Scholar] [CrossRef]
- Woźniak, M.; Majka, J.; Krystofiak, T.; Lis, B.; Roszyk, E.; Ratajczak, I. Physico-Mechanical and Sorption Properties of Wood Treated with Cellulose Nanofibers. Materials 2025, 18, 2762. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Qian, Y.; Yang, D.; Qiu, X.; Qin, Y.; Zhou, M. Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers 2020, 12, 2471. [Google Scholar] [CrossRef] [PubMed]
- Balakshin, M.Y.; Capanema, E.A.; Sulaeva, I.; Schlee, P.; Huang, Z.; Feng, M.; Borghei, M.; Rojas, O.J.; Potthast, A.; Rosenau, T. New Opportunities in the Valorization of Technical Lignins. ChemSusChem 2021, 14, 1016–1036. [Google Scholar] [CrossRef]
- Haile, A.; Gelebo, G.G.; Tesfaye, T.; Mengie, W.; Mebrate, M.A.; Abuhay, A.; Limeneh, D.Y. Pulp and Paper Mill Wastes: Utilizations and Prospects for High Value-Added Biomaterials. Bioresour. Bioprocess. 2021, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.D.; Singh, G.; Majumdar, S.; Chanda, P. Challenges in Developing Strategies for the Valorization of Lignin—A Major Pollutant of the Paper Mill Industry. Environ. Sci. Pollut. Res. 2022, 30, 11119–11140. [Google Scholar] [CrossRef]
- Moreno, A.; Sipponen, M.H. Overcoming Challenges of Lignin Nanoparticles: Expanding Opportunities for Scalable and Multifunctional Nanomaterials. Acc. Chem. Res. 2024, 57, 1918–1930. [Google Scholar] [CrossRef]
- Morsali, M.; Moreno, A.; Loukovitou, A.; Pylypchuk, I.; Sipponen, M.H. Stabilized Lignin Nanoparticles for Versatile Hybrid and Functional Nanomaterials. Biomacromolecules 2022, 23, 4597–4606. [Google Scholar] [CrossRef]
- Zikeli, F.; Romagnoli, M.; Mugnozza, G.S. Lignin Nanoparticles in Coatings for Wood Preservation. In Micro and Nanolignin in Aqueous Dispersions and Polymers: Interactions, Properties, and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 357–384. ISBN 9780128237021. [Google Scholar]
- Camargos, C.H.M.; Poggi, G.; Chelazzi, D.; Baglioni, P.; Rezende, C.A. Protective Coatings Based on Cellulose Nanofibrils, Cellulose Nanocrystals, and Lignin Nanoparticles for the Conservation of Cellulosic Artifacts. ACS Appl. Nano Mater. 2022, 5, 13245–13259. [Google Scholar] [CrossRef]
- Kaur, R.; Bhardwaj, S.K.; Chandna, S.; Kim, K.H.; Bhaumik, J. Lignin-Based Metal Oxide Nanocomposites for UV Protection Applications: A Review. J. Clean. Prod. 2021, 317, 128300. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Ding, J.; Zhang, J.W.; Wang, B.W.; Yang, R.T.; Wang, W.S.; Cui, X.J.; Luo, F.X. Peanut Hull Lignin/Ecamsule·2Na Hollow Nanoparticles (P/E LNPs): A Natural Light-Coloured, Broad-Spectrum, Highly Antioxidant, and Safe Lignin-Based Sunscreen. Int. J. Biol. Macromol. 2024, 283, 137586. [Google Scholar] [CrossRef]
- Piccinino, D.; Capecchi, E.; Tomaino, E.; Gabellone, S.; Gigli, V.; Avitabile, D.; Saladino, R. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants 2021, 10, 274. [Google Scholar] [CrossRef]
- Zikeli, F.; Vinciguerra, V.; D’Annibale, A.; Capitani, D.; Romagnoli, M.; Mugnozza, G.S. Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials 2019, 9, 281. [Google Scholar] [CrossRef]
- Ren, C.; Li, M.; Huang, W.; Zhang, Y.; Huang, J. Superhydrophobic Coating with Excellent Robustness and UV Resistance Fabricated Using Hydrothermal Treated Lignin Nanoparticles by One-Step Spray. J. Mater. Sci. 2022, 57, 18356–18369. [Google Scholar] [CrossRef]
- Zikeli, F.; Vettraino, A.M.; Biscontri, M.; Bergamasco, S.; Palocci, C.; Humar, M.; Romagnoli, M. Lignin Nanoparticles with Entrapped Thymus Spp. Essential Oils for the Control of Wood-Rot Fungi. Polymers 2023, 15, 2713. [Google Scholar] [CrossRef]
- Yu, H.; Zhan, W.; Liu, Y. Engineering Lignin Nanoparticles Deposition on Melamine Sponge Skeleton for Absorbent and Flame Retardant Materials. Waste Biomass Valorization 2020, 11, 4561–4569. [Google Scholar] [CrossRef]
- Won, S.; Jung, M.; Bang, J.; Cho, S.Y.; Choi, I.G.; Kwak, H.W. Lignin-Based Flame Retardant via Sequential Purification-Nanoparticle Formation, and N-P Coupled Chemical Modification. Int. J. Biol. Macromol. 2024, 281, 136499. [Google Scholar] [CrossRef]
- Chollet, B.; Lopez-Cuesta, J.M.; Laoutid, F.; Ferry, L. Lignin Nanoparticles as A Promising Way for Enhancing Lignin Flame Retardant Effect in Polylactide. Materials 2019, 12, 2132. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.C.; Liu, J.; Skibsted, L.H. Temperature Effect on Calcium Binding to Aspartate and Glutamate. Food Res. Int. 2022, 159, 111625. [Google Scholar] [CrossRef]
- Vavrusova, M.; Skibsted, L.H. Calcium Binding to Dipeptides of Aspartate and Glutamate in Comparison with Orthophosphoserine. J. Agric. Food Chem. 2013, 61, 5380–5384. [Google Scholar] [CrossRef]
- Liu, D.; Chen, H.; Chang, P.R.; Wu, Q.; Li, K.; Guan, L. Biomimetic Soy Protein Nanocomposites with Calcium Carbonate Crystalline Arrays for Use as Wood Adhesive. Bioresour. Technol. 2010, 101, 6235–6241. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Cui, K.; Li, Q.; Cao, J.; Jiang, W. Epsilon-Poly-l-Lysine (ε-PL) Exhibits Multifaceted Antifungal Mechanisms of Action That Control Postharvest Alternaria Rot. Int. J. Food Microbiol. 2021, 348, 109224. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-S.; Lu, W.-Y.W.; Park, S.-H.; Kang, D.-H. Control of Foodborne Pathogens on Ready-to-Eat Roast Beef Slurry by ε-Polylysine. Int. J. Food Microbiol. 2010, 141, 236–241. [Google Scholar] [CrossRef]
- Jiao, W.; Liu, X.; Chen, Q.; Du, Y.; Li, Y.; Yue, F.; Dong, X.; Fu, M. Epsilon-Poly-l-Lysine (ε-PL) Exhibits Antifungal Activity in Vivo and in Vitro against Botrytis Cinerea and Mechanism Involved. Postharvest Biol. Technol. 2020, 168, 111270. [Google Scholar] [CrossRef]
- Cai, L.; Kuo, C.J. Epsilon Poly-L-Lysine as a Novel Antifungal Agent for Sustainable Wood Protection. Front. Microbiol. 2022, 13, 908541. [Google Scholar] [CrossRef] [PubMed]
- Schultz, T.P.; Nicholas, D.D. Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators. Phytochemistry 2002, 61, 555–560. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Li, T.; Zhang, S.; Ma, P.; Shi, D.; Chen, M.; Dong, W. A Bio-Based Flame-Retardant Starch Based On Phytic Acid. ACS Sustain. Chem. Eng. 2020, 8, 10265–10274. [Google Scholar] [CrossRef]
- Patra, A.; Kjellin, S.; Larsson, A.C. Phytic Acid-Based Flame Retardants for Cotton. Green Mater. 2020, 8, 123–130. [Google Scholar] [CrossRef]
- Mokhena, T.C.; Sadiku, E.R.; Ray, S.S.; Mochane, M.J.; Matabola, K.P.; Motloung, M. Flame Retardancy Efficacy of Phytic Acid: An Overview. J. Appl. Polym. Sci. 2022, 139, e52495. [Google Scholar] [CrossRef]
- Shen, H.; Liu, Y.; Wang, P.; Qin, S.; Shi, X.; Chu, D.; Liu, S. Preparation of Multifunctional Flame Retardant Composite Wood by Doping Poplar Cell Walls with Metal Phytates. Cellulose 2024, 31, 9435–9454. [Google Scholar] [CrossRef]
- Rizwan, M.; Riaz, U.; Aziz, H.; Anum, W.; Rizwan, M.; Murtaza, G.; Yong, J.W.H.; Chen, H. Extenuating Lead Toxicity in Chinese Cabbage Using Organic Acids: Comparative Efficacy of Acetic, Citric, and Tartaric Acids. Ecotoxicol. Environ. Saf. 2025, 300, 118447. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Yudaev, P.; Chistyakov, E. Chelating Extractants for Metals. Metals 2022, 12, 1275. [Google Scholar] [CrossRef]
- Sun, Q.; Lin, S.; Liu, G.; Xuan, Y.; Gao, L.; Li, P. Functionalized Moso Bamboo Powder Adsorbent for Cd(II) Complexes with Citric Acid/Tartrate Acid: Characterization, Adsorptive Performance, and Mechanism. Environ. Eng. Res. 2022, 27, 210321. [Google Scholar] [CrossRef]
- Ke, X.; Zhang, F.J.; Zhou, Y.; Zhang, H.J.; Guo, G.L.; Tian, Y. Removal of Cd, Pb, Zn, Cu in Smelter Soil by Citric Acid Leaching. Chemosphere 2020, 255, 126690. [Google Scholar] [CrossRef]
- Gitipour, S.; Akbarpour, F.; Baghdadi, M.; Mehrdadi, N. Influence of the Organic Acids on the Heavy Metals Mobility and Distribution in the Contaminated Soils. Appl. Soil Res. 2022, 9, 62–73. [Google Scholar]
- He, J.; Lin, Q.; Luo, Y.; Liu, Y.; Fan, X.; Zheng, J.; Xu, K.; Ma, Y. Removal of Arsenic from Contaminated Soils by Combining Tartaric Acid with Dithionite: An Efficient Composite Washing Agent. J. Environ. Chem. Eng. 2023, 11, 109877. [Google Scholar] [CrossRef]
- Al-Khaldi, M.H.; Nasr-El-Din, H.A.; Mehta, S.; Al-Aamri, A.D. Reaction of Citric Acid with Calcite. Chem. Eng. Sci. 2007, 62, 5880–5896. [Google Scholar] [CrossRef]
- Calovi, M.; Zanardi, A.; Rossi, S. Recent Advances in Bio-Based Wood Protective Systems: A Comprehensive Review. Appl. Sci. 2024, 14, 736. [Google Scholar] [CrossRef]
- DE Castro, D.P.; Santana, R.M.C. Influence of Chemical Nature of Citric and Tartaric Acids on Reaction Time of the Crosslinking of Polyvinyl Alcohol Hydrogels. Acad. Bras. Cienc. 2024, 96, e20230092. [Google Scholar] [CrossRef] [PubMed]
- Agede, O.R.; Thies, M.C. Interlinking Lignin Molecules with Citric Acid: The Effect of Reaction Conditions on Lignin Properties. ChemSusChem 2025, 18, e202500311. [Google Scholar] [CrossRef]
- Itkor, P.; Singh, A.K.; Lee, M.; Boonsiriwit, A.; Lee, Y.S. Effects of Starch–Citric Acid Cross-Linking on the Fibrous Composites Using Waste Paper Pulp Material for Eco-Friendly Packaging. Biomass Convers. Biorefin. 2022, 14, 14693–14705. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, W.; Yao, W.; De, J.; Baxi, D.R.N. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 012154. [Google Scholar] [CrossRef]
- Xu, L.; Fang, L.; Zheng, Z.; Zhou, J.; Zheng, X.; Gao, Q.; Xu, Z.; Lian, H.; Xu, C. Advances in Investigating the Interfacial Compatibility of Treated Bamboo Fibers with Non-Polar Polymer Matrices. Compos. Interfaces 2025, 1–27. [Google Scholar] [CrossRef]
- Kharchi, N.; Barka, B.; Rouabah, F.; Mourad, A.H.I.; Dadache, D.; Magali, F.; Houicha, H.; Bencid, A. Citric Acid Treatment: A New Approach to Improving Ampelodesma Mauritanica Fibers-Poly-Lactic Acid Composites. Ind. Crops Prod. 2025, 223, 120143. [Google Scholar] [CrossRef]
- Pérez-Esteban, J.; Escolástico, C.; Moliner, A.; Masaguer, A. Chemical Speciation and Mobilization of Copper and Zinc in Naturally Contaminated Mine Soils with Citric and Tartaric Acids. Chemosphere 2013, 90, 276–283. [Google Scholar] [CrossRef]
- Zhao, F.; Tang, T.; Hou, S.; Fu, Y. Preparation and Synergistic Effect of Chitosan/Sodium Phytate/MgO Nanoparticle Fire-Retardant Coatings on Wood Substrate through Layer-By-Layer Self-Assembly. Coatings 2020, 10, 848. [Google Scholar] [CrossRef]
- Jeong, B.J.; Seo, J.; Panda, S.; Hajra, S.; Kim, H.; Lee, I.; Kaja, K.R.; Belal, M.; Dubal, D.; Kim, H.J. Chitosan-Phytic Acid-Based Flame-Retardant Triboelectric Nanogenerator for Fire Safety Applications. Adv. Sustain. Syst. 2025, 9, e00212. [Google Scholar] [CrossRef]
- Xu, C.; Cao, L.; Bilal, M.; Cao, C.; Zhao, P.; Zhang, H.; Huang, Q. Multifunctional Manganese-Based Carboxymethyl Chitosan Hydrogels for PH-Triggered Pesticide Release and Enhanced Fungicidal Activity. Carbohydr. Polym. 2021, 262, 117933. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Ahmed, S.M.; Rabea, E.I. Bactericidal and Fungicidal Activities of Different Molecular Weight Chitosan Samples. J. Pest. Control Environ. Sci. 2025, 14, 19–34. [Google Scholar] [CrossRef]
- Li, P.; Wang, B.; Liu, Y.Y.; Xu, Y.J.; Jiang, Z.M.; Dong, C.H.; Zhang, L.; Liu, Y.; Zhu, P. Fully Bio-Based Coating from Chitosan and Phytate for Fire-Safety and Antibacterial Cotton Fabrics. Carbohydr. Polym. 2020, 237, 116173. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Dong, S.; Jiang, H.; Hou, B.; Wang, Z.; Jin, C. Efficient and Durable Flame-Retardant Coatings on Wood Fabricated by Chitosan, Graphene Oxide, and Ammonium Polyphosphate Ternary Complexes via a Layer-by-Layer Self-Assembly Approach. ACS Omega 2022, 7, 29369–29379. [Google Scholar] [CrossRef]
- Zhou, L.; Fu, Y. Flame-Retardant Wood Composites Based on Immobilizing with Chitosan/Sodium Phytate/Nano-TiO2-ZnO Coatings via Layer-by-Layer Self-Assembly. Coatings 2020, 10, 296. [Google Scholar] [CrossRef]
- Ahn, S.H.; Oh, S.C.; Choi, I.-G.; Kim, H.-Y.; Yang, I. Efficacy of Wood Preservatives Formulated from Okara with Copper and/or Boron Salts. J. Wood Sci. 2008, 54, 495–501. [Google Scholar] [CrossRef]
- Poohphajai, F.; Sandak, J.; Sailer, M.; Rautkari, L.; Belt, T.; Sandak, A. Bioinspired Living Coating System in Service: Evaluation of the Wood Protected with Biofinish during One-Year Natural Weathering. Coatings 2021, 11, 701. [Google Scholar] [CrossRef]
- Bi, W.; Li, H.; Hui, D.; Gaff, M.; Lorenzo, R.; Corbi, I.; Corbi, O.; Ashraf, M. Effects of Chemical Modification and Nanotechnology on Wood Properties. Nanotechnol. Rev. 2021, 10, 978–1008. [Google Scholar] [CrossRef]
- Bolaño, C.; Palanti, S.; Benni, L.; Moldes, D. Enhancement of Wood Biological Resistance and Fire Retardant Properties after Laccase Assisted Enzymatic Grafting. Forests 2021, 12, 1102. [Google Scholar] [CrossRef]
- Saraf, M.; Prateek; Ranjan, R.; Balasubramaniam, B.; Thakur, V.K.; Gupta, R.K. Polydopamine-Enabled Biomimetic Surface Engineering of Materials: New Insights and Promising Applications. Adv. Mater. Interfaces 2024, 11, 2300670. [Google Scholar] [CrossRef]
- Kirker, G.T.; Hassan, B.; Mankowski, M.E.; Eller, F.J. Critical Review on the Use of Extractives of Naturally Durable Woods as Natural Wood Protectants. Insects 2024, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Rüggeberg, M.; Burgert, I. Bio-Inspired Wooden Actuators for Large Scale Applications. PLoS ONE 2015, 10, e0120718. [Google Scholar] [CrossRef] [PubMed]
- Bennich, T.; Belyazid, S. The Route to Sustainability—Prospects and Challenges of the Bio-Based Economy. Sustainability 2017, 9, 887. [Google Scholar] [CrossRef]
- Wang, X.; Shi, S.Q. Bioinspired Self-Flowing Wood Chemical Treatment. Nat. Commun. 2025, 16, 542. [Google Scholar] [CrossRef]
- Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial Applications of Nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, A.; Leow, T.C.; Rahman, M.B.A.; Oslan, S.N. Utilization and Prospect of Purification Technologies in Natural Proteins, Peptides and Recombinant Proteins. J. Proteins Proteom. 2024, 15, 233–257. [Google Scholar] [CrossRef]
- Jurczyková, T.; Kmeťová, E.; Kačík, F.; Lexa, M.; Dědič, D. Evaluating the Effectiveness of Cellulose-Based Surfactants in Expandable Graphite Wood Coatings. Polymers 2024, 16, 2832. [Google Scholar] [CrossRef]
- Barbero-López, A.; Akkanen, J.; Lappalainen, R.; Peräniemi, S.; Haapala, A. Bio-Based Wood Preservatives: Their Efficiency, Leaching and Ecotoxicity Compared to a Commercial Wood Preservative. Sci. Total Environ. 2021, 753, 142013. [Google Scholar] [CrossRef]
- Singh, S.; Prasad, S.M.; Bashri, G. Fate and Toxicity of Nanoparticles in Aquatic Systems. Acta Geochim. 2022, 42, 63–76. [Google Scholar] [CrossRef]
- Islam, S. Toxicity and Transport of Nanoparticles in Agriculture: Effects of Size, Coating, and Aging. Front. Nanotechnol. 2025, 7, 1622228. [Google Scholar] [CrossRef]
- Bhardwaj, L.K.; Rath, P.; Choudhury, M. A Comprehensive Review on the Classification, Uses, Sources of Nanoparticles (NPs) and Their Toxicity on Health. Aerosol Sci. Eng. 2022, 7, 69–86. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Li, Q.; Xiao, W.; Xie, G. Research Progress of Nanotechnology on Efficient and Green Technologies for Wood Preservation: A Review. J. Renew. Mater. 2025, 13, 699–718. [Google Scholar] [CrossRef]
- Paul, D.; Gaff, M.; Tesařová, D.; Hui, D.; Li, H. Recent Advancements in Nanotechnology Application on Wood and Bamboo Materials: A Review. Nanotechnol. Rev. 2023, 12, 20220528. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Nowack, B. The Need for a Life-Cycle Based Aging Paradigm for Nanomaterials: Importance of Real-World Test Systems to Identify Realistic Particle Transformations. Nanotechnology 2017, 28, 072001. [Google Scholar] [CrossRef]
- Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of Nanoparticles on Human and Environment: Review of Toxicity Factors, Exposures, Control Strategies, and Future Prospects. Environ. Sci. Pollut. Res. 2014, 22, 4122–4143. [Google Scholar] [CrossRef]
- Chávez-Hernández, J.A.; Velarde-Salcedo, A.J.; Navarro-Tovar, G.; Gonzalez, C. Safe Nanomaterials: From Their Use, Application, and Disposal to Regulations. Nanoscale Adv. 2024, 6, 1583–1610. [Google Scholar] [CrossRef] [PubMed]
- Dhall, S.; Nigam, A.; Harshavardhan, M.; Mukherjee, A.; Srivastava, P. A Comprehensive Overview of Methods Involved in Nanomaterial Production and Waste Disposal from Research Labs and Industries and Existing Regulatory Guidelines for Handling Engineered Nanomaterials. Environ. Chem. Ecotoxicol. 2024, 6, 269–282. [Google Scholar] [CrossRef]
- Feng, J.; Liu, L.; Zhang, Y.; Wang, Q.; Liang, H.; Wang, H.; Song, P. Rethinking the Pathway to Sustainable Fire Retardants. Exploration 2023, 3, 20220088. [Google Scholar] [CrossRef] [PubMed]
- Zanoletti, A.; Ciacci, L. The Reuse of Municipal Solid Waste Fly Ash as Flame Retardant Filler: A Preliminary Study. Sustainability 2022, 14, 2038. [Google Scholar] [CrossRef]
- Sandak, A.; Butina Ogorelec, K. Bioinspired Building Materials—Lessons from Nature. Front. Mater. 2023, 10, 1283163. [Google Scholar] [CrossRef]
- Chaudhary, B.; Winnard, T.; Oladipo, B.; Das, S.; Matos, H. Review of Fiber-Reinforced Composite Structures with Multifunctional Capabilities through Smart Textiles. Textiles 2024, 4, 391–416. [Google Scholar] [CrossRef]
- Patil, M.; Boraste, S.; Minde, P. A Comprehensive Review on Emerging Trends in Smart Green Building Technologies and Sustainable Materials. Mater. Today Proc. 2022, 65, 1813–1822. [Google Scholar] [CrossRef]
- Nath, P.C.; Sharma, R.; Debnath, S.; Sharma, M.; Inbaraj, B.S.; Dikkala, P.K.; Nayak, P.K.; Sridhar, K. Recent Trends in Polysaccharide-Based Biodegradable Polymers for Smart Food Packaging Industry. Int. J. Biol. Macromol. 2023, 253, 127524. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, V.L.S.; Araújo, R.C.; Lisboa, E.S.; Lopes, A.M.; de Albuquerque-Júnior, R.L.; Cardoso, J.C.; Blanco-Llamero, C.; Deshpande, T.A.; Anderson, H.O.W.; Priefer, R.; et al. Layer-by-Layer Assembly: A Versatile Approach for Tailored Biomedical Films and Drug Delivery. J. Drug Deliv. Sci. Technol. 2024, 91, 105243. [Google Scholar] [CrossRef]
- Tongco, J.V.; Sethi, S.K.; Kumar, A.; Verma, A.; Shankar, U. Introduction to Coatings: Types and Their Synthesis. In Materials Horizons: From Nature to Nanomaterials; Springer Nature: Singapore, 2023; Volume Part F1086, pp. 1–15. [Google Scholar]










| Strategy | Components | Primary Functions | Current Applications | Property Improvements | Limitations | References |
|---|---|---|---|---|---|---|
| Mineralization (Calcification) | CaCl2, NaHCO3, CaCO3, Dimethyl Carbonate, Calcium Acetoacetate | Fire retardancy, Thermal stability | Fire-retardant hybrid wood materials, Wood conservation | Peak heat release rate (PHRR) decrease, Total heat release (THR) decrease, Limiting oxygen index (LOI) increase | Limited effect on mechanical properties, Potential for leaching if reaction is incomplete | [62,65,66,67,68] |
| Mineralization (Silicification) | Colloidal Silica, Tetraethoxysilane (TEOS) | Durability, Hydrophobicity, Fire retardancy | Wear-resistant surfaces, Thermal insulators | Improved water resistance, Brinell hardness increase, Ignition delay | Limited covalent bonding to wood matrix, Potential strength/stiffness decrease, High pH of some precursors can damage wood | [71,72,73,74] |
| Mineralization (Other minerals) | Apatite, hydroxyapatite, struvite, zinc borate, silica-titania, aluminosilicate, iron oxide | Fire retardancy, Thermal stability | Fire-resistant construction materials | PHRR decrease, THR decrease, LOI increase, Inhibited ignition, increased mold and termite resistance | Can be a complex, multi-step treatment process | [75,76,77,78,79,80,81] |
| Biomineralization | Microbial CaCO3 | Fire retardancy, Thermal stability | Self-healing concrete and cement crack repair, Heavy metal and radionuclide soil remediation, Wastewater treatment | Presumably similar to calcification, limited literature availability | Involves bacteria cultivation, Urea usage | [85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138] |
| Cellulose nanocrystals (CNC)/Cellulose nanofibrils (CNF) | CNCs/CNFs, often with co-additives (EG, minerals) | Fire retardancy, Reinforcement | Fire-retardant coatings and paper, Reinforced polymer composites, Functional barrier films | PHRR decrease, LOI increase, Burning rate decrease | Intrinsic flammability requires combination with other FRs, Cost and scalability of high-purity nanocellulose | [139,140,141,142,143,144,145,146,147,148,149,150,151,152] |
| Lignin nanoparticles (LNP) | Lignin Nanoparticles (from various sources) | Ultraviolet (UV) protection, Fungal durability, Antioxidant | Sunscreens, Nanocarriers for controlled biocide release, Fire-retardant fillers for plastic composites | Sun Protection Factor (SPF) increase, Improved resistance to weathering and color change, Delay in encapsulated biocide release | Lignin itself contributes to photodegradation, Performance is highly dependent on lignin source and extraction method, Potential for leaching | [153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169] |
| Proteins | Proteins rich in aspartate and glutamate (protein-templated mineralization), Soy protein (adhesive in composites), and ε-poly-L-lysine (antifungal preservative) | Fire retardancy, Thermal stability, Antimicrobial properties against bacteria, fungi, and mold | Bio-based wood adhesives, Food preservatives, Wood preservatives | Reinforcement, Improved thermal stability, Mass loss decrease against fungi | Potential for leaching, particularly for lower molecular weight proteins (ε-poly-L-lysine), possible UV degradation | [170,171,172,173,174,175,176] |
| Metal Chelation | Phytic Acid (PA) and multivalent metal salts (Cu2+, Fe3+), Organic acids (citric acid and tartaric acid) and Ca2+ | Fire retardancy, Fungal durability | Heavy metal remediation from contaminated soils, Fire-retardant textile finishing, Compatibilizers for fiber-reinforced plastics | PHRR decrease, THR decrease, LOI increase, Mass loss decrease against fungi, Improved water resistance, Improved mechanical properties | Potential for leaching if phytate salts are not fully insoluble, Can be a complex, multi-step treatment process | [177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197] |
| Chitosan | Chitosan with additives (MgO, PA, graphene oxide) | Fire retardancy, Antimicrobial properties against bacteria and fungi | Fire-retardant coatings, Fungicidal hydrogels for agriculture, Fire safety sensors | LOI increase, Self-extinguishing properties, Disrupts fungal and bacterial cell wall | Potential for leaching if not used with additives | [198,199,200,201,202,203] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tongco, J.V.; McDonald, A.G. Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review. Bioresour. Bioprod. 2026, 2, 3. https://doi.org/10.3390/bioresourbioprod2010003
Tongco JV, McDonald AG. Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review. Bioresources and Bioproducts. 2026; 2(1):3. https://doi.org/10.3390/bioresourbioprod2010003
Chicago/Turabian StyleTongco, Jovale Vincent, and Armando G. McDonald. 2026. "Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review" Bioresources and Bioproducts 2, no. 1: 3. https://doi.org/10.3390/bioresourbioprod2010003
APA StyleTongco, J. V., & McDonald, A. G. (2026). Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review. Bioresources and Bioproducts, 2(1), 3. https://doi.org/10.3390/bioresourbioprod2010003

