Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,166)

Search Parameters:
Keywords = heating and cooling loads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 9033 KiB  
Article
Heat Pipe Integrated Cooling System of 4680 Lithium–Ion Battery for Electric Vehicles
by Yong-Jun Lee, Tae-Gue Park, Chan-Ho Park, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Energies 2025, 18(15), 4132; https://doi.org/10.3390/en18154132 - 4 Aug 2025
Abstract
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal [...] Read more.
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal performance of various wick structures and working fluid filling ratios was evaluated. The experimental setup utilized a triangular prism chamber housing three surrogate heater blocks to replicate the heat generation of 4680 cells under 1C, 2C, and 3C discharge rates. Results demonstrated that a blended fabric wick with a crown-shaped design (Wick 5) at a 30–40% filling ratio achieved the lowest maximum temperature (Tmax of 47.0°C), minimal surface temperature deviation (ΔTsurface of 2.8°C), and optimal thermal resistance (Rth of 0.27°C/W) under 85 W heat input. CFD simulations validated experimental findings, confirming stable evaporation–condensation circulation at a 40% filling ratio, while identifying thermal limits at high heat loads (155 W). The proposed hybrid battery thermal management system (BTMS) offers significant potential for enhancing the performance and safety of high-energy density EV batteries. This research provides a foundation for optimizing thermal management in next-generation electric vehicles. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Graphical abstract

34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 237
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

18 pages, 2664 KiB  
Article
Analysis of Heat Exchange Efficiency and Influencing Factors of Energy Tunnels: A Case Study of the Torino Metro in Italy
by Mei Yin, Pengcheng Liu and Zhenhuang Wu
Buildings 2025, 15(15), 2704; https://doi.org/10.3390/buildings15152704 - 31 Jul 2025
Viewed by 158
Abstract
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth [...] Read more.
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth investigation. In this study, a thermal–hydraulic (TH) coupled finite element model was developed based on a section of the Torino Metro Line in Italy to analyze the differences in and influencing factors of heat transfer performance between energy tunnels and GSHPs. The model was validated by comparing the outlet temperature curves under both winter and summer loading conditions. Based on this validated model, a parametric analysis was conducted to examine the effects of the tunnel air velocity, heat carrier fluid velocity, and fluid type. The results indicate that, under identical environmental conditions, energy tunnels exhibit higher heat exchange efficiency than conventional GSHP systems and are less sensitive to external factors such as fluid velocity. Furthermore, a comparison of different heat carrier fluids, including alcohol-based fluids, refrigerants, and water, revealed that the fluid type significantly affects thermal performance, with the refrigerant R-134a outperforming ethylene glycol and water in both heating and cooling efficiency. Full article
Show Figures

Figure 1

13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 242
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

21 pages, 2695 KiB  
Article
Thermographic Investigation of Elastocaloric Behavior in Ni-Ti Sheet Elements Under Cyclic Bending
by Saeed Danaee Barforooshi, Gianmarco Bizzarri, Girolamo Costanza, Stefano Paoloni, Ilaria Porroni and Maria Elisa Tata
Materials 2025, 18(15), 3546; https://doi.org/10.3390/ma18153546 - 29 Jul 2025
Viewed by 233
Abstract
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior [...] Read more.
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior under controlled loading conditions. The experimental investigation employed passive thermography to analyze the thermal response of Ni-Ti sheets under two deflection configurations at 1800 rpm loading. Testing revealed consistent adiabatic temperature variations (ΔTad) of 4.14 °C and 4.26 °C for the respective deflections during heating cycles, while cooling phases demonstrated efficient thermal homogenization with temperature gradients decreasing from 4.13 °C to 0.13 °C and 4.43 °C to 0.68 °C over 60 s. These findings provide systematic thermal documentation of elastocaloric behavior in bending-loaded Ni-Ti sheet elements and quantitative data on the relationship between mechanical loading parameters and thermal gradients, enhancing the experimental understanding of elastocaloric phenomena in this configuration. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 593
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

18 pages, 5232 KiB  
Article
Analysis of the Characteristics of a Multi-Generation System Based on Geothermal, Solar Energy, and LNG Cold Energy
by Xinfeng Guo, Hao Li, Tianren Wang, Zizhang Wang, Tianchao Ai, Zireng Qi, Huarong Hou, Hongwei Chen and Yangfan Song
Processes 2025, 13(8), 2377; https://doi.org/10.3390/pr13082377 - 26 Jul 2025
Viewed by 274
Abstract
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is [...] Read more.
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is used to heat LNG; low-temperature flue gas, mainly nitrogen, can be used for cold storage cooling, enabling the staged utilization of the energy. Solar shortwave is used for power generation, and longwave is used to heat the working medium, which realizes the full spectrum utilization of solar energy. The influence of different equipment and operating parameters on the performance of a steam generation system is studied, and the multi-objective model of the multi-generation system is established and optimized. The results show that for every 100 W/m2 increase in solar radiation, the renewable energy ratio of the system increases by 1.5%. For every 10% increase in partial load rate of gas boiler, the proportion of renewable energy decreases by 1.27%. The system’s energy efficiency, cooling output, and the LNG vaporization flow rate are negatively correlated with the scale of solar energy utilization equipment. The decision variables determined by the TOPSIS (technique for order of preference by similarity to ideal solution) method have better economic performance. Its investment cost is 18.14 × 10 CNY, which is 7.83% lower than that of the LINMAP (linear programming technique for multidimensional analysis of preference). Meanwhile, the proportion of renewable energy is only 0.29% lower than that of LINMAP. Full article
(This article belongs to the Special Issue Innovations in Waste Heat Recovery in Industrial Processes)
Show Figures

Figure 1

25 pages, 4237 KiB  
Article
Cost-Effective Thermal Mass Walls for Solar Greenhouses in Gobi Desert Regions
by Xiaodan Zhang, Jianming Xie, Ning Ma, Youlin Chang, Jing Zhang and Jing Li
Agriculture 2025, 15(15), 1618; https://doi.org/10.3390/agriculture15151618 - 25 Jul 2025
Viewed by 249
Abstract
Gobi solar greenhouses (GSGs) enhance energy, food, and financial security in Gobi Desert regions through passive solar utilization. Thermal mass walls are critical for plant thermal comfort in GSGs but can lead to resource waste if poorly designed. This study pioneers the integration [...] Read more.
Gobi solar greenhouses (GSGs) enhance energy, food, and financial security in Gobi Desert regions through passive solar utilization. Thermal mass walls are critical for plant thermal comfort in GSGs but can lead to resource waste if poorly designed. This study pioneers the integration of payback period constrains into thermal mass wall optimization, establishing a new performance–cost trade-off approach for GSG wall design, balancing thermal performance and economic feasibility. We quantified energy-conserving benefits against wall-construction costs to derive the optimal inner-layer thicknesses under <25% GSG lifespan payback criteria. Three GSG thermal mass walls in China’s Hexi Corridor were optimized. For the concrete-layered, stone-layered, and pebble-soil walls, the optimum inner-layer thicknesses were 0.47, 0.65, and 1.24 m, respectively, with extra costs of 620.75, 767.60, and 194.56 RMB yuan; annual energy-conserving benefits of 82.77, 102.35, and 51.88 RMB yuan·yr−1; and payback periods of 7.5, 7.5, and 3.75 years. A dynamic thermal load analysis confirmed that GSGs with optimized walls required no heating during a sunny winter solstice night. Cooling loads of 33.15–35.27 kW further indicated the potential to maintain thermal comfort under colder weather conditions. This approach improves plant thermal comfort cost-effectively, advancing sustainable Gobi agriculture. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 1616 KiB  
Article
Optimization Design and Operation Analysis of Integrated Energy System for Rural Active Net-Zero Energy Buildings
by Jingshuai Pang, Yi Guo, Ruiqi Wang, Hongyin Chen, Zheng Wu, Manzheng Zhang and Yuanfu Li
Energies 2025, 18(15), 3924; https://doi.org/10.3390/en18153924 - 23 Jul 2025
Viewed by 216
Abstract
To address energy shortages and achieve carbon peaking/neutrality, this study develops a distributed renewable-based integrated energy system (IES) for rural active zero-energy buildings (ZEBs). Energy consumption patterns of typical rural houses are analyzed, guiding the design of a resource-tailored IES that balances economy [...] Read more.
To address energy shortages and achieve carbon peaking/neutrality, this study develops a distributed renewable-based integrated energy system (IES) for rural active zero-energy buildings (ZEBs). Energy consumption patterns of typical rural houses are analyzed, guiding the design of a resource-tailored IES that balances economy and sustainability. Key equipment capacities are optimized to achieve net-zero/zero energy consumption targets. For typical daily cooling/heating/power loads, equipment output is scheduled using a dual-objective optimization model minimizing operating costs and CO2 emissions. Results demonstrate that: (1) Net-zero-energy IES outperforms separated production (SP) and full electrification systems (FES) in economic-environmental benefits; (2) Zero-energy IES significantly reduces rural building carbon emissions. The proposed system offers substantial practical value for China’s rural energy transition. Full article
Show Figures

Figure 1

16 pages, 5647 KiB  
Article
Performance Degradation of Ground Source Heat Pump Systems Under Ground Temperature Disturbance: A TRNSYS-Based Simulation Study
by Yeqi Huang, Zhongchao Zhao and Mengke Sun
Energies 2025, 18(15), 3909; https://doi.org/10.3390/en18153909 - 22 Jul 2025
Viewed by 187
Abstract
Ground temperature (GT) variation significantly affects the energy performance of ground source heat pump (GSHP) systems. Both long-term thermal accumulation and short-term dynamic responses contribute to the degradation of the coefficient of performance (COP), especially under cooling-dominated conditions. This study develops a mechanism-based [...] Read more.
Ground temperature (GT) variation significantly affects the energy performance of ground source heat pump (GSHP) systems. Both long-term thermal accumulation and short-term dynamic responses contribute to the degradation of the coefficient of performance (COP), especially under cooling-dominated conditions. This study develops a mechanism-based TRNSYS simulation that integrates building loads, subsurface heat transfer, and dynamic heat pump operation. A 20-year case study in Shanghai reveals long-term performance degradation driven by thermal boundary shifts. Results show that GT increases by over 12 °C during the simulation period, accompanied by a progressive increase in ΔT by approximately 0.20 K and a consistent decline in COP. A near-linear inverse relationship is observed, with COP decreasing by approximately 0.038 for every 1 °C increase in GT. In addition, ΔT is identified as a key intermediary linking subsurface thermal disturbance to efficiency loss. A multi-scale response framework is established to capture both annual degradation and daily operational shifts along the Load–GT–ΔT–COP pathway. This study provides a quantitative explanation of the thermal degradation process and offers theoretical guidance for performance forecasting, operational threshold design, and thermal regulation in GSHP systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 4844 KiB  
Article
Numerical Investigations and Optimized Design of the Active Cooling Performance with Phase Change for Aircraft Rudder Shaft
by Xiangchun Sun, Kaiyan Jin, Kuan Zhao, Hexuan Zhang, Guice Yao and Dongsheng Wen
Appl. Sci. 2025, 15(14), 8105; https://doi.org/10.3390/app15148105 - 21 Jul 2025
Viewed by 224
Abstract
During hypersonic flight, the air rudder shaft can undergo huge aerodynamic heating load, where it is necessary to design the thermal protection system of the air rudder shaft. Aiming to prevent the rudder shaft from thermal failure due to the heat endurance limit [...] Read more.
During hypersonic flight, the air rudder shaft can undergo huge aerodynamic heating load, where it is necessary to design the thermal protection system of the air rudder shaft. Aiming to prevent the rudder shaft from thermal failure due to the heat endurance limit of materials, numerical investigations are conducted systemically to predict the active cooling performance of the rudder shaft with liquid water considering phase change. The validation of the numerical simulation method considering phase-change heat transfer is further investigated by experiments. The effect of coolant injection flow velocity on the active cooling performance is further analyzed for both the steady state and transient state. Finally, to achieve better cooling performance, an optimized design of the cooling channels is performed in this work. The results of the transient numerical simulation show that, employing the initial cooling structures, it may undergo the heat transfer deterioration phenomenon under the coolant injection velocity below 0.2 m/s. For the rudder shaft with an optimized structure, the heat transfer deterioration can be significantly reduced, which significantly reduces the risk of thermal failure. Moreover, the total pressure drop of the optimized rudder shaft under the same coolant injection condition can be reduced by about 19% compared with the initial structure. This study provides a valuable contribution to the thermal protection performance for the rudder shaft, as a key component of aircraft under the aero heating process. Full article
Show Figures

Figure 1

29 pages, 6641 KiB  
Article
Climate-Adaptive Passive Design Strategies for Near-Zero-Energy Office Buildings in Central and Southern Anhui, China
by Jun Xu, Yu Gao and Lizhong Yang
Sustainability 2025, 17(14), 6535; https://doi.org/10.3390/su17146535 - 17 Jul 2025
Viewed by 386
Abstract
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in [...] Read more.
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in the hot-summer/cold-winter, high-humidity zone of central and southern Anhui. Using multi-year climate records and energy-use surveys from five cities and one scenic area (2013–2024), we systematically investigate climate-adaptive passive-design strategies. Climate-Consultant simulations identify composite envelopes, external shading, and natural ventilation as the three most effective measures. Empirical evidence confirms that optimized envelope thermal properties significantly curb heating and cooling loads; a Huangshan office-building case validates the performance of the proposed passive measures, while analysis of a near-zero-energy demonstration project in Chuzhou yields a coordinated insulation-and-heat-rejection scheme. The results demonstrate that region-specific passive design can provide a comprehensive technical framework for ultra-low-energy buildings in transitional climates and thereby supporting China’s carbon-neutrality targets. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 633
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 207
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

20 pages, 2422 KiB  
Article
Design and Performance of a Large-Diameter Earth–Air Heat Exchanger Used for Standalone Office-Room Cooling
by Rogério Duarte, António Moret Rodrigues, Fernando Pimentel and Maria da Glória Gomes
Appl. Sci. 2025, 15(14), 7938; https://doi.org/10.3390/app15147938 - 16 Jul 2025
Viewed by 230
Abstract
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used [...] Read more.
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used during the EAHX construction, an obvious advantage compared to the significant operational costs of refrigeration machines. Contrary to the streamlined process applied in conventional HVAC design (using refrigeration machines), EAHX design lacks straightforward and well-established rules; moreover, EAHXs struggle to achieve office room design cooling demands determined with conventional indoor thermal environment standards, hindering designers’ confidence and the wider adoption of EAHXs for standalone room cooling. This paper presents a graph-based method to assist in the design of a large-diameter EAHX. One year of post-occupancy monitoring data are used to evaluate this method and to investigate the performance of a large-diameter EAHX with up to 16,000 m3/h design airflow rate. Considering an adaptive standard for thermal comfort, peak EAHX cooling capacity of 28 kW (330 kWh/day, with just 50 kWh/day of fan electricity consumption) and office room load extraction of up to 22 kW (49 W/m2) provided evidence in support of standalone use of EAHX for room cooling. A fair fit between actual EAHX thermal performance and results obtained with the graph-based design method support the use of this method for large-diameter EAHX design. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Consumption in Buildings)
Show Figures

Figure 1

Back to TopTop