Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (194)

Search Parameters:
Keywords = heated sampling line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1160 KiB  
Review
MS and GC–MS Analytical Methods for On-Line Thermally Induced Evolved Gas Analysis (OLTI-EGA)
by Giuseppina Gullifa, Elena Papa, Giordano Putzolu, Gaia Rizzo, Marialuisa Ruocco, Chiara Albertini, Roberta Risoluti and Stefano Materazzi
Chemosensors 2025, 13(7), 258; https://doi.org/10.3390/chemosensors13070258 - 16 Jul 2025
Viewed by 145
Abstract
Mass spectrometry (MS) and coupled gas chromatography-mass spectrometry (GC-MS) are globally recognized as the primary techniques for the analysis of gases or vapors due to their selectivity, sensitivity, accuracy, and reproducibility. When thermal stress is applied, vapors or gases are released as a [...] Read more.
Mass spectrometry (MS) and coupled gas chromatography-mass spectrometry (GC-MS) are globally recognized as the primary techniques for the analysis of gases or vapors due to their selectivity, sensitivity, accuracy, and reproducibility. When thermal stress is applied, vapors or gases are released as a result of the reactions and changes that occur. The analysis of these gases during the thermally induced reaction is scientifically referred to as evolved gas analysis (EGA), which is essential for confirming the occurrence of the induced reactions. Pyrolyzers, thermobalances, or simple heaters can increase the temperature of the analyzed samples according to a programmed and software-managed ramp, allowing for control over both the heating rate and isothermal stages. The atmosphere can also be varied to simulate pyrolysis or thermo-oxidative processes. This way, each induced reaction generates a unique evolved gas, which can be linked to a theoretically hypothesized mechanism. Mass spectrometry (MS) and coupled gas chromatography–mass spectrometry (GC-MS) are fundamental analytical methods used for on-line thermally induced evolved gas analysis (OLTI-EGA). Full article
Show Figures

Figure 1

21 pages, 6537 KiB  
Article
The Peak Metamorphic PT Conditions of the Sanbagawa Schists in the Shibukawa Area, Central Japan: Application of Raman Geothermobarometry
by Yuki Tomioka, Yui Kouketsu and Katsuyoshi Michibayashi
Minerals 2025, 15(7), 724; https://doi.org/10.3390/min15070724 - 11 Jul 2025
Viewed by 211
Abstract
The quantitative pressure (P)–temperature (T) conditions of low-grade metamorphic rocks, such as pumpellyite–actinolite and greenschist facies, are largely unknown mainly owing to the difficulty in applying thermodynamic methods despite their importance in understanding the protolith and metamorphism within subducting [...] Read more.
The quantitative pressure (P)–temperature (T) conditions of low-grade metamorphic rocks, such as pumpellyite–actinolite and greenschist facies, are largely unknown mainly owing to the difficulty in applying thermodynamic methods despite their importance in understanding the protolith and metamorphism within subducting oceanic crusts. In this study, Raman spectroscopy was applied to constrain the peak metamorphic conditions independent of thermodynamic methods for the lowest grade part (chlorite zone) of the Sanbagawa schists in the Shibukawa area, central Japan, where research on metamorphic conditions is limited. The metamorphic peak temperature of the pelitic schists estimated by Raman carbonaceous material geothermometry was 307 ± 27 °C to 395 ± 16 °C, which increased towards the northern fault (Median Tectonic Line). Raman geobarometry using the quartz-inclusions-in-spessartine system on a siliceous schist sample estimated a peak metamorphic pressure of 0.78–0.94 GPa at 360–390 °C. These results suggest that the rocks in the Shibukawa area were subducted to a depth equivalent to that of the garnet zone in central Shikoku and were then exhumed without experiencing further heating. The combination of Raman carbonaceous material geothermometry and Raman geobarometry (Raman geothermobarometry) can be effectively applied to estimate the metamorphic conditions of low-grade metamorphic rocks independent of thermodynamic methods. Full article
Show Figures

Figure 1

22 pages, 6286 KiB  
Article
Thermal Degradation and Flame Resistance Mechanism of Phosphorous-Based Flame Retardant of ABS Composites Used in 3D Printing Technology
by Rafał Oliwa, Katarzyna Bulanda and Mariusz Oleksy
Materials 2025, 18(13), 3202; https://doi.org/10.3390/ma18133202 - 7 Jul 2025
Viewed by 250
Abstract
As part of the work, polymer composites dedicated to rapid prototyping were developed, especially for 3D printing using the material extrusion technique. For this purpose, a polymer matrix was selected, which was an acrylonitrile-butadiene-styrene (ABS) terpolymer and a flame retardant, which was tetrakis [...] Read more.
As part of the work, polymer composites dedicated to rapid prototyping were developed, especially for 3D printing using the material extrusion technique. For this purpose, a polymer matrix was selected, which was an acrylonitrile-butadiene-styrene (ABS) terpolymer and a flame retardant, which was tetrakis (2,6-dimethylphenyl)-m-phenylenebisphosphate, commercially known as PX200. The effect of the presence and amount (5, 10, 15 and 20 wt.%) of the introduced additive on the rheological properties, structural properties, flammability (limiting oxygen index, LOI; UL94) and flame retardant properties (microcone calorimeter, MLC) of ABS-based composites was investigated. In addition, the mechanism of thermal degradation and flame resistance was investigated using thermogravimetric analysis, TGA and Fourier transform infrared spectroscopy, FT-IR of the residue after the MLC test. In the first part of the work, using the author’s technological line, filaments were obtained from unfilled ABS and its composites. Samples for testing were obtained by 3D printing in Fused Deposition Modeling (FDM) technology. In order to determine the quantitative and qualitative spread of fire and the effectiveness of the phosphorus flame retardant PX200 in the produced composites, the Maximum Average Rate of Heat Emission (MARHE); Fire Growth Rate Index (FIGRA); Fire Potential Index (FPI) and Flame Retardancy Index (FRI) were determined. Based on the obtained results, it was found that the aryl biphosphate used in this work exhibits activity in the gas phase, which was confirmed by quantitative assessment using data from a microcone calorimeter and non-residues after combustion and thermolysis at 700 °C. As a result, the flammability class did not change (HB40), and the LOI slightly increased to 20% for the composite with 20% flame retardant content. Moreover, this composite was characterized by the following flammability indices: pHRR = 482.9 kW/m2 (−40.3%), MARHE = 234 kW/m2 (−40.7%), FIGRA = 3.1 kW/m2·s (−56.3%), FPI = 0.061 m2·s/kW (+64.9%), FRI = 2.068 (+106.8%). Full article
(This article belongs to the Special Issue 3D Printing of Polymeric Materials)
Show Figures

Graphical abstract

18 pages, 6855 KiB  
Article
Thermal Conductivity in Mortar Samples with Copper Mine Tailings
by Lucas Daza, René Gómez, Ramón Díaz-Noriega, Roberto Gómez-Espina, Krzysztof Skrzypkowski and Oscar Jerez
Materials 2025, 18(13), 3157; https://doi.org/10.3390/ma18133157 - 3 Jul 2025
Viewed by 300
Abstract
The increasing generation of mine tailings poses significant environmental challenges, but their reuse in construction materials offers a sustainable solution by reducing the demand for natural aggregates. To advance the use of tailings in construction, the thermal conductivity of mortar samples incorporating copper [...] Read more.
The increasing generation of mine tailings poses significant environmental challenges, but their reuse in construction materials offers a sustainable solution by reducing the demand for natural aggregates. To advance the use of tailings in construction, the thermal conductivity of mortar samples incorporating copper mine tailings as partial replacements (10% to 50%) for coarse aggregates was investigated. The thermal conductivity was measured using the transient line source method, revealing a progressive increase from 0.32 W/m·K (control sample) to 0.52 W/m·K (50% replacement sample). The statistical analysis (ANOVA) confirmed significant differences among the sample groups, with the tailings content being a key factor. The higher thermal conductivity is attributed to the quartz-rich composition of the tailings, which enhances the heat transfer compared to conventional aggregates. The findings of this study contribute to demonstrating the feasibility of using mortar with copper tailings to modify the thermal conductivity of mortar. Full article
Show Figures

Figure 1

30 pages, 10507 KiB  
Article
Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
by Agnieszka Przybek, Paulina Romańska, Kinga Korniejenko, Krzysztof Krajniak, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(13), 3150; https://doi.org/10.3390/ma18133150 - 3 Jul 2025
Viewed by 420
Abstract
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that [...] Read more.
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that incorporate expanded clay aggregate (E.C.A.), perlite (P), and foamed geopolymer aggregate (F.G.A.). The composites were designed to ensure a density below 1200 kg/m3, reducing overall weight while maintaining necessary performance. Aggregate content ranged from 60 to 75 wt.%. Physical (density, thickness, water absorption), mechanical (flexural and compressive strength), and thermal (conductivity, resistance) properties were evaluated. F.G.A. 60 achieved a 76.8% reduction in thermal conductivity (0.1708 vs. 0.7366 W/(m·K)) and a 140.4% increase in thermal resistance (0.1642 vs. 0.0683). The F.G.A./E.C.A./P 60 mixture showed the highest compressive strength (18.069 MPa), reaching 52.7% of the reference concrete’s strength, with a 32.3% lower density (1173.3 vs. 1735.0 kg/m3). Water absorption ranged from 4.9% (REF.) to 7.3% (F.G.A. 60). All samples, except F.G.A. 70 and F.G.A. 75, endured heating up to 800 °C. The F.G.A./E.C.A./P 60 composite demonstrated well-balanced performance: low thermal conductivity (0.2052 W/(m·K)), thermal resistance up to 1000 °C, flexural strength of 4.386 MPa, and compressive strength of 18.069 MPa. The results confirm that well-designed geopolymer lightweight concretes are suitable for chimney and flue pipe linings operating between 500 and 1000 °C and exposed to acidic condensates and aggressive chemicals. This study marks the initial phase of a broader project on geopolymer-based prefabricated chimney systems. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

9 pages, 216 KiB  
Article
Influence of Ordinary Cigarettes and Their Substitute IQOS® on Secretory Immunoglobulin A in Unstimulated Saliva
by Niкolai Pavlov, Ivelina Popova-Sotirova, Nina Musurlieva, Ralitsa Raycheva, Konstantin Trifonov, Maria Atanasova and Radka Cholakova
Dent. J. 2025, 13(7), 297; https://doi.org/10.3390/dj13070297 - 30 Jun 2025
Viewed by 186
Abstract
Background: Secretory immunoglobulin A (sIgA) plays a key role in oral and mucosal immunity, serving as a first-line defense against pathogens. Smoking is known to negatively affect immune function, but data on the impact of heated tobacco products such as IQOS® [...] Read more.
Background: Secretory immunoglobulin A (sIgA) plays a key role in oral and mucosal immunity, serving as a first-line defense against pathogens. Smoking is known to negatively affect immune function, but data on the impact of heated tobacco products such as IQOS® on sIgA levels are limited. Objective: To assess and compare the effects of conventional cigarette smoking and IQOS® use on the concentration of salivary sIgA in healthy individuals. Methods: A total of 200 participants were enrolled and divided into three groups: 60 non-smokers, 70 conventional cigarette smokers, and 70 IQOS® users. Unstimulated whole saliva samples were collected and analyzed for sIgA concentration using ELISA method. Statistical analysis was performed using IBM SPSS Statistics 25. Results: Mean salivary sIgA levels were significantly lower in both cigarette smokers (246.03 μg/mL) and IQOS® users (243.54 μg/mL) compared to non-smokers (380.74 μg/mL, p < 0.05). No significant difference was observed between cigarette smokers and IQOS® users. A pronounced reduction in sIgA was seen in female users of both tobacco products, whereas male users did not show a statistically significant decline. Conclusions: Both cigarette smoking and IQOS® use are associated with a significant decrease in salivary sIgA levels, particularly in females. The findings suggest that IQOS® does not offer an immunological advantage over conventional smoking in terms of preserving mucosal immunity. Further studies are needed to confirm these findings and explore underlying mechanisms. Full article
20 pages, 5010 KiB  
Article
Antimicrobial, Oxidant, Cytotoxic, and Eco-Safety Properties of Sol–Gel-Prepared Silica–Copper Nanocomposite Materials
by Lilia Yordanova, Lora Simeonova, Miroslav Metodiev, Albena Bachvarova-Nedelcheva, Yoanna Kostova, Stela Atanasova-Vladimirova, Elena Nenova, Iliana Ivanova, Lyubomira Yocheva and Elitsa Pavlova
Pharmaceuticals 2025, 18(7), 976; https://doi.org/10.3390/ph18070976 - 28 Jun 2025
Viewed by 393
Abstract
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples [...] Read more.
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples were denoted as Si/Cu (gel) and Si/Cu/500 (500 °C heat-treated). Their phase formation and morphology were studied by XRD and SEM. The antibacterial activity was tested by two Gram-positive bacteria, three Gram-negative bacteria, and two types of eukaryotic species. Most bacteria were more sensitive to Si/Cu/500 materials than to Si/Cu (gel). The yeasts were more sensitive to Si/Cu (gel). The new nanomaterials were tested for oxidant activity at pH 7.4 (physiological) and pH 8.5 (optimal) in three model systems by the chemiluminescent method. They significantly inhibited the generation of free radicals and ROS. This result underlines their potential as regulators of the free radical processes in living systems. The epithelial tumor cell lines appeared more sensitive than the non-transformed fibroblasts, likely due to their metabolic activity and proliferation rates, leading to greater accumulation of the substances. Using Daphnia magna, the ecotoxicity study showed that the LC50 was reached at 1 mg/L of Si/Cu/500. Si/Cu (gel) was more toxic. Conclusions: Our results reveal the potential of these nanohybrids to be applied in living, eukaryotic systems. The cytotoxicity evaluation showed higher tolerance of normal, non-transformed cells, in concurrence with the oxidation tests. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Figure 1

23 pages, 3351 KiB  
Article
Targeting DAMPs by Aspirin Inhibits Head and Neck Cancer Stem Cells and Stimulates Radio-Sensitization to Proton Therapy
by Tea Vasiljevic, Emilija Zapletal, Marko Tarle, Iva Bozicevic Mihalic, Sabrina Gouasmia, Georgios Provatas, Kristina Vukovic Djerfi, Danko Müller, Koraljka Hat, Ivica Luksic and Tanja Matijevic Glavan
Cancers 2025, 17(13), 2157; https://doi.org/10.3390/cancers17132157 - 26 Jun 2025
Viewed by 286
Abstract
Background: Cancer stem cells (CSCs) are a subpopulation of cancer cells known for their self-renewal capacity, tumorigenicity, and resistance to treatment. Toll-like receptor 3 (TLR3) plays a complex role in cancer, exhibiting both pro-apoptotic and pro-tumorigenic effects. This study investigates the pro-tumorigenic role [...] Read more.
Background: Cancer stem cells (CSCs) are a subpopulation of cancer cells known for their self-renewal capacity, tumorigenicity, and resistance to treatment. Toll-like receptor 3 (TLR3) plays a complex role in cancer, exhibiting both pro-apoptotic and pro-tumorigenic effects. This study investigates the pro-tumorigenic role of TLR3, specifically its impact on CSCs in head and neck cancer. Methods: We have investigated Detroit 562, FaDu and SQ20B cell lines, the latter being stably transfected with a plasmid containing inducible shRNA for TLR3, by cultivating them to form tumor spheres in order to study CSCs. Results: Our findings demonstrate that TLR3 activation promotes stemness in head and neck cancer cell lines. This is evidenced by increased tumor sphere formation, promotion of epithelial-to-mesenchymal transition (EMT), upregulated stemness gene expression, and elevated aldehyde dehydrogenase (ALDH) activity. Conditional TLR3 knockdown abolished tumor sphere formation, confirming its important role. Furthermore, TLR3 activation triggers the secretion of damage-associated molecular patterns (DAMPs) into the tumor microenvironment, leading to increased cancer cell migration. This was inhibited by DAMP inhibitors. In patient tissue samples, we observed co-localization of TLR3 with stemness markers CD133 and ALDH1, as well as with heat shock protein 70 (HSP70) and receptor for advanced glycation end products (RAGE). We then explored potential CSC-targeted therapies, initially combining the apoptosis inducer poly (I:C) with DAMP inhibitors and γ-irradiation. While this combination proved effective in adherent cells, it failed to eliminate tumor spheres. Nevertheless, we discovered that proton radiotherapy, particularly when combined with aspirin (HMGB1 inhibitor) and poly (I:C), effectively eliminates CSCs. Conclusions: This novel combination holds promise for the development of new therapeutic strategies for head and neck cancers, particularly given the promising results of proton therapy in treating this disease. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

16 pages, 5770 KiB  
Article
Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys
by Li-Wei Tseng and Wei-Cheng Chen
Materials 2025, 18(12), 2842; https://doi.org/10.3390/ma18122842 - 16 Jun 2025
Viewed by 343
Abstract
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission [...] Read more.
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission electron microscope (TEM). The TEM results reveal that the average precipitate size is around 3–5 nm in the 600 °C/24 h samples, 6–8 nm in the 600 °C/48 h samples, and 10–12 nm in the 600 °C/72 h samples. The results indicate that precipitate size increases as aging time increases from 24 to 72 h. EDS analysis results show decreased Fe and increased Ni when the analyzed line crosses the precipitate region. The diffraction pattern results show that the precipitate has an L12 crystal structure. The thermo-magnetization curves of single crystals under the three aging conditions (600 °C/24 h, 600 °C/48 h, and 600 °C/72 h) show that the values of the transformation temperatures increased from 24 to 72 h. Magnetization was saturated at 140 emu/g under the magnetic field of 7 Tesla. When increasing the magnetic field from 0.05 to 7 Tesla, the transformation temperatures rose. The results indicate that magnetic fields can activate martensitic transformation. From the results of the superelasticity test at room temperature, [001]-oriented FeNiCoAlTiNb single crystals aged at 600 °C for 24, 48, and 72 h presented recoverable strains of 3%, 5.1%, and 2.6%, respectively. Digital image correlation (DIC) results of the aged samples show that two martensite variants were activated during the superelasticity test. The two variants form corresponding variant pairs (CVPs) and improve the recoverable strain of superelasticity. Although maximum recoverable strain was obtained for the 600 °C/48 h samples, the samples show poor cyclic stability at room temperature after applying the 6% strain. According to the DIC results, the retained martensite, which is pinned by dislocations, was observed after the test. The irrecoverable strain was attributed to the residual martensite. For the 600 °C/72 h samples, the large size of the precipitates poses an obstacle to dislocation transformation and formation. The dislocations increase the stress hysteresis width and stabilize the martensite, causing poor recoverability. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

19 pages, 8320 KiB  
Article
Optimization of Produced Parameters for PA6/PA6GF30 Composite Produced by 3D Printing with Novel Knitting Method
by Selim Hartomacıoğlu, Mustafa Oksuz, Aysun Ekinci and Murat Ates
Polymers 2025, 17(12), 1590; https://doi.org/10.3390/polym17121590 - 6 Jun 2025
Cited by 1 | Viewed by 646
Abstract
The additive manufacturing sector is rapidly developing, providing alternatives for mass production in the polymer composite industry. Due to the direction-dependent mechanical properties and high cost of fiber-reinforced polymeric materials, it is necessary to take advantage of alternative multi-materials and production technologies. In [...] Read more.
The additive manufacturing sector is rapidly developing, providing alternatives for mass production in the polymer composite industry. Due to the direction-dependent mechanical properties and high cost of fiber-reinforced polymeric materials, it is necessary to take advantage of alternative multi-materials and production technologies. In this study, a special geometric-shaped knitting technique was investigated using two different materials. The main material was polyamide 6 (PA6), and the inner or second material was PA6 with a 30 wt.% glass fiber addition by weight (PA6GF30). The special geometric shape, layer thickness, nozzle temperature, and post-heat treatment time were measured as process parameters in the production of the PA6/PA6GF30 composites with the fused deposition modeling (FDM) technique. The Taguchi design method and L9 fractional experiment were used in the experimental study. The mechanical behaviors of the PA6/PA6GF30 samples were obtained using tensile and impact tests. In addition, scanning electron microscopy (SEM) analyses were performed on the fracture lines of the PA6/PA6GF30 samples, and damage analyses were carried out in more detail. The experimental results were sorted using grey relational analysis (GRA). Moreover, the optimal experimental conditions and their related plots were obtained. As a result, the highest tensile strength of the PA6GF30 composite was 89.89 MPa with the addition of a special geometric shape. In addition, the maximum impact resistance value of the PA6/PA6GF30 composite was 83 kJ/m2. Hence, the developed knitting method presented many advantages when using the FDM technique, and both were successfully used to produce the PA6/PA6GF30 composites. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composite Materials)
Show Figures

Graphical abstract

10 pages, 1905 KiB  
Article
Optimizing Sintering Conditions for Y2O3 Ceramics: A Study of Atmosphere-Dependent Microstructural Evolution and Optical Performance
by Xueer Wang, Dongliang Xing, Ying Wang, Jun Wang, Jie Ma, Peng Liu, Jian Zhang and Dingyuan Tang
Ceramics 2025, 8(2), 66; https://doi.org/10.3390/ceramics8020066 - 1 Jun 2025
Viewed by 537
Abstract
This paper systematically investigated the influence of sintering atmospheres, vacuum, and oxygen, on the microstructure and optical properties of Y2O3 ceramics. Compared with vacuum sintering, sintering in flowing oxygen atmosphere can effectively inhibit the grain growth of Y2O [...] Read more.
This paper systematically investigated the influence of sintering atmospheres, vacuum, and oxygen, on the microstructure and optical properties of Y2O3 ceramics. Compared with vacuum sintering, sintering in flowing oxygen atmosphere can effectively inhibit the grain growth of Y2O3 ceramics at the final stage of sintering and improve the uniformity of microstructure. After hot isostatic pressing, the samples pre-sintered at oxygen atmosphere showed good in-line transmittance from a visible-to-mid-infrared wavelength range (0.4–6.0 μm) except in the range of 2.8–4.1 μm. Spectral analysis showed that an obvious broadband absorption peak (2.8–4.1 μm) of characteristic hydroxyl groups is detected in the above samples. However, before densification, a low-temperature heat treatment at 600 °C under vacuum can effectively diminish the hydroxyl groups in Y2O3 ceramics. However, laser experiments in the ~1 μm wavelength range showed that although the Yb:Y2O3 ceramic carrying hydroxyl had obvious absorption in the 2.8–4.1 μm range, it had little effect on its laser oscillation in the ~1 μm wavelength. Yb:Y2O3 ceramics pre-sintered in an oxygen atmosphere at 1460 °C followed by hot isostatic pressing at 1440 °C achieved 12.85 W continuous laser output at room temperature, with a laser slope efficiency of 84.4%. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Graphical abstract

14 pages, 2354 KiB  
Article
Design of a Superhydrophobic Photothermal Shape-Memory Material Based on Carbon-Nanotubes-Doped Resin for Anti-Icing/De-Icing Applications
by Yingcheng Zhao, Pei Tian, Xinlin Li, Di Gai and Wei Tong
Materials 2025, 18(11), 2540; https://doi.org/10.3390/ma18112540 - 28 May 2025
Viewed by 431
Abstract
Icing on power lines and wings can cause serious economic damage and safety hazards. While superhydrophobic materials show promise for anti-icing applications, their passive anti-icing mechanisms require external energy activation, highlighting the need for the development of active de-icing materials with energy-to-heat conversion [...] Read more.
Icing on power lines and wings can cause serious economic damage and safety hazards. While superhydrophobic materials show promise for anti-icing applications, their passive anti-icing mechanisms require external energy activation, highlighting the need for the development of active de-icing materials with energy-to-heat conversion capabilities. Here, we developed three photothermal superhydrophobic shape-memory polymers with anti-icing performance (PSSPs), with 3%, 5%, and 7% CNT doping ratios, through a two-step process: resin preparation and laser-processing modification. The results showed that all samples presented good superhydrophobic properties. In addition, the tested materials demonstrated good shape-memory performance (recovery rates were close to 100%). They also showed excellent de-icing performance. Owing to the simplicity of the fabrication process, the material is suitable for mass production. The synergistic interplay between superhydrophobicity and photothermal activation endows the material with dual-functional icephobic performance, demonstrating practical applicability in industrial cryogenic environments. Full article
Show Figures

Figure 1

16 pages, 10435 KiB  
Article
Effect of Heat Treatment on Microstructure and Properties of 304/Q235 Composite Round Steel
by Xiexin Zheng and Yi Ding
Materials 2025, 18(11), 2497; https://doi.org/10.3390/ma18112497 - 26 May 2025
Viewed by 407
Abstract
During the heat treatment of stainless steel (SS)/carbon steel (CS) bimetal composites, the carbon in the CS diffuses into the SS, and carbides precipitate on the grain boundary and in the grains, affecting the microstructure and properties of the composite steel. In order [...] Read more.
During the heat treatment of stainless steel (SS)/carbon steel (CS) bimetal composites, the carbon in the CS diffuses into the SS, and carbides precipitate on the grain boundary and in the grains, affecting the microstructure and properties of the composite steel. In order to change the precipitation and distribution of the carbides seen on hot-rolled 304/Q235 after cold drawing (HR), the microstructure and properties of composite round steel were investigated by optical microscopy, SEM/EDS, and hardness, tensile, fatigue, and electrochemical tests while changing the temperature of the full annealing and aging treatments. The results showed that dispersed chromium carbide particles precipitated at the grain boundaries, and intragranular and slip lines promoted simultaneous dispersion strengthening and fine-grain strengthening and greatly improved the hardness, yield strength, tensile strength, and fatigue strength of the composite round steel. However, the increase in chromium carbide particles leads to the formation of stress concentration points and accelerates the creation of fatigue cracks, resulting in a decrease in the fatigue strength of the steel. Simultaneously, the corrosion resistance of the composite round steel samples was reduced due to the precipitation of a large amount of chromium carbide. Full article
Show Figures

Figure 1

15 pages, 47269 KiB  
Article
Investigating the Tensile Properties of 22MnB5 After Austenitization and Quenching with Different Initial Microstructures
by Erik Lundholm, Jörgen Kajberg and Paul Åkerström
Metals 2025, 15(6), 589; https://doi.org/10.3390/met15060589 - 25 May 2025
Viewed by 594
Abstract
In the automotive industry, structural components are often produced via press hardening, enabling rapid production and the use of ultra-high-strength steels. In this process, steels are heated to an austenitic state and are then formed and quenched in rapid succession. The initial steel [...] Read more.
In the automotive industry, structural components are often produced via press hardening, enabling rapid production and the use of ultra-high-strength steels. In this process, steels are heated to an austenitic state and are then formed and quenched in rapid succession. The initial steel that enters the press-hardening production line varies, where the microstructure is a result of previous production steps. This work was performed to investigate the possible effects of the initial microstructure on the final mechanical properties for rapidly quenched samples. Although the initial microstructure is transformed during austenitization, the steel can still be affected by its prior history. Steels with three different initial microstructures were evaluated, with only minor variations in chemical composition and thicknesses. The Lankford coefficients and the failure strains were dependent on the orientation of the samples. However, for a given orientation, there were only minor variations between the different steels with respect to anisotropy, strength, and ductility. The anisotropy could be correlated with the microstructure through the calculation of Taylor factors based on measurements using electron backscatter diffraction. The minor influence from the initial steel microstructure on the final mechanical properties indicates robustness suitable for mass production. Full article
Show Figures

Figure 1

16 pages, 6872 KiB  
Article
Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter
by Saad S. M. Hassan, Nora R. G. Mohamed, Mohamed M. A. Saad, Yasser H. Ibrahim, Alia A. Elshakour and Mahmoud Abdelwahab Fathy
Polymers 2025, 17(11), 1447; https://doi.org/10.3390/polym17111447 - 23 May 2025
Viewed by 473
Abstract
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m [...] Read more.
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m-phenylene isophthalamide) (Nomex) fabric loaded with a thin layer of activated carbon. The optimized filter, with an activated carbon mass of 2.89 mg/cm2, a thickness of 4.8 mm, and an air permeability of 0.5 cm3/cm2/s, was tested. A simple homemade sampling device equipped with solid-state electrochemical sensors to monitor the concentration levels of CO2 before and after filtration of the emissions was utilized. The data were transmitted via a General Packet Radio Service (GPRS) link to an Internet of Things (IoT)-based gas monitoring system for remote management, and real-time data visualization. The proposed device achieved a 70 ± 3.4% CO2-removal efficiency within 7 min of operation. Characterization of the filter was conducted using a high-resolution scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Brunauer–Emmett–Teller (BET) analysis. The effects of loaded activated carbon mass, fabric type, filter porosity, gaseous removal time, and adsorption kinetics were also examined. The proposed filter displayed several advantages, including simplicity, compactness, dry design, ease of regeneration, scalability, durability, low cost, and good efficiency. Heat resistance, fire retardancy, mechanical stability, and the ability to remove other gasoline combustion products such as CO, SOx, NOx, VOCs, and particulates were also offered. The filtration system enabled both in situ and on-line CO2 real-time continuous emission monitoring. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Graphical abstract

Back to TopTop