Hydration Status and Acute Kidney Injury Biomarkers in NCAA Female Soccer Athletes During Preseason Conditioning
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Population
2.2. Anthropometrics and Body Composition
2.3. Hydration Status
2.4. Environmental Analysis
2.5. Athlete Workload Data Collection
2.6. Data Collection Procedures
2.7. Urinary Collection and Analysis
2.8. Urine Specific Gravity (USG)
2.9. Urinary Markers of AKI: Cystatin C, NGAL, and Creatinine
2.10. Statistical Analysis
3. Results
3.1. Athlete Workload
3.2. Hydration Status
3.3. Urinary Markers of Acute Kidney Injury
4. Discussion
4.1. Athlete Workload
4.2. Hydration Status
4.3. Urinary Markers of AKI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKI | Acute kidney injury |
sCr | Serum creatinine |
uCr | Urinary creatinine |
GFR | Glomerular filtration rate |
Cyst-C | Cystatin C |
uCyst-C | Urinary cystatin C |
NGAL | Neutrophil gelatinase-associated lipocalin |
mRNA | Messenger ribonucleic acid |
HIIT | High-intensity interval training |
iDXA | Dual X-ray absorptiometry |
USG | Urine specific gravity |
WBGT | Wet-bulb globe temperature |
Td | Ambient temperature |
Tg | Dry-bulb temperature |
Tw | Wet-bulb temperature |
%RH | Relative humidity |
NOAA | National Oceanic and Atmospheric Administration |
NCEI | National Centers for Environmental Information |
NAS | Corpus Christy Naval Air Station |
ASIS | Anterior superior iliac spine |
GNSS | Global navigation satellite systems |
APHR | Age-predicted heart rate |
ddH2O | Double deionized water |
NaCl | Sodium chloride |
HRP | Horseradish peroxidase |
LBM | Lean body mass |
REML | Restricted maximum likelihood |
References
- Peart, A.N.; Nicks, C.R.; Mangum, M.; Tyo, B.M. Evaluation of seasonal changes in fitness, anthropometrics, and body composition in collegiate division II female soccer players. J. Strength Cond. Res. 2018, 32, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
- Svensson, M.; Drust, B. Testing soccer players. J. Sports Sci. 2005, 23, 601–618. [Google Scholar] [CrossRef]
- Bylaws, A.; Bylaws, A. Division i Manual; The National Collegiate Athletic Association: Indianopolis, IN, USA, 2023. [Google Scholar]
- Casa, D.J.; DeMartini, J.K.; Bergeron, M.F.; Csillan, D.; Eichner, E.R.; Lopez, R.M.; Ferrara, M.S.; Miller, K.C.; O’Connor, F.; Sawka, M.N. National Athletic Trainers’ Association position statement: Exertional heat illnesses. J. Athl. Train. 2015, 50, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Schlader, Z.J.; Chapman, C.L.; Benati, J.M.; Gideon, E.A.; Vargas, N.T.; Lema, P.C.; Johnson, B.D. Renal hemodynamics during sympathetic activation following aerobic and anaerobic exercise. Front. Physiol. 2019, 9, 1928. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M.; Leiper, J.B. Errors in the estimation of hydration status from changes in body mass. J. Sports Sci. 2007, 25, 797–804. [Google Scholar] [CrossRef]
- Casa, D.J.; Armstrong, L.E.; Hillman, S.K.; Montain, S.J.; Reiff, R.V.; Rich, B.S.; Roberts, W.O.; Stone, J.A. National athletic trainers’ association position statement: Fluid replacement for athletes. J. Athl. Train. 2000, 35, 212. [Google Scholar]
- Alayyannur, P.A.; Ramdhan, D.H. Relationship of heat stress with acute kidney disease and chronic kidney disease: A literature review. J. Public Health Res. 2022, 11, 22799036221104149. [Google Scholar] [CrossRef]
- Makris, K.; Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016, 37, 85–98. [Google Scholar]
- Junglee, N.A.; Di Felice, U.; Dolci, A.; Fortes, M.B.; Jibani, M.M.; Lemmey, A.B.; Walsh, N.P.; Macdonald, J.H. Exercising in a hot environment with muscle damage: Effects on acute kidney injury biomarkers and kidney function. Am. J. Physiol.-Ren. Physiol. 2013, 305, F813–F820. [Google Scholar] [CrossRef]
- Mansour, S.G.; Verma, G.; Pata, R.W.; Martin, T.G.; Perazella, M.A.; Parikh, C.R. Kidney injury and repair biomarkers in marathon runners. Am. J. Kidney Dis. 2017, 70, 252–261. [Google Scholar] [CrossRef]
- Wołyniec, W.; Ratkowski, W.; Renke, J.; Renke, M. Changes in Novel AKI Biomarkers after Exercise. A Systematic Review. Int. J. Mol. Sci. 2020, 21, 5673. [Google Scholar] [CrossRef]
- Hosten, A.O. BUN and Creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the US population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef]
- Amin, R.; Ahn, S.-Y.; Moudgil, A. Chapter 7—Kidney and urinary tract disorders. In Biochemical and Molecular Basis of Pediatric Disease, 5th ed.; Dietzen, D., Bennett, M., Wong, E., Haymond, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 167–228. [Google Scholar]
- Calles-Escandon, J.; Cunningham, J.J.; Snyder, P.; Jacob, R.; Huszar, G.; Loke, J.; Felig, P. Influence of exercise on urea, creatinine, and 3-methylhistidine excretion in normal human subjects. Am. J. Physiol.-Endocrinol. Metab. 1984, 246, E334–E338. [Google Scholar] [CrossRef]
- Fraser, A.D. Chapter 12—Drugs of Abuse Screening and Confirmation With Lower Cutoff Values. In Critical Issues in Alcohol and Drugs of Abuse Testing, 2nd ed.; Dasgupta, A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 149–155. [Google Scholar]
- Bonventre, J.V.; Sabbisetti, V. Acute Kidney Injury: Biomarkers from Bench to Bedside. In Chronic Kidney Disease, Dialysis, and Transplantation; Elsevier: Amsterdam, The Netherlands, 2010; pp. 668–676. [Google Scholar]
- Coca, S.; Yalavarthy, R.; Concato, J.; Parikh, C. Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review. Kidney Int. 2008, 73, 1008–1016. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, B.; Sheng, X.; Jin, N. Cystatin C in prediction of acute kidney injury: A systemic review and meta-analysis. Am. J. Kidney Dis. 2011, 58, 356–365. [Google Scholar] [CrossRef]
- Shang, W.; Wang, Z. The update of NGAL in acute kidney injury. Curr. Protein Pept. Sci. 2017, 18, 1211–1217. [Google Scholar] [CrossRef]
- Vaidya, V.S.; Ferguson, M.A.; Bonventre, J.V. Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 463–493. [Google Scholar] [CrossRef]
- Jiang, X.; Qin, L.; Wei, J.; Su, G.; Su, X.; Lu, A.; Huang, J.; Lu, F.; Lu, T.; Huang, P. Urine cystatin C determination in the establishment of reference interval in the diagnosis and treatment of renal injury. Nat. Sci. 2022, 14, 13–17. [Google Scholar] [CrossRef]
- Conti, M.; Moutereau, S.; Zater, M.; Lallali, K.; Durrbach, A.; Manivet, P.; Eschwege, P.; Loric, S. Urinary cystatin C as a specific marker of tubular dysfunction. Clin. Chem. Lab. Med. (CCLM) 2006, 44, 288–291. [Google Scholar] [CrossRef]
- Bongers, C.C.; Alsady, M.; Nijenhuis, T.; Tulp, A.D.; Eijsvogels, T.M.; Deen, P.M.; Hopman, M.T. Impact of acute versus prolonged exercise and dehydration on kidney function and injury. Physiol. Rep. 2018, 6, e13734. [Google Scholar] [CrossRef]
- Bongers, C.C.; Alsady, M.; Nijenhuis, T.; Hartman, Y.A.; Eijsvogels, T.M.; Deen, P.M.; Hopman, M.T. Impact of acute versus repetitive moderate intensity endurance exercise on kidney injury markers. Physiol. Rep. 2017, 5, e13544. [Google Scholar] [CrossRef]
- Wołyniec, W.; Kasprowicz, K.; Giebułtowicz, J.; Korytowska, N.; Zorena, K.; Bartoszewicz, M.; Rita-Tkachenko, P.; Renke, M.; Ratkowski, W. Changes in water soluble uremic toxins and urinary acute kidney injury biomarkers after 10-and 100-km runs. Int. J. Environ. Res. Public Health 2019, 16, 4153. [Google Scholar] [CrossRef]
- Mårtensson, J.; Bellomo, R. The Rise and Fall of NGAL in Acute Kidney Injury. Blood Purif. 2014, 37, 304–310. [Google Scholar] [CrossRef]
- Schinstock, C.A.; Semret, M.H.; Wagner, S.J.; Borland, T.M.; Bryant, S.C.; Kashani, K.B.; Larson, T.S.; Lieske, J.C. Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol. Dial. Transplant. 2012, 28, 1175–1185. [Google Scholar] [CrossRef]
- McCullough, P.A.; Chinnaiyan, K.M.; Gallagher, M.J.; Colar, J.M.; Geddes, T.; Gold, J.M.; Trivax, J.E. Changes in renal markers and acute kidney injury after marathon running. Nephrology 2011, 16, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Atkins, W.C.; Butts, C.L.; Kelly, M.R.; Troyanos, C.; Laursen, R.M.; Duckett, A.; Emerson, D.M.; Rosa-Caldwell, M.E.; McDermott, B.P. Acute kidney injury biomarkers and hydration outcomes at the Boston Marathon. Front. Physiol. 2022, 12, 813554. [Google Scholar] [CrossRef]
- Junglee, N.A.; Lemmey, A.B.; Burton, M.; Searell, C.; Jones, D.; Lawley, J.S.; Jibani, M.M.; Macdonald, J.H. Does proteinuria-inducing physical activity increase biomarkers of acute kidney injury? Kidney Blood Press. Res. 2013, 36, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Spada, T.C.; Silva, J.M.; Francisco, L.S.; Marçal, L.J.; Antonangelo, L.; Zanetta, D.M.; Yu, L.; Burdmann, E.A. High intensity resistance training causes muscle damage and increases biomarkers of acute kidney injury in healthy individuals. PLoS ONE 2018, 13, e0205791. [Google Scholar] [CrossRef]
- Jager, J.; Putnick, D.L.; Bornstein, M.H., II. More than just convenient: The scientific merits of homogeneous convenience samples. Monogr. Soc. Res. Child Dev. 2017, 82, 13–30. [Google Scholar] [CrossRef]
- Prado, C.M.M.; Heymsfield, S.B. Lean Tissue Imaging. J. Parenter. Enter. Nutr. 2014, 38, 940–953. [Google Scholar] [CrossRef]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. Hypohydration and Human Performance: Impact of Environment and Physiological Mechanisms. Sports Med. 2015, 45 (Suppl. 1), S51–S60. [Google Scholar] [CrossRef]
- Kiitam, U.; Voitkevica, L.; Timpmann, S.; Pontaga, I.; Ereline, J.; Unt, E.; Ööpik, V. Pre-practice hydration status in soccer (football) players in a cool environment. Medicina 2018, 54, 102. [Google Scholar] [CrossRef]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar]
- Pryor, J.L.; Pryor, R.R.; Grundstein, A.; Casa, D.J. The heat strain of various athletic surfaces: A comparison between observed and modeled wet-bulb globe temperatures. J. Athl. Train. 2017, 52, 1056–1064. [Google Scholar] [CrossRef]
- Gagnon, D.; Jay, O.; Kenny, G.P. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J. Physiol. 2013, 591, 2925–2935. [Google Scholar] [CrossRef] [PubMed]
- National Centers for Environmental Information (NCEI). 2024. Available online: https://www.ncei.noaa.gov/ (accessed on 21 March 2025).
- Korey Stringer Institute. Wet Bulb Globe Temperature Monitoring. Available online: https://ksi.uconn.edu/wet-bulb-globe-temperature-monitoring/ (accessed on 19 April 2024).
- Akyildiz, Z.; Yildiz, M.; Clemente, F.M. The reliability and accuracy of Polar Team Pro GPS units. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2022, 236, 83–89. [Google Scholar] [CrossRef]
- Shookster, D.; Lindsey, B.; Cortes, N.; Martin, J.R. Accuracy of Commonly Used Age-Predicted Maximal Heart Rate Equations. Int. J. Exerc. Sci. 2020, 13, 1242–1250. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Carter, R.; Montain, S.J.; Sawka, M.N. Daily body mass variability and stability in active men undergoing exercise-heat stress. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Wyness, S.P.; Hunsaker, J.J.H.; Snow, T.M.; Genzen, J.R. Evaluation and analytical validation of a handheld digital refractometer for urine specific gravity measurement. Pract. Lab. Med. 2016, 5, 65–74. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Z.; Huang, H.; Li, M.; Bai, Z.; Kuai, Y.; Wei, L.; Liu, N.; Li, X.; Lu, G.; et al. The outcome of acute kidney injury substages based on urinary cystatin C in critically ill children. Ann. Intensive Care 2023, 13, 23. [Google Scholar] [CrossRef]
- Poussel, M.; Touzé, C.; Allado, E.; Frimat, L.; Hily, O.; Thilly, N.; Rousseau, H.; Vauthier, J.C.; Chenuel, B. Ultramarathon and Renal Function: Does Exercise-Induced Acute Kidney Injury Really Exist in Common Conditions? Front. Sports Act. Living 2019, 1, 71. [Google Scholar] [CrossRef] [PubMed]
- Gunasekara, T.; Herath, C.; De Silva, P.M.C.; Jayasundara, N. Exploring the Utility of Urinary Creatinine Adjustment for KIM-1, NGAL, and Cystatin C for the Assessment of Kidney Function: Insights from the C-KidnEES Cohort. Children 2023, 11, 15. [Google Scholar] [CrossRef]
- Colombini, A.; Machado, M.; Lombardi, G.; Lanteri, P.; Banfi, G. Modifications of biochemical parameters related to protein metabolism and renal function in male soccer players after a match. J. Sports Med. Phys. Fit. 2014, 54, 658–664. [Google Scholar]
- Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sports Med. 2003, 33, 889–919. [Google Scholar] [CrossRef] [PubMed]
- Gentles, J.A.; Coniglio, C.L.; Besemer, M.M.; Morgan, J.M.; Mahnken, M.T. The demands of a women’s college soccer season. Sports 2018, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Junior, M.; Veneroso, C.E.; Passos Ramos, G.; Johnson, K.E.; Guilkey, J.P.; Sena, A.; Torres Cabido, C.E.; Cholewa, J.M. Distance and Intensity Profiles in Division I Women’s Soccer Matches across a Competitive Season. Sports 2021, 9, 63. [Google Scholar] [CrossRef]
- Mizelman, E.; Chilibeck, P.D.; Hanifi, A.; Kaviani, M.; Brenna, E.; Zello, G.A. A Low-Glycemic Index, High-Fiber, Pulse-Based Diet Improves Lipid Profile, but Does Not Affect Performance in Soccer Players. Nutrients 2020, 12, 1324. [Google Scholar] [CrossRef]
- Sebastiá-Rico, J.; Soriano, J.M.; Sanchis-Chordà, J.; García-Fernández, Á.F.; López-Mateu, P.; de la Cruz Marcos, S.; Martínez-Sanz, J.M. Analysis of Fluid Balance and Urine Values in Elite Soccer Players: Impact of Different Environments, Playing Positions, Sexes, and Competitive Levels. Nutrients 2024, 16, 903. [Google Scholar] [CrossRef]
- Kamran, F.; Le, V.C.; Frischknecht, A.; Wiens, J.; Sienko, K.H. Noninvasive Estimation of Hydration Status in Athletes Using Wearable Sensors and a Data-Driven Approach Based on Orthostatic Changes. Sensors 2021, 21, 4469. [Google Scholar] [CrossRef]
- Sommerfield, L.M.; McAnulty, S.R.; McBride, J.M.; Zwetsloot, J.J.; Austin, M.D.; Mehlhorn, J.D.; Calhoun, M.C.; Young, J.O.; Haines, T.L.; Utter, A.C. Validity of Urine Specific Gravity When Compared with Plasma Osmolality as a Measure of Hydration Status in Male and Female NCAA Collegiate Athletes. J. Strength Cond. Res. 2016, 30, 2219–2225. [Google Scholar] [CrossRef]
- Arnaoutis, G.; Kavouras, S.A.; Angelopoulou, A.; Skoulariki, C.; Bismpikou, S.; Mourtakos, S.; Sidossis, L.S. Fluid balance during training in elite young athletes of different sports. J. Strength Cond. Res. 2015, 29, 3447. [Google Scholar] [CrossRef]
- Olzinski, S.; Beaumont, J.; Toledo, M.; Yudell, A.; Johnston, C.S.; Wardenaar, F.C. Hydration status and fluid needs of division I female collegiate athletes exercising indoors and outdoors. Sports 2019, 7, 155. [Google Scholar] [CrossRef]
- Verbalis, J.G. Renal function and vasopressin during marathon running. Sports Med. 2007, 37, 455–458. [Google Scholar] [CrossRef]
- Baxmann, A.C.; Ahmed, M.S.; Marques, N.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin. J. Am. Soc. Nephrol. 2008, 3, 348. [Google Scholar] [CrossRef]
- Da Ponte, A.; Giovanelli, N.; Antonutto, G.; Nigris, D.; Curcio, F.; Cortese, P.; Lazzer, S. Changes in cardiac and muscle biomarkers following an uphill-only marathon. Res. Sports Med. 2018, 26, 100–111. [Google Scholar] [CrossRef]
- Turgut, G.; Kaptanoglu, B.; Turgut, S.; Genç, O.; Tekintürk, S. Influence of acute exercise on urinary protein, creatinine, insulin-like growth factor-I (IGF-I) and IGF binding protein-3 concentrations in children. Tohoku J. Exp. Med. 2003, 201, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Brändle, E.; Sieberth, H.G.; Hautmann, R.E. Effect of chronic dietary protein intake on the renal function in healthy subjects. Eur. J. Clin. Nutr. 1996, 50, 734–740. [Google Scholar]
- Randers, E.; Kristensen, H.; Erlandsen, E.; Danielsen, S. Serum cystatin C as a marker of the renal function. Scand. J. Clin. Lab. Investig. 1998, 58, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Nejat, M.; Pickering, J.W.; Walker, R.J.; Westhuyzen, J.; Shaw, G.M.; Frampton, C.M.; Endre, Z.H. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit. Care 2010, 14, R85. [Google Scholar] [CrossRef]
- Uchida, K.; Gotoh, A. Measurement of cystatin-C and creatinine in urine. Clin. Chim. Acta 2002, 323, 121–128. [Google Scholar] [CrossRef]
- Kanda, K.; Sugama, K.; Sakuma, J.; Kawakami, Y.; Suzuki, K. Evaluation of serum leaking enzymes and investigation into new biomarkers for exercise-induced muscle damage. Exerc. Immunol. Rev. 2014, 20, 39–54. [Google Scholar]
- Wołyniec, W.; Ratkowski, W.; Urbański, R.; Bartoszewicz, M.; Siluk, D.; Wołyniec, Z.; Kasprowicz, K.; Zorena, K.; Renke, M. Urinary kidney injury molecule-1 but not urinary neutrophil gelatinase associated lipocalin is increased after short maximal exercise. Nephron 2018, 138, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.C.Q.; Volpe, C.M.; Vasconcellos, L.S.; Nogueira-Machado, J.A. Quantification of NGAL in urine of endurance cycling athletes. J. Phys. Act. Health 2018, 15, 679–682. [Google Scholar] [CrossRef] [PubMed]
Condition | USG Value |
---|---|
Well hydrated | <1.010 |
Minimal dehydration | <1.010–1.020 |
Significant dehydration | 1.021–1.030 |
Serious dehydration | >1.030 |
Day | Preseason Practice Name | Time of Day (h) |
---|---|---|
D0 | Pre-Preseason (Baseline) | 04:30–07:00 |
D1 | Fitness Testing Day #1 | 06:00–10:00 and 18:00–21:00 |
D2 | Fitness Testing Day #2 | 06:00–10:00 and 18:00–21:00 |
D3 | Regular Practice Day #1 | 06:00–10:00 and 18:00–21:00 |
D4 | Regular Practice Day #2 | 06:00–10:00 and 18:00–21:00 |
D5 | Exhibition Game #1 | 17:00–19:00 |
D6 | Scheduled Rest Day #1 | 05:00–07:00 * |
D7 | Regular Practice Day #3 | 06:00–10:00 and 18:00–21:00 |
D8 | Midweek #1—Regular Practice Day | 06:00–10:00 and 18:00–21:00 |
D9 | Regular Practice Day #4 | 06:00–10:00 and 18:00–21:00 |
D10 | Exhibition Game #2 | 19:00–21:00 |
D11 | Scheduled Rest Day #2 | 05:00–07:00 * |
D12 | Midweek #2—Regular Practice Day | 18:00–21:00 |
D13 | Regular Practice Day #5 | 18:00–21:00 |
D14 | Post–Preseason (End) | 04:30–07:00 |
Athletes (Baseline) | Normal Reference | Mean ± SD | 95% CI | n |
---|---|---|---|---|
Age (y) | 19.3 ± 1.17 | 18.85–19.91 | 21 | |
Height (cm) | 169.6 ± 6.24 | 166.8–172.5 | 21 | |
Body Mass (kg) | 68.4 ± 11.28 | 54.09–99.5 | 21 | |
Lean Body Mass (kg) | 45.9 ± 5.18 | 36.41–56.01 | 21 | |
Fat Mass (kg) | 22.5 ± 7.75 | 13.91–43.58 | 21 | |
Body Fat (%) | 32.2 ± 6.05 | 24.2–44.2 | 21 | |
uCyst-C (mg·L−1) | 0.06–0.16 ♀/♂ | 0.041 ± 0.019 | 0.024–0.058 | 8 |
uNGAL (ng·mL−1) | ≤65.0 ♀ | 17.65 ± 17.03 | 1.89–33.40 | 7 |
uCr (mg·dL−1) | ~20–400 ♀/♂ | 182.3 ± 63.84 | 141.8–222.9 | 12 |
Urine Specific Gravity (USG) | 1.020 ± 0.008 | 1.016–1.024 | 21 | |
Athlete Workload (Average) | Mean ± SD | 95% CI | n | |
Practice Session Time (min) | 97.38 ± 69.68 | 62.73–132.0 | 18 | |
Total Distance (m) | 3832 ± 2344 | 2666–4997 | 18 | |
Velocity (m·min−1) | 44.4 ± 18.81 | 35.05–53.76 | 18 | |
APHRAvg (%) | 65.02 ± 8.28 | 65.57–70.43 | 18 | |
APHRMax (%) | 97.30 ± 5.08 | 94.77–99.82 | 18 | |
Environment (Average) | Mean ± SD | Min–Max | n | |
Ambient Temperature (°C) | 30.82 ± 2.03 | 29.87–31.77 | 20 | |
Relative Humidity (%RH) | 71.69 ± 8.16 | 67.87–75.51 | 20 | |
Wet-Bulb Globe Temperature (WBGT) (°C) | 27.43 ± 0.82 | 27.01–27.84 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newmire, D.E.; Filep, E.M.; Wainwright, J.B.; Webb, H.E.; Willoughby, D.S. Hydration Status and Acute Kidney Injury Biomarkers in NCAA Female Soccer Athletes During Preseason Conditioning. Nutrients 2025, 17, 2185. https://doi.org/10.3390/nu17132185
Newmire DE, Filep EM, Wainwright JB, Webb HE, Willoughby DS. Hydration Status and Acute Kidney Injury Biomarkers in NCAA Female Soccer Athletes During Preseason Conditioning. Nutrients. 2025; 17(13):2185. https://doi.org/10.3390/nu17132185
Chicago/Turabian StyleNewmire, Daniel E., Erica M. Filep, Jordan B. Wainwright, Heather E. Webb, and Darryn S. Willoughby. 2025. "Hydration Status and Acute Kidney Injury Biomarkers in NCAA Female Soccer Athletes During Preseason Conditioning" Nutrients 17, no. 13: 2185. https://doi.org/10.3390/nu17132185
APA StyleNewmire, D. E., Filep, E. M., Wainwright, J. B., Webb, H. E., & Willoughby, D. S. (2025). Hydration Status and Acute Kidney Injury Biomarkers in NCAA Female Soccer Athletes During Preseason Conditioning. Nutrients, 17(13), 2185. https://doi.org/10.3390/nu17132185