Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Hardness of FeNiCoAlTiNb Single Crystals
3.2. Precipitate Morphology of FeNiCoAlTiNb Single Crystals
3.3. Transformation Temperatures of FeNiCoAlTiNb Single Crystals
3.4. Superelastic Responses of FeNiCoAlTiNb Single Crystals
3.5. Digital Image Correlation Results of FeNiCoAlTiNb Single Crystals
4. Conclusions
- TEM analysis revealed that the nano-precipitate crystal structure is L12. The precipitate size increases its value (4 nm to 12 nm) when the aging heat treatment time increases from 24 to 72 h. EDS line scan results show that the nickel content in the precipitate region increases with increasing aging time while the iron content decreases. The precipitates are rich in Ni content.
- Thermo-magnetization measurement results show that the transformation temperatures increase as the aging times increase. From 48 to 72 h, the transformation temperatures reached saturated values. Applying a high magnetic field of 7 T, the transformation temperatures rose, indicating that the magnetic induction of the martensitic transformation temperatures can be used in magnetic applications in the future.
- The superelasticity test results show the maximum recoverable strain is 3.8%, 5.1%, and 2% for SXL600—24 h, SXL600—48 h, and SXL600—72 h, respectively. The critical stresses are 460 MPa for SXL600—24 h, 370 MPa for SXL600—48 h, and 360 MPa for SXL600—72 h.
- The DIC results show that two martensite variants can activate in the tensile deformation. The precipitate size is coherent within the matrix for SXL600−24 h and SXL600—48 h. SXL600−24 h fails when applying the 4.5% strain due to the martensite variant–variant interaction becoming intense, leading to early fracture. The SXL600—48 h shows the maximum recoverable strain up to 5.1%; however, pronounced cyclic instability was observed after applying the 5% strain. The poor functional ability causes residual martensite and results in decreased abilities. A large size was observed for SXL600—72 h. Precipitations act as obstacles to reduce the mobility of austenite and martensite boundaries. Frictional resistance to phase boundary motion increases and amplifies the stress hysteresis loop. Dislocations act to pin the martensite phases to prevent them from reversing back to austenite, resulting in poor recoverability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amadi, A.; Mohyaldinn, M.; Ridha, S.; Ola, V. Advancing engineering frontiers with NiTi shape memory alloys: A multifaceted review of properties, fabrication, and application potentials. J. Alloy. Compd. 2024, 976, 173227. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E. Shape memory alloys for aerospace, recent developments, and new applications: A short review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef] [PubMed]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Kim, M.S.; Heo, J.K.; Rodrigue, H.; Lee, H.T.; Pané, S.; Han, M.W.; Ahn, S.H. Shape memory alloy (SMA) actuators: The role of material, form, and scaling effects. Adv. Mater. 2023, 35, 2208517. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zhang, J.; Wu, H.; Ji, Y.; Kumar, D.D. Iron-based shape memory alloys in construction: Research, applications and opportunities. Materials 2022, 15, 1723. [Google Scholar] [CrossRef]
- Sehitoglu, H.; Karaman, I.; Zhang, X.; Chumlyakov, Y.; Maier, H.J. Deformation of FeNiCoTi shape memory single crystals. Scr. Mater. 2001, 44, 779–784. [Google Scholar] [CrossRef]
- Sehitoglu, H.; Zhang, X.Y.; Kotil, T.; Canadinc, D.; Chumlyakov, Y.; Maier, H.J. Shape memory behavior of FeNiCoTi single and polycrystals. Metall. Mater. Trans. A 2002, 33, 3661–3672. [Google Scholar] [CrossRef]
- Omori, T.; Kainuma, R. Martensitic transformation and superelasticity in Fe–Mn–Al-Based shape memory alloys. Shape Mem. Superelasticity 2017, 3, 322–334. [Google Scholar] [CrossRef]
- Tanaka, Y.; Himuro, Y.; Kainuma, R.; Sutou, Y.; Omori, T.; Ishida, K. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 2010, 27, 1488–1490. [Google Scholar] [CrossRef]
- Omori, T.; Abe, S.; Tanaka, Y.; Lee, D.; Ishida, K.; Kainuma, R. Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr. Mater. 2013, 69, 812–815. [Google Scholar] [CrossRef]
- Lee, D.; Omori, T.; Kainuma, K. Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy. J. Alloy. Compd. 2014, 617, 120–123. [Google Scholar] [CrossRef]
- Ma, J.; Kockar, B.; Evirgen, A.; Karaman, I.; Luo, Z.; Chumlyakov, Y. Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy. Acta Mater. 2012, 60, 2186–2195. [Google Scholar] [CrossRef]
- Ma, J.; Hornbuckle, B.; Karaman, I.; Thompson, G.B.; Luo, Z.; Chumlyakov, Y. The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater. 2013, 61, 3445–3455. [Google Scholar] [CrossRef]
- Evirgen, A.; Ma, J.; Karaman, I.; Luo, Z.P.; Chumlyakov, Y.I. Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy. Scr. Mater. 2012, 67, 475–478. [Google Scholar] [CrossRef]
- Krooß, P.; Somsen, C.; Niendorf, T.; Schaper, M.; Karaman, I.; Chumlyakov, Y.; Eggeler, G.; Maier, H.J. Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals. Acta Mater. 2014, 79, 126–137. [Google Scholar] [CrossRef]
- Czerny, M.; Cios, G.; Maziarz, W.; Chumlyakov, Y.; Chulist, R. Studies on the Two-Step Aging Process of Fe-Based Shape Memory Single Crystals. Materials 2020, 13, 1724. [Google Scholar] [CrossRef]
- Czerny, M.; Maziarz, W.; Cios, G.; Wojcik, A.; Chumlyakov, Y.I.; Schell, N.; Fitta, M.; Chulist, R. The effect of heat treatment on the precipitation hardening in FeNiCoAlTa single crystals. Mater. Sci. Eng. Mater. A 2020, 784, 139327. [Google Scholar] [CrossRef]
- Czerny, M.; Cios, G.; Maziarz, W.; Chumlyakov, Y.I.; Schell, N.; Chulist, R. Effect of B addition on the superelasticity in FeNiCoAlTa single crystals. Mater. Des. 2021, 197, 109225. [Google Scholar] [CrossRef]
- Wójcik, A.; Chulist, R.; Szewczyk, A.; Dutkiewicz, J.; Maziarz, W. The influence of γ’ precipitates on the structural stability of FeNiCoAlTa and FeNiCoAlTaB single crystals after cyclic superelastic deformation. Arch. Metall. Mater. 2023, 68, 1157–1164. [Google Scholar] [CrossRef]
- Tseng, L.W.; Ma, J.; Karaman, I.; Wang, S.J.; Chumlyakov, Y. Superelastic response of the FeNiCoAlTi single crystals under tension and compression. Scr. Mater. 2015, 101, 1–4. [Google Scholar] [CrossRef]
- Tseng, L.W.; Chen, C.H.; Tzeng, Y.C.; Lee, P.Y.; Lu, N.H.; Chumlyakov, Y. Microstructure and superelastic properties of FeNiCoAlTi single crystals with the< 100> orientation under tension. Crystals 2022, 12, 548. [Google Scholar] [CrossRef]
- Abuzaida, W.; Sehitoglu, H. Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy. Mater. Des. 2018, 160, 642–651. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Kuksgauzen, I.V.; Poklonov, V.V.; Pobedennaya, Z.V.; Bessonova, I.G.; Kirillov, V.A.; Lauhoff, C.; Niendorf, T.; Krooß, P. Effect of β-and γ’-phase particles on the shape memory effect and superelasticity in [0 0 1]-oriented FeNiCoAlTi single crystals. Mater. Lett. 2020, 260, 126932. [Google Scholar] [CrossRef]
- Lehnert, R.; Remich, V.; Gerstein, G.; Motylenko, M.; Müller, M.; Krooß, P.; Niendorf, T.; Biermann, H.; Weidner, A. Unraveling factors affecting the reversibility of martensitic phase transformation in FeNiCoAlTi shape memory alloys: Insights from HR-EBSD and acoustic emission analysis. Acta Mater. 2024, 276, 120146. [Google Scholar] [CrossRef]
- Karaca, H.E.; Turabi, A.S.; Chumlyakov, Y.I.; Kireeva, I.; Tobe, H.; Basaran, B. Superelasticity of [001]-oriented Fe42·6Ni27.9Co17·2Al9.9Nb2.4 ferrous shape memory alloys. Scr. Mater. 2016, 120, 54–57. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Kutz, O.A.; Turabi, A.S.; Karaca, H.E.; Karaman, I. Unusual reversible twinning modes and giant superelastic strains in FeNiCoAlNb single crystals. Scr. Mater. 2016, 119, 43–46. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Pobedennaya, P.; Krooβ, P.; Niendorf, T. Rubber-like behaviour and superelasticity of [001]-oriented FeNiCoAlNb single crystals containing γ- and β-phase particles. J. Alloy. Compd. 2021, 856, 158158. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Pobedennaya, Z.V.; Krooβ, P.; Niendorf, T. Shape memory effect and superelasticity of [001]-oriented FeNiCoAlNb single crystals aged under and without stress. Metals 2021, 11, 943. [Google Scholar] [CrossRef]
- Lauhoff, C.; Remich, V.; Giordana, M.F.; Sobrero, C.; Niendorf, T.; Krooß, P. Cyclic Superelastic Behavior of Iron-Based Fe-Ni-Co-Al-Ti-Nb Shape Memory Alloy. J. Mater. Eng. Perform. 2023, 32, 8593–8599. [Google Scholar] [CrossRef]
- Cassinerio, J.; Giordana, M.F.; Zelaya, E.; Remich, V.; Krooß, P.; Freudenberger, J.; Niendorf, T.; Sobrero, C.E. On the impact of γ precipitates on the transformation temperatures in Fe–Ni–Co–Al–Ti–B shape memory alloy wires. Shape Mem. Superelasticity 2024, 10, 37–44. [Google Scholar] [CrossRef]
- Geng, Y.; Lee, D.; Xu, X.; Nagasako, M.; Jin, X.; Omori, T.; Kainuma, R. Coherency of ordered γ’ precipitates and thermoelastic martensitic transformation in FeNiCoAlTaB alloys. J. Alloy. Compd. 2015, 628, 287–292. [Google Scholar] [CrossRef]
- Tseng, L.W.; Ma, J.; Hornbuckle, B.; Karaman, I.; Thompson, G.B.; Luo, Z.; Chumlyakov, Y. The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Mater. 2015, 97, 234–244. [Google Scholar] [CrossRef]
Al (at%) | Nb (at%) | Ti (at%) | Fe (at%) | Co (at%) | Ni (at%) | |
---|---|---|---|---|---|---|
Measured | 7.9 | 1.0 | 1.2 | 37.8 | 19.3 | 32.7 |
Nominal | 11.5 | 1.25 | 1.25 | 41 | 17 | 28 |
Aging Conditions | Magnetic Field (T) | Ms (°C) | Af (°C) | Temperature Hysteresis (°C) |
---|---|---|---|---|
SXL600—24 h | 0.05 | −136 | −106 | 30 |
7 | −126 | −96 | 30 | |
SXL600—48 h | 0.05 | −90 | −58 | 32 |
7 | −53 | −21 | 32 | |
SXL600—72 h | 0.05 | −78 | −45 | 33 |
7 | −48 | −15 | 33 |
Superelastic Properties | SXL600—24 h | SXL600—48 h | SXL600—72 h |
---|---|---|---|
Critical stress (MPa) | 460 | 390 | 370 |
Fracture stress (MPa) | 472 | 750 | 425 |
Maximum recoverable strain (%) | 3.8 | 5.1 | 2 |
Ductility (%) | 4 | 7 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, L.-W.; Chen, W.-C. Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys. Materials 2025, 18, 2842. https://doi.org/10.3390/ma18122842
Tseng L-W, Chen W-C. Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys. Materials. 2025; 18(12):2842. https://doi.org/10.3390/ma18122842
Chicago/Turabian StyleTseng, Li-Wei, and Wei-Cheng Chen. 2025. "Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys" Materials 18, no. 12: 2842. https://doi.org/10.3390/ma18122842
APA StyleTseng, L.-W., & Chen, W.-C. (2025). Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys. Materials, 18(12), 2842. https://doi.org/10.3390/ma18122842