Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = healthy hydration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1052 KiB  
Article
Impact of Kickxia elatine In Vitro-Derived Stem Cells on the Biophysical Properties of Facial Skin: A Placebo-Controlled Trial
by Anastasia Aliesa Hermosaningtyas, Anna Kroma-Szal, Justyna Gornowicz-Porowska, Maria Urbanska, Anna Budzianowska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8625; https://doi.org/10.3390/app15158625 (registering DOI) - 4 Aug 2025
Abstract
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various [...] Read more.
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various skin biophysical parameters. The cream was applied to the cheek once daily for six weeks on 40 healthy female volunteers between the ages of 40 to 49. The evaluated skin parameters including skin hydration, transepidermal water loss (TEWL), erythema intensity (EI), melanin intensity (MI), skin surface pH, and skin structure, wrinkle depth, vascular lesions, and vascular discolouration. The results indicated that significant improvements were observed in skin hydration (from 40.36 to 63.00 AU, p < 0.001) and there was a decrease in TEWL score (14.82 to 11.76 g/h/m2, p < 0.001), while the skin surface pH was maintained (14.82 to 11.76 g/h/m2, p < 0.001). Moreover, the K. elatine cell extract significantly improved skin structure values (9.23 to 8.50, p = 0.028), reduced vascular lesions (2.72 to 1.54 mm2, p = 0.011), and lowered skin discolouration (20.98% to 14.84%, p < 0.001), indicating its moisturising, protective, brightening, and soothing properties. These findings support the potential use of K. elatine cell extract in dermocosmetic formulations targeting dry, sensitive, or ageing skin. Full article
Show Figures

Figure 1

15 pages, 2064 KiB  
Article
A Low-Sugar Flavored Beverage Improves Fluid Intake in Children During Exercise in the Heat
by Sajjad Rezaei, Rocio I. Guerrero, Parker Kooima, Isabela E. Kavoura, Sai Tejaswari Gopalakrishnan, Clarissa E. Long, Floris C. Wardenaar, Jason C. Siegler, Colleen X. Muñoz and Stavros A. Kavouras
Nutrients 2025, 17(15), 2418; https://doi.org/10.3390/nu17152418 - 24 Jul 2025
Viewed by 806
Abstract
Objectives: This study examined the impact of a low-sugar flavored beverage on total fluid intake and hydration biomarkers during intermittent exercise in a hot environment among healthy children. Methods: Twenty-one children (11 girls, 8–10 y) completed a randomized, crossover study with [...] Read more.
Objectives: This study examined the impact of a low-sugar flavored beverage on total fluid intake and hydration biomarkers during intermittent exercise in a hot environment among healthy children. Methods: Twenty-one children (11 girls, 8–10 y) completed a randomized, crossover study with two trials. Each trial involved three bouts of 10 min walking, 5 min rest, 10 min walking, and 35 min rest for a total of 3 h in a hot (29.9 ± 0.6 °C) and dry environment (26 ± 7% relative humidity). Walking intensity was 69 ± 7% of age-predicted maximum heart rate. Participants consumed either plain water (W) or a low-sugar flavored beverage (FB). Body weight, fluid intake, urine samples, and perceptual ratings were collected. Results: Total ad libitum fluid intake was significantly higher with the FB (946 ± 535 mL) than with W (531 ± 267 mL; p < 0.05). This difference was 128% higher for FB compared to W, with 19 out of the 21 children ingesting more fluids in FB versus W. Children rated the FB as more likable across all time points (p < 0.05). Net fluid balance was better with FB at 60, 70, 85, 135, and 145 min (p < 0.05), though not different at the 3 h mark. Urine volume was higher with FB (727 ± 291 mL) than with W (400 ± 293 mL; p < 0.05). Urine osmolality was significantly higher in the W trial at 120 and 180 min (p < 0.05). Conclusions: A flavored, low-sugar beverage enhanced ad libitum fluid intake and improved hydration markers compared to water during exercise in the heat, supporting its potential as a practical rehydration strategy for children. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

17 pages, 582 KiB  
Article
Dietary and Genetic Aspects of Polycystic Ovary Syndrome (PCOS) in Polish Women—Part I: Nutritional Status and Dietary Intake
by Karolina Nowosad, Małgorzata Ostrowska, Paweł Glibowski, Katarzyna Iłowiecka and Wojciech Koch
Nutrients 2025, 17(14), 2377; https://doi.org/10.3390/nu17142377 - 21 Jul 2025
Cited by 1 | Viewed by 789
Abstract
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder characterized by reproductive and metabolic abnormality disorders. Dietary factors influence the body composition and hydration status, which may exacerbate PCOS symptoms. The aim of this study was to assess the associations [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder characterized by reproductive and metabolic abnormality disorders. Dietary factors influence the body composition and hydration status, which may exacerbate PCOS symptoms. The aim of this study was to assess the associations between the habitual nutrient intake and bioelectrical impedance analysis parameters in Polish women with PCOS and healthy controls, in order to identify potential nutritional targets for a non-pharmacological intervention. Methods: This study involved 50 women aged 18–45 years (25 with PCOS and 25 healthy). Participants kept 7-day food diaries and their body composition was assessed using the SECA mBCA 515 analyzer. The nutrient intake was compared with EFSA recommendations. Results: Women with PCOS had a higher body weight, waist circumference and body mass index, visceral adipose tissue, and fat mass index, despite no difference in their total energy intake. They consumed more omega-3 fatty acids (EPA + DHA) than the control group. Vitamin D deficiency and irregular supplementation were common in both groups. Body composition parameters such as the phase angle and ECW/TBW ratio correlated with the diet quality—especially with protein; fiber; and vitamin B2, B12, and folate levels. Conclusions: The obtained results showed significant differences in body compositions and the presence of a relationship between the nutrient intake and bioimpedance parameters in women with PCOS. These results emphasize the importance of a comprehensive nutritional and body composition assessment in planning dietary interventions in this group of patients. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

18 pages, 259 KiB  
Article
Assessment of Health-Related Behaviors in Patients Hospitalized with Chronic Psychiatric Disorders—A Case-Control Study from a Closed Psychiatric Ward
by Maciej Domański, Anna Domańska, Zuzanna Chęcińska-Maciejewska, Sabina Lachowicz-Wiśniewska and Wioletta Żukiewicz-Sobczak
Nutrients 2025, 17(14), 2315; https://doi.org/10.3390/nu17142315 - 14 Jul 2025
Viewed by 342
Abstract
Background: Severe psychiatric disorders are frequently associated with disruptions in health-related behaviors, including diet and lifestyle. This cross-sectional study aimed to assess and compare selected dietary and lifestyle behaviors among long-term psychiatric inpatients diagnosed with unspecified dementia (F03) or organic delusional disorder (F06.2) [...] Read more.
Background: Severe psychiatric disorders are frequently associated with disruptions in health-related behaviors, including diet and lifestyle. This cross-sectional study aimed to assess and compare selected dietary and lifestyle behaviors among long-term psychiatric inpatients diagnosed with unspecified dementia (F03) or organic delusional disorder (F06.2) and a control group of mentally healthy individuals. Methods: A 50-item validated questionnaire was administered to 28 hospitalized patients and 10 control participants. Analyses included nutritional habits, physical activity, stimulant use, and hydration, using non-parametric tests and effect size indicators (Cramér’s V). Results: Significant differences were observed in meal regularity, frequency of meals, types of beverages consumed, and physical activity. Strong associations were found for meal types (V = 0.590) and stress-induced eating (V = 0.525). Conclusions: The observed behavioral differences may reflect disease-related effects, demographic variation, or a combination of both. Despite these limitations, the findings suggest key areas for further investigation and support the need for targeted dietary and lifestyle interventions in psychiatric settings. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
22 pages, 13140 KiB  
Article
Development and Characterization of Optimized Drug-Loaded Niosomes for Delivery of 5-FU and Irinotecan
by Kafilat O. Agbaje, Simeon K. Adesina and Amusa S. Adebayo
Pharmaceutics 2025, 17(7), 900; https://doi.org/10.3390/pharmaceutics17070900 - 11 Jul 2025
Viewed by 402
Abstract
Background/Objectives: 5-Fluorouracil (5-FU) and Irinotecan (IRT) are two of the most used chemotherapeutic agents in CRC treatment. However, achieving treatment goals has been hampered by poor drug delivery to tumor sites and associated toxicity from off-target binding to healthy cells. Though the [...] Read more.
Background/Objectives: 5-Fluorouracil (5-FU) and Irinotecan (IRT) are two of the most used chemotherapeutic agents in CRC treatment. However, achieving treatment goals has been hampered by poor drug delivery to tumor sites and associated toxicity from off-target binding to healthy cells. Though the synergism of 5-FU-IRT has provided incremental improvements in clinical outcomes, the short elimination half-life and off-target binding to healthy cells remain significant challenges. We postulated that nanoencapsulation of a combination of 5-FU and IRT in niosomes would prolong the drugs’ half-lives, while over-encapsulation lyophilized powder in Targit® oral capsules would passively the CRC microenvironment and avoid extensive systemic distribution. Methods: Ranges of formulation and process variables were input into design of experiment (DOE Fusion One) software, to generate screening experiments. Niosomes were prepared using the thin-film hydration method and characterized by size, the polydispersity index (PDI), morphology and intrastructure, and drug loading. Blank niosomes ranged in size from 215 nm to 257 nm. Results: After loading with the 5-FU-IRT combination, the niosomes averaged 251 ± 2.20 nm with a mean PDI of 0.293 ± 0.01. The surfactant-to-cholesterol ratio significantly influenced the niosome size and the PDI. The hydrophilic 5-FU exhibited superior loading compared to the lipophilic IRT molecules, which probably competed with other lipophilic niosome components in niosomes’ palisade layers. In vitro dissolution in biorelevant media showed delayed release until lower intestinal region (IRT) or colonic region (5-FU). Conclusions: Thus, co-nanoencapsulation of 5-FU/IRT in niosomes, lyophilization, and over-encapsulation of powder in colon-specific capsules could passively target the CRC cells in the colonic microenvironment. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

15 pages, 8274 KiB  
Article
Effects of Extra Virgin Olive Oil and Petrolatum on Skin Barrier Function and Microtopography
by Ana Rubio-Santoyo, Raquel Sanabria-de la Torre, Trinidad Montero-Vílchez, María Sierra Girón-Prieto, Almudena Gómez-Farto and Salvador Arias-Santiago
J. Clin. Med. 2025, 14(13), 4675; https://doi.org/10.3390/jcm14134675 - 2 Jul 2025
Viewed by 945
Abstract
Background/Objectives: Natural oils are widely promoted and used around the world as part of skincare. Among them, extra virgin olive oil (EVOO) stands out for its broad range of organic compositions and well-known moisturizing properties. This study aimed to evaluate the effects [...] Read more.
Background/Objectives: Natural oils are widely promoted and used around the world as part of skincare. Among them, extra virgin olive oil (EVOO) stands out for its broad range of organic compositions and well-known moisturizing properties. This study aimed to evaluate the effects of topically applied EVOO compared to petrolatum on skin barrier function (SBF) and microtopography. Methods: A within-person randomized clinical trial was conducted in healthy adult volunteers. EVOO and petrolatum were applied to defined areas on the volar forearm. Parameters related to the SBF, including stratum corneum hydration (SCH), transepidermal water loss (TEWL), temperature, and erythema, were assessed. The skin microtopography was evaluated through two approaches: (1) topographic parameters—surface roughness, desquamation, smoothness, and wrinkles; and (2) stratum corneum (SC) composition—corneocytes subtypes and the desquamation index (DI). The participants completed a tolerability questionnaire for each product. Results: A total of 54 participants (50% female; mean age: 28.57 ± 11.02 years) completed the study. Both EVOO and petrolatum significantly improved the SBF by increasing SCH and reducing erythema and skin temperature. Petrolatum additionally reduced TEWL. Regarding the skin microtopography, both products decreased the desquamation index and reduced the prevalence of mature corneocyte types (types 2–5). These effects were more pronounced with petrolatum. Notably, EVOO significantly increased the proportion of early-stage corneocytes (type 1). Conclusions: Both EVOO and petrolatum effectively enhanced the SBF and improved the microtopographic features of the skin. While petrolatum exerted a stronger occlusive effect by reducing TEWL and desquamation, EVOO uniquely promoted epidermal renewal by increasing epidermal turnover. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

23 pages, 2746 KiB  
Article
Hydration Status and Acute Kidney Injury Biomarkers in NCAA Female Soccer Athletes During Preseason Conditioning
by Daniel E. Newmire, Erica M. Filep, Jordan B. Wainwright, Heather E. Webb and Darryn S. Willoughby
Nutrients 2025, 17(13), 2185; https://doi.org/10.3390/nu17132185 - 30 Jun 2025
Viewed by 438
Abstract
Exercise training in extreme temperatures concurrent with hypohydration status may potentiate the development of acute kidney injury (AKI) in young, healthy persons. Background/Objectives: It is unknown how repeated training bouts in ambient higher temperatures and humidity may influence measures of AKI. The [...] Read more.
Exercise training in extreme temperatures concurrent with hypohydration status may potentiate the development of acute kidney injury (AKI) in young, healthy persons. Background/Objectives: It is unknown how repeated training bouts in ambient higher temperatures and humidity may influence measures of AKI. The purpose of this study was to investigate hydration status and renal biomarkers related to AKI in NCAA Division I female soccer athletes during preseason conditioning. Methods: A convenience sample of n = 21 athletes were recruited (mean ± SEM; age: 19.3 ± 0.25 y; height: 169.6 ± 1.36 cm; mass: 68.43 ± 2.46 kg; lean body mass: 45.91 ± 1.13 kg; fat mass: 22.51 ± 1.69 kg; body fat %: 32.22 ± 1.32%). The average temperature was 27.43 ± 0.19 °C, and the humidity was 71.69 ± 1.82%. Body composition, anthropometric, workload, and 14 urine samples were collected throughout the preseason training period for urine specific gravity (USG), creatinine (uCr), cystatin C (uCyst-C), and neutrophil gelatinase-associated lipocalin (uNGAL) analyses. Results: Our investigation showed that, when compared to baseline (D0), the athletes maintained a USG-average euhydrated status (1.019 ± 0.001) and were euhydrated prior to each exhibition game (D5-Pre: p = 0.03; 1.011 ± 0.001; D10-Pre: p = 0.0009; 1.009 ± 0.001); uCr was elevated on D8 (p = 0.001; 6.29 ± 0.44 mg·dL−1·LBM−1) and D10-Post (p = 0.02; 6.61 ± 0.44 mg·dL−1·LBM−1); uCyst-C was elevated on D6 through D10 (p = 0.001; ~0.42 ± 0.01 mg·dL−1); no differences were found in uNGAL concentration. The highest distance (m) displaced was found during exhibition games (D5: p = <0.0001; ~8.6 km and D10: p = <0.0001; ~9.6 km). During the preseason conditioning, the athletes maintained a euhydrated status (~1.019) via USG, an increase in uCr that averaged within a normal range (208 mg·dL−1), and an increase in uCyst-C to near AKI threshold levels (0.42 mg·L−1) for several practice sessions, followed by an adaptive decline. No differences were found in uNGAL, which may be explained by athlete variation, chosen time sample collection, and variation in training and hydration status. Conclusions: The athletes maintained a euhydrated status, and this may help explain why urinary markers did not change or meet the reference threshold for AKI. Full article
Show Figures

Figure 1

16 pages, 1441 KiB  
Article
Clinical Efficacy and Safety Evaluation of a Centella asiatica (CICA)-Derived Extracellular Vesicle Formulation for Anti-Aging Skincare
by Hannah S. Park and Sehyun Shin
Cosmetics 2025, 12(4), 135; https://doi.org/10.3390/cosmetics12040135 - 25 Jun 2025
Viewed by 1526
Abstract
Centella asiatica (CICA)-derived exosomes have emerged as bioactive agents for skin rejuvenation due to their regenerative and anti-inflammatory properties. This study evaluated the safety and efficacy of a topical ampoule containing CICA-derived extracellular vesicles (EVs) in healthy Korean adults. This human application study [...] Read more.
Centella asiatica (CICA)-derived exosomes have emerged as bioactive agents for skin rejuvenation due to their regenerative and anti-inflammatory properties. This study evaluated the safety and efficacy of a topical ampoule containing CICA-derived extracellular vesicles (EVs) in healthy Korean adults. This human application study was conducted over a 15-day period, during which the test formulation was topically applied to the skin following a controlled regimen. A 24-h patch test with 30 participants confirmed non-irritation (irritation index: 0.00). In a separate two-week trial (n = 20; mean age 50.7 years), 3D imaging and ultrasound assessed five-dimensional pore improvement (area, density, volume, filling, texture), wrinkle depth reduction in five facial regions, dermal hydration at 0.5, 1.5, and 2.5 mm depths, and skin density. Significant reductions were observed in mean pore area (−17.9%) and pore density (−26.9%), with a 9.0% decrease in surface roughness. Wrinkle depths decreased by 7.8–18.8% across the forehead, glabella, crow’s feet, nasolabial folds, and neck. Hydration increased by 7.9% at 0.5 mm, and dermal density improved by 12.7% (p < 0.05). These findings highlight the excellent skin compatibility and multifaceted cosmetic benefits of the formulation containing CICA-derived exosomes and other active ingredients, underscoring its potential as a safe, effective, and innovative anti-aging cosmetic agent. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

14 pages, 937 KiB  
Article
Establishment and Validation of Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Aldosterone Quantification in Feline Serum with Reference Interval Determination
by Tommaso Furlanello, Francesca Maria Bertolini, Andrea Zoia, Jose Sanchez del Pulgar and Riccardo Masti
Animals 2025, 15(12), 1687; https://doi.org/10.3390/ani15121687 - 6 Jun 2025
Viewed by 599
Abstract
Aldosterone, a mineralocorticoid hormone synthesised in the adrenal cortex, is essential for maintaining electrolyte balance and fluid homeostasis. Its role in feline physiology remains underexplored, despite its importance in regulating sodium reabsorption and potassium excretion via mineralocorticoid receptors in renal tubules. This study [...] Read more.
Aldosterone, a mineralocorticoid hormone synthesised in the adrenal cortex, is essential for maintaining electrolyte balance and fluid homeostasis. Its role in feline physiology remains underexplored, despite its importance in regulating sodium reabsorption and potassium excretion via mineralocorticoid receptors in renal tubules. This study is warranted given aldosterone’s importance in cats, particularly in light of their unique physiological traits, including highly concentrated urine and sensitivity to hydration status. Primary hyperaldosteronism, the most common feline adrenocortical disorder, contributes to arterial hypertension and chronic kidney disease, yet often remains underdiagnosed due to overlapping symptoms like hypokalaemia and hypertension. This research aimed to validate a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method to measure serum aldosterone and to establish a reference interval in a population of healthy cats across a broad age range. The method demonstrated high precision and accuracy, with inter-assay coefficients of variation under 15%. Analysis of 49 healthy cats (40 young, 9 old) revealed a reference interval of 5.0–78.4 pg/mL (13.8–217.2 pmol/L). These findings provide a robust framework for diagnosing aldosterone-related disorders in cats and underscore the need for species-specific diagnostic tools. Improved understanding of aldosterone’s role could refine treatment strategies and enhance outcomes for affected feline patients. Full article
(This article belongs to the Special Issue Canine and Feline Endocrinology: Research Progress and Challenges)
Show Figures

Figure 1

16 pages, 4557 KiB  
Article
A Fluid Dynamic In Vitro System to Study the Effect of Hyaluronic Acid Administration on Collagen Organization in Human Skin Explants
by Andrea Galvan, Maria Assunta Lacavalla, Federico Boschi, Barbara Cisterna, Edoardo Dalla Pozza, Enrico Vigato, Flavia Carton, Manuela Malatesta and Laura Calderan
Int. J. Mol. Sci. 2025, 26(11), 5397; https://doi.org/10.3390/ijms26115397 - 4 Jun 2025
Viewed by 545
Abstract
Hyaluronic acid (HA) is an unbranched polysaccharide particularly abundant in the extracellular matrix (ECM) of soft connective tissues. In humans, about 50% of the total HA in the organism is localized in the skin. HA plays an essential role in the hydration of [...] Read more.
Hyaluronic acid (HA) is an unbranched polysaccharide particularly abundant in the extracellular matrix (ECM) of soft connective tissues. In humans, about 50% of the total HA in the organism is localized in the skin. HA plays an essential role in the hydration of the ECM, in the regulation of tissue homeostasis, in the resistance to mechanical stimuli/forces, and in the modulation of tissue regeneration. For these reasons, HA is widely used in regenerative medicine and cosmetics. In this study we used an innovative fluid dynamic system to investigate the effects of a cross-linked macrostructural HA formulation on dermal collagen of healthy human skin explants. The good preservation of skin explants provided by the bioreactor allowed applying refined high-resolution microscopy techniques to analyze in situ the HA-induced modifications on the ECM collagen fibrils up to 48 h from the application on the skin surface. Results demonstrated that this HA formulation, commercially proposed for subcutaneous injection, may act on dermal ECM also when applied transcutaneously, improving ECM hydration and modifying the organization of the collagen fibrils. These findings, obtained by the original combination of explanted human skin use with an advanced culture system and multiscale imaging techniques, are consistent with the volumizing and anti-aging effect of HA. Full article
Show Figures

Figure 1

34 pages, 2275 KiB  
Review
A State-of-the-Art Review on Recent Biomedical Application of Polysaccharide-Based Niosomes as Drug Delivery Systems
by Andreea-Teodora Iacob, Andra Ababei-Bobu, Oana-Maria Chirliu, Florentina Geanina Lupascu, Ioana-Mirela Vasincu, Maria Apotrosoaei, Bianca-Stefania Profire, Georgiana-Roxana Tauser, Dan Lupascu and Lenuta Profire
Polymers 2025, 17(11), 1566; https://doi.org/10.3390/polym17111566 - 4 Jun 2025
Viewed by 857
Abstract
The development of nanocarriers for drug delivery has drawn a lot of attention due to the possibility for tailored delivery to the ill region while preserving the neighboring healthy tissue. In medicine, delivering drugs safely and effectively has never been easy; therefore, the [...] Read more.
The development of nanocarriers for drug delivery has drawn a lot of attention due to the possibility for tailored delivery to the ill region while preserving the neighboring healthy tissue. In medicine, delivering drugs safely and effectively has never been easy; therefore, the creation of surfactant-based vesicles (niosomes) to enhance medication delivery has gained attention in the past years. Niosomes (NIOs) are versatile drug delivery systems that facilitate applications varying from transdermal transport to targeted brain delivery. These self-assembling vesicular nano-carriers are formed by hydrating cholesterol, non-ionic surfactants, and other amphiphilic substances. The focus of the review is to report on the latest NIO-type formulations which also include biopolymers from the polysaccharide class, highlighting their role in the development of these drug delivery systems (DDSs). The NIO and polysaccharide types, together with the recent pharmaceutical applications such as ocular, oral, nose-to brain, pulmonary, cardiac, and transdermal drug delivery, are all thoroughly summarized in this review, which offers a comprehensive compendium of polysaccharide-based niosomal research to date. Lastly, this delivery system’s limits and prospects are also examined. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials, 3rd Edition)
Show Figures

Graphical abstract

15 pages, 3491 KiB  
Article
Prolonged Humid Heat Triggers Systemic Inflammation and Stress Signaling: Fluid Intake Modulates NF-κB, p38, JNK2, and STAT3α Pathways
by Faming Wang, Caiping Lu, Ying Lei and Tze-Huan Lei
Int. J. Mol. Sci. 2025, 26(11), 5114; https://doi.org/10.3390/ijms26115114 - 26 May 2025
Viewed by 495
Abstract
Prolonged exposure to extreme humid heat can induce systemic inflammation, organ stress, and hormonal imbalance. While fluid replacement is commonly recommended, its mechanistic efficacy under humid heat stress remains unclear. This study investigated the impact of fluid intake on thermoregulation, inflammation, organ function, [...] Read more.
Prolonged exposure to extreme humid heat can induce systemic inflammation, organ stress, and hormonal imbalance. While fluid replacement is commonly recommended, its mechanistic efficacy under humid heat stress remains unclear. This study investigated the impact of fluid intake on thermoregulation, inflammation, organ function, and stress signaling during 8 h of humid heat exposure (ambient temperature: 40 °C, relative humidity: 55%) in 32 healthy young adults (20 males and 12 females). Participants completed two randomized trials: limited fluid intake (LFI, 125 mL/h) and full fluid intake (FFI, 375 mL/h). Core temperature (Tcore), inflammatory cytokines (IL-6, IL-1β, IFN-γ, TNF-α), organ stress markers (ALT, BUN), oxidative stress indices (MDA, SOD), and cortisol were assessed pre- and post-exposure. FFI significantly reduced post-exposure Tcore (37.8 ± 0.3 °C vs. 38.1 ± 0.3 °C, p = 0.046), mitigated cytokine elevations, and decreased BUN (blood urea nitrogen), ALT (alanine aminotransferase), and cortisol levels. Western blot analysis of PBMCs revealed that LFI activated NF-κB p65, JNK2, p38, and STAT3α phosphorylation, whereas FFI suppressed these responses. These findings demonstrate that adequate hydration attenuates heat-induced systemic and molecular stress responses. Our results highlight hydration as a key modulator of inflammatory signaling pathways during prolonged heat stress, offering insights into preventive strategies for populations vulnerable to climate-induced extreme heat events. Full article
(This article belongs to the Special Issue Environmental Influences on Cellular Responses)
Show Figures

Graphical abstract

13 pages, 981 KiB  
Article
Evaluating the Cosmetic Efficacy of Topical Micrococcus luteus Q24 Probiotic Balm: A Pilot Study in Healthy Adults
by Abigail L. Voss, Stephanie A. Mattison, Sonali S. Sali, John D. F. Hale and Rohit Jain
Cosmetics 2025, 12(3), 105; https://doi.org/10.3390/cosmetics12030105 - 22 May 2025
Viewed by 1260
Abstract
The skin microbiome is a focus for innovative skincare. This study investigated topical semi-solid balm formulations of Micrococcus luteus Q24, a live skin-native probiotic, to enhance skin quality parameters such as hydration, pores, pigmentation, wrinkles and dryness. Firstly, the compatibility and growth-promoting effects [...] Read more.
The skin microbiome is a focus for innovative skincare. This study investigated topical semi-solid balm formulations of Micrococcus luteus Q24, a live skin-native probiotic, to enhance skin quality parameters such as hydration, pores, pigmentation, wrinkles and dryness. Firstly, the compatibility and growth-promoting effects of prebiotics and functional actives on M. luteus Q24 were evaluated, identifying oil-based actives, including vitamin E and pomegranate seed oil, that significantly boosted bacterial growth compared to oatmeal, the sole effective prebiotic tested. Subsequently, a pilot cosmetic trial assessed two M. luteus Q24-enriched balms on healthy adults utilising a cutting-edge AI (Artificial Intelligence) driven skin analyser device. Balm B significantly reduced keratin levels, wrinkles, and pore size, and increased hydration, while Balm A effectively reduced spots and keratin. After 4 days of application, Balm A showed mean percentage reductions of 80% in pores, 20% in spots, 60% in wrinkles, and 100% in keratin scores, while Balm B exhibited mean percentage reductions of 100% in pores, 50% in spots, 67% in wrinkles, and 80% in keratin, with a 100% increase in hydration score. Both balms demonstrated compatibility and efficacy, highlighting the potential of M. luteus Q24 in improving skin parameters. These findings suggest that balms optimise the benefits of skin-specific probiotics for microbiome-friendly skincare. Future research with larger, placebo-controlled trials is needed to substantiate these preliminary findings. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

20 pages, 8527 KiB  
Article
Comparative Study Between Nanoemulsions and Conventional Emulsions as Carriers of Plant Oils: Formulation Approach, Physicochemical Properties, and In Vitro and In Vivo Assessments for Skin Care Application
by Angeliki Liakopoulou, Sophia Letsiou, Konstantinos Avgoustakis and Sophia Hatziantoniou
Cosmetics 2025, 12(3), 102; https://doi.org/10.3390/cosmetics12030102 - 15 May 2025
Viewed by 1199
Abstract
This study aims to compare nanoemulsions and conventional emulsions as delivery systems for plant oils. For this reason, the formulation approach was evaluated, followed by an assessment of physicochemical properties and stability. Six different compositions of emulsions and their respective nanoemulsions were prepared [...] Read more.
This study aims to compare nanoemulsions and conventional emulsions as delivery systems for plant oils. For this reason, the formulation approach was evaluated, followed by an assessment of physicochemical properties and stability. Six different compositions of emulsions and their respective nanoemulsions were prepared using combinations of solid lipids (beeswax or cocoa butter) with liquid lipids (olive, almond, or apricot oil). Their physicochemical characteristics and their colloidal stability over time were assessed using Dynamic Light Scattering or Static Light Scattering. The performance of samples on the skin was assessed by measuring their occlusion effect (F), while their hydrating effect was assessed on healthy volunteers. The nanoemulsions exhibited improved stability compared to the corresponding conventional emulsions of the same composition. However, all samples (emulsions or nanoemulsions) exhibited a satisfactory occlusive effect (F > 10), mainly at 6 h. In addition, all samples caused increased skin hydration by 10–20% one hour post-application. Nanoemulsions containing plant-origin oils showed better physicochemical stability compared to their corresponding emulsions. The in vivo assessment revealed no skin irritation caused by the samples. Nevertheless, subjective evaluations by volunteers unveil a preference for conventional emulsions, which were perceived as providing a more favorable skin texture, regardless of their composition. Full article
Show Figures

Figure 1

22 pages, 925 KiB  
Review
The Emerging Role of Water Loss in Dog Aging
by Gabriella Guelfi, Camilla Capaccia, Vicente Francisco Ratto, Antonello Bufalari, Leonardo Leonardi, Luca Mechelli, Simone Cenci and Margherita Maranesi
Cells 2025, 14(7), 545; https://doi.org/10.3390/cells14070545 - 4 Apr 2025
Viewed by 1880
Abstract
Aging involves progressive physiological changes, including the dysregulation of water homeostasis, essential for cellular function, neuronal signaling, and musculoskeletal integrity. This review explores the emerging role of water loss as a central and underestimated driver of functional decline in aging, with a focus [...] Read more.
Aging involves progressive physiological changes, including the dysregulation of water homeostasis, essential for cellular function, neuronal signaling, and musculoskeletal integrity. This review explores the emerging role of water loss as a central and underestimated driver of functional decline in aging, with a focus on the dog, both as a clinically relevant target species and as a model for human aging. Age-related alterations in water metabolism—driven by changes in body composition, aquaporin (AQP) expression, electrolyte imbalances, reduced thirst perception, and impaired urine concentration—lead to intracellular and extracellular dehydration, exacerbating functional decline. We examine molecular mechanisms of water regulation involving AQPs and osmolytes, and describe how dehydration contributes to structural and metabolic dysfunction across key biological compartments, including the kidney, brain, bone, and skeletal muscle. Physiological dehydration, a hallmark of aging, intensifies inflammaging, accelerating tissue degeneration. In particular, we highlight how water loss impairs solvent capacity, solute transport, protein conformation, and cellular communication. Despite the known role of macronutrients in geriatric nutrition, hydration remains an often-overlooked factor in aging management. We argue for its inclusion as a fourth pillar in the nutritional approach to veterinary geriatrics, alongside protein, fat, and fiber. By investigating aging-associated water loss in dogs—species that share environments and lifestyle patterns with humans—we propose hydration-centered strategies to promote healthy aging in both veterinary and comparative medicine. Full article
Show Figures

Graphical abstract

Back to TopTop