Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (546)

Search Parameters:
Keywords = health-beneficial fat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 294 KiB  
Review
Coffee’s Impact on Health and Well-Being
by Ryan C. Emadi and Farin Kamangar
Nutrients 2025, 17(15), 2558; https://doi.org/10.3390/nu17152558 - 5 Aug 2025
Abstract
Coffee is one of the most widely consumed beverages globally, with over 60% of Americans drinking it daily. This review examines coffee’s multifaceted impact on health and well-being, drawing on decades of research. Overall, the consensus is that moderate coffee intake is more [...] Read more.
Coffee is one of the most widely consumed beverages globally, with over 60% of Americans drinking it daily. This review examines coffee’s multifaceted impact on health and well-being, drawing on decades of research. Overall, the consensus is that moderate coffee intake is more beneficial than harmful across a wide range of health outcomes. Numerous large-scale, prospective cohort studies from around the world have consistently shown that moderate coffee consumption—typically three to five cups per day—is associated with reduced overall mortality and lower risk of major diseases such as cardiovascular diseases, diabetes, stroke, respiratory conditions, cognitive decline, and potentially several types of cancer, including liver and uterine cancers. Both caffeinated and decaffeinated coffee have shown benefits. The addition of sugar and cream to coffee may attenuate coffee’s positive health effects. Despite historical concerns, coffee consumption is not linked to increased risks of cancer, hypertension, or arrhythmia. However, some concerns remain. For pregnant women, coffee consumption should be limited to lower amounts, such that the daily intake of caffeine does not exceed 200 mg/day. Also, excessive caffeinated coffee intake may cause anxiety or sleep disturbances. Coffee’s health-promoting mechanisms include improved glucose balancing, increased physical activity, increased fat oxidation, improved lung function, and reduced inflammation. Beyond mortality and chronic diseases, coffee consumption affects many aspects of well-being: it supports hydration, boosts mental acuity, enhances physical performance, and may aid bowel recovery after surgery. While the field is well-studied via long-term observational cohorts, future research should focus on randomized controlled trials, Mendelian randomization studies, and granular analyses of coffee types and additives. Full article
(This article belongs to the Section Nutritional Epidemiology)
18 pages, 2629 KiB  
Article
Dietary Interventions with Bletilla striata Polysaccharides and/or Composite Polysaccharides Remodel Liver Lipid Profiles and Ameliorate Gut Metabolic Disturbances in High-Fat Diet-Induced Obese Mice
by Peiting Zhang, Jinjin Dong, Jiamin Lu, Zijian Cai, Bingde Zhou, Qian Zhang, Chenglin Zhu and Luca Laghi
Foods 2025, 14(15), 2653; https://doi.org/10.3390/foods14152653 - 29 Jul 2025
Viewed by 200
Abstract
The global obesity epidemic and associated metabolic disorders present urgent public health challenges. This study employed a multi-omics approach (lipidomics, metabolomics, and gut microbiome analysis) to investigate how Bletilla striata polysaccharides (BSPs) and composite polysaccharides modulate liver lipid metabolism and gut microbiota in [...] Read more.
The global obesity epidemic and associated metabolic disorders present urgent public health challenges. This study employed a multi-omics approach (lipidomics, metabolomics, and gut microbiome analysis) to investigate how Bletilla striata polysaccharides (BSPs) and composite polysaccharides modulate liver lipid metabolism and gut microbiota in high-fat diet (HFD)-induced obese mice. HFD elevated hepatic phosphatidylcholines, cholesteryl esters (CEs), and acylcarnitines (CARs), alongside increased cecal choline and trimethylamine. BSP interventions reduced hepatic CEs, free fatty acids (FAs), CARs, and cecal sarcosine while restoring gut microbial diversity. Notably, BSP enriched beneficial genera, including Jeotgalicoccus and Atopostipes, and the network analysis revealed negative correlations between these genera and hepatic triglycerides (TGs), implicating the gut–liver axis in lipid metabolism regulation. These findings elucidate the anti-obesity mechanisms of polysaccharides through gut microbiota remodeling and cross-tissue metabolic interactions, providing a foundation for leveraging plant polysaccharides in developing safer, effective obesity therapies. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

24 pages, 1886 KiB  
Review
Potential Health Benefits of Dietary Tree Nut and Peanut Enrichment in Kidney Transplant Recipients—An In-Depth Narrative Review and Considerations for Future Research
by Daan Kremer, Fabian A. Vogelpohl, Yvonne van der Veen, Caecilia S. E. Doorenbos, Manuela Yepes-Calderón, Tim J. Knobbe, Adrian Post, Eva Corpeleijn, Gerjan Navis, Stefan P. Berger and Stephan J. L. Bakker
Nutrients 2025, 17(15), 2419; https://doi.org/10.3390/nu17152419 - 24 Jul 2025
Viewed by 433
Abstract
Kidney transplant recipients face a substantial burden of premature mortality and morbidity, primarily due to persistent inflammation, cardiovascular risk, and nutritional deficiencies. Traditional nutritional interventions in this population have either focused on supplementing individual nutrients—often with limited efficacy—or required comprehensive dietary overhauls that [...] Read more.
Kidney transplant recipients face a substantial burden of premature mortality and morbidity, primarily due to persistent inflammation, cardiovascular risk, and nutritional deficiencies. Traditional nutritional interventions in this population have either focused on supplementing individual nutrients—often with limited efficacy—or required comprehensive dietary overhauls that compromise patient adherence. In this narrative review, we explore the rationale for dietary nut enrichment as a feasible, multi-nutrient strategy tailored to the needs of kidney transplant recipients. Nuts, including peanuts and tree nuts with no added salt, sugar, or oil, are rich in beneficial fats, proteins, vitamins, minerals, and bioactive compounds. We summarize the multiple post-transplant challenges—including obesity, sarcopenia, dyslipidemia, hypertension, immunological dysfunction, and chronic inflammation—and discuss how nut consumption may mitigate these issues through mechanisms involving improved micro-nutrient intake (e.g., magnesium, potassium, selenium), lipid profile modulation, endothelial function, immune support, and gut microbiota health. Additionally, we highlight the scarcity of randomized controlled trials in high-risk populations such as kidney transplant recipients and make the case for studying this group as a model for investigating the clinical efficacy of nuts as a nutritional intervention. We also consider practical aspects for future clinical trials, including the choice of study population, intervention design, duration, nut type, dosage, and primary outcome measures such as systemic inflammation. Finally, potential risks such as nut allergies and oxalate or mycotoxin exposure are addressed. Altogether, this review proposes dietary nut enrichment as a promising, simple, and sustainable multi-nutrient approach to support cardiometabolic and immune health in kidney transplant recipients, warranting formal investigation in clinical trials. Full article
Show Figures

Figure 1

10 pages, 214 KiB  
Article
Relationship of Physical Activity Levels and Body Composition with Psychomotor Performance and Strength in Men
by José Manuel Delfa-de-la-Morena, Pedro Pinheiro Paes, Frederico Camarotti Júnior, Rubem Cordeiro Feitosa, Débora Priscila Lima de Oliveira, Juan-José Mijarra-Murillo, Miriam García-González and Víctor Riquelme-Aguado
Healthcare 2025, 13(15), 1789; https://doi.org/10.3390/healthcare13151789 - 23 Jul 2025
Viewed by 273
Abstract
Objective: The objective of the study was to investigate the relationship between the level of physical activity and body composition, and the levels of motor skills and strength in overweight and obese men. Methods: The research involved 64 men. Body composition, [...] Read more.
Objective: The objective of the study was to investigate the relationship between the level of physical activity and body composition, and the levels of motor skills and strength in overweight and obese men. Methods: The research involved 64 men. Body composition, physical activity, motor control, Motor Control Test (MCT), and strength variables were evaluated. Body composition was assessed by DXA, and the participants were classified into two groups according to the percentage of total fat mass: greater and less than 27.65%. Physical activity was assessed using accelerometry, and motor control was measured with posturography, which provided a composite score of motor performance and postural control effectiveness. Strength was assessed using hand, leg, and back dynamometers. Results: The participants with a higher percentage of body fat had a lower DSI (Dynamic Strength Index) (p < 0.001) and significantly reduced PAL (physical activity level) and energy expenditure (p < 0.001). No significant differences were found in the muscle strength of the upper limbs (p = 0.06) and lower limbs (p = 0.419). With regard to MCT, there was a significant difference between groups in the backward direction (p = 0.041), with the group with the highest percentage of body fat showing lower values. Conclusions: Individuals with a higher percentage of body fat tend to have lower levels of strength, physical activity, and energy expenditure, which can lead to impaired balance. The findings highlight the need for targeted interventions to improve body composition and levels of strength and physical activity, with a positive impact on general health and quality of life. Emphasis should be placed on improving physical activity levels in male individuals with a higher percentage of fat mass to improve their body composition and dynamic strength levels, which are beneficial to life, particularly to help improve postural control. Full article
21 pages, 3692 KiB  
Article
Anti-Obesity Effects of Rosa rugosa Thunb. Flower Bud Extracts on Lipid Metabolism Regulation in 3T3-L1 Adipocytes and Sprague Dawley Rats
by Jung Min Kim, Kyoung Kon Kim, Hye Rim Lee, Jae Cheon Im and Tae Woo Kim
Int. J. Mol. Sci. 2025, 26(14), 6963; https://doi.org/10.3390/ijms26146963 - 20 Jul 2025
Viewed by 278
Abstract
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., [...] Read more.
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., dietary modifications and weight gain-suppressing functional foods. In this context, plant-derived metabolites are extensively investigated for their beneficial anti-obesity effects. In this study, we evaluated how Rosa rugosa Thunb. flower bud extract affects fat metabolism in 3T3-L1 preadipocyte cells. The extract significantly inhibited adipocyte differentiation and intracellular triglyceride accumulation in 3T3-L1 cells, enhanced lipolysis, suppressed lipogenesis, and promoted energy metabolism in differentiated adipocytes. In vivo, it reduced body and organ weights and fat mass in high-fat diet-induced obese rats, along with marked adipocyte size and hepatic lipid accumulation reductions. In the epididymal adipose tissue, the extract similarly enhanced lipolytic activity, suppressed lipogenic enzyme expression, and stimulated energy expenditure. Taken together, our results demonstrate the potential of R. rugosa Thunb. flower bud extract in reducing fat accumulation through lipid metabolism modulation both in cellular and animal models. Further studies are warranted to identify the active constituents and evaluate the safety and efficacy of the extract in clinical applications. Full article
(This article belongs to the Special Issue High Fat Diet Metabolism and Diseases)
Show Figures

Figure 1

17 pages, 1694 KiB  
Article
Gut Microbiota Shifts After a Weight Loss Program in Adults with Obesity: The WLM3P Study
by Vanessa Pereira, Amanda Cuevas-Sierra, Victor de la O, Rita Salvado, Inês Barreiros-Mota, Inês Castela, Alexandra Camelo, Inês Brandão, Christophe Espírito Santo, Ana Faria, Conceição Calhau, Marta P. Silvestre and André Moreira-Rosário
Nutrients 2025, 17(14), 2360; https://doi.org/10.3390/nu17142360 - 18 Jul 2025
Viewed by 552
Abstract
Background: The gut microbiota is increasingly recognized as a key modulator in obesity management, influencing host energy balance, lipid metabolism, and inflammatory pathways. With obesity prevalence continuing to rise globally, dietary interventions that promote beneficial microbial shifts are essential for enhancing weight loss [...] Read more.
Background: The gut microbiota is increasingly recognized as a key modulator in obesity management, influencing host energy balance, lipid metabolism, and inflammatory pathways. With obesity prevalence continuing to rise globally, dietary interventions that promote beneficial microbial shifts are essential for enhancing weight loss outcomes and long-term health. Objective: This study investigated the effects of the multicomponent Weight Loss Maintenance 3 Phases Program (WLM3P), which integrates caloric restriction, a high-protein low-carbohydrate diet, time-restricted eating (10h TRE), dietary supplementation (prebiotics and phytochemicals), and digital app-based support on gut microbiota composition compared to a standard low-carbohydrate diet (LCD) in adults with obesity. The analysis focused exclusively on the 6-month weight loss period corresponding to Phases 1 and 2 of the WLM3P intervention. Methods: In this sub-analysis of a randomized controlled trial (ClinicalTrials.gov Identifier: NCT04192357), 58 adults with obesity (BMI 30.0–39.9 kg/m2) were randomized to the WLM3P (n = 29) or LCD (n = 29) groups. Stool samples were collected at baseline and 6 months for 16S rRNA sequencing. Alpha and beta diversity were assessed, and genus-level differential abundance was determined using EdgeR and LEfSe. Associations between microbial taxa and clinical outcomes were evaluated using regression models. Results: After 6-month, the WLM3P group showed a significant increase in alpha diversity (p = 0.03) and a significant change in beta diversity (p < 0.01), while no significant changes were observed in the LCD group. Differential abundance analysis revealed specific microbial signatures in WLM3P participants, including increased levels of Faecalibacterium. Notably, higher Faecalibacterium abundance was associated with greater reductions in fat mass (kg, %) and visceral adiposity (cm2) in the WLM3P group compared to LCD (p < 0.01). Conclusions: These findings suggest a potential microbiota-mediated mechanism in weight loss, where Faecalibacterium may enhance fat reduction effectiveness in the context of the WLM3P intervention. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

23 pages, 3832 KiB  
Article
Novel Probiotic Strain Lactiplantibacillus plantarum CNTA 628 Modulates Lipid Metabolism and Improves Healthspan in C. elegans
by Ignacio Goyache, Lorena Valdés-Varela, Raquel Virto, Miguel López-Yoldi, Noelia López-Giral, Ana Sánchez-Vicente, Fermín I. Milagro and Paula Aranaz
Appl. Sci. 2025, 15(14), 8007; https://doi.org/10.3390/app15148007 - 18 Jul 2025
Viewed by 308
Abstract
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, [...] Read more.
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, and investigate its potential anti-obesity and health-promoting activities in the Caenorhabditis elegans model, additionally elucidating the molecular mechanisms involved. Lactiplantibacillus plantarum CNTA 628 exhibited sensitivity to the entire spectrum of antibiotics analyzed, gastric and intestinal resistance in vitro, β-galactosidase and bile-salt hydrolysate activities, and the capacity to form biofilms and produce SCFAs. In addition, it reduced the binding of the pathogenic E. coli O157:H7 to intestinal epithelial cells (Caco-2) and exerted immune-modulating effects in cellular models. Supplementation with this probiotic significantly reduced C. elegans fat accumulation by more than 18% under control and high-glucose conditions, lowered senescence, improved oxidative stress, and significantly enhanced lifespan without affecting the development of the worms. Gene expression analyses evidenced that L. plantarum CNTA 628 plays a role in regulating daf-22 and maoc-1 gene expression, both linked to beta-oxidation pathways. Our results demonstrate the health-benefiting properties of this novel strain and suggest its potential as probiotic candidate for the prevention and treatment of metabolic syndrome-related conditions. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, Postbiotics: From Mechanisms to Applications)
Show Figures

Figure 1

19 pages, 1703 KiB  
Article
Designing and Developing a Population/Literature-Based Westernized Diet Index (WDI) and Its Relevance for Cardiometabolic Health
by Miguel Cifuentes, Zahra Hejazi, Farhad Vahid and Torsten Bohn
Nutrients 2025, 17(14), 2314; https://doi.org/10.3390/nu17142314 - 14 Jul 2025
Viewed by 514
Abstract
Background/Objectives: Recent research indicates a global transition from healthy and balanced diets to unhealthy Westernized dietary patterns (WDPs). This transition is linked to increased rates of non-communicable diseases (NCDs), e.g., obesity, type 2 diabetes, and cardiovascular diseases, often preceded by metabolic syndrome [...] Read more.
Background/Objectives: Recent research indicates a global transition from healthy and balanced diets to unhealthy Westernized dietary patterns (WDPs). This transition is linked to increased rates of non-communicable diseases (NCDs), e.g., obesity, type 2 diabetes, and cardiovascular diseases, often preceded by metabolic syndrome (MetS). Therefore, the objective of this study was to develop a diet quality index, termed Westernized Diet Index (WDI), to assess adherence to WDPs and its association with main cardiometabolic health issues, for which MetS and its components were chosen as representatives of NCDs. Methods: The development of the WDI was driven by a semi-systematic and comprehensive examination of the literature (n = 491 articles) that evaluated the influence of WDP components on health outcomes. The scoring algorithm involved multiple steps, assigning scores based on study design, sample size, and the direction of food effects on health outcomes. Results: The final developed index encompassed 30 food groups/items. It was revealed that soft drinks, processed foods, red meat, sodium, and hydrogenated fats had the most detrimental effects on health, significantly influencing the index’s coefficients. In contrast, dietary fiber, plant-based metabolites, vitamins, minerals, nuts/seeds, and fish had the most substantial beneficial impacts. Conclusions: The WDI aligns with the existing literature on the importance of specific food items and with other validated diet quality indices, e.g., the Dietary Inflammatory Index (DII) and Alternate Healthy Eating Index (AHEI). Thus, the WDI can provide evidence for clinicians and researchers in formulating evidence-based dietary guidelines as well as strategies for the prevention and treatment of diet-related health issues. However, further validation is proposed to verify the WDI’s capability across different contexts. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

27 pages, 3492 KiB  
Article
Amelioration of Metabolic Syndrome by Co-Administration of Lactobacillus johnsonii CRL1231 and Wheat Bran in Mice via Gut Microbiota and Metabolites Modulation
by Matias Russo, Antonela Marquez, Estefanía Andrada, Sebastián Torres, Arlette Santacruz, Roxana Medina and Paola Gauffin-Cano
Metabolites 2025, 15(7), 466; https://doi.org/10.3390/metabo15070466 - 9 Jul 2025
Viewed by 394
Abstract
Background/Objectives: Lactobacillus johnsonii CRL1231 (Lj CRL1231) is a strain with feruloyl esterase (FE) activity that enhances ferulic acid (FA) release from wheat bran (WB) and has potential as a probiotic for metabolic syndrome (MS). Given the potential health benefits of FA and [...] Read more.
Background/Objectives: Lactobacillus johnsonii CRL1231 (Lj CRL1231) is a strain with feruloyl esterase (FE) activity that enhances ferulic acid (FA) release from wheat bran (WB) and has potential as a probiotic for metabolic syndrome (MS). Given the potential health benefits of FA and its microbial metabolites, this study aimed to evaluate the therapeutic effect of Lj CRL1231 co-administered with WB in a mouse model of metabolic syndrome (MS) induced by a high-fat diet (HFD). Methods: Mice were divided into three groups and fed for 14 weeks as follows: the Control group (standard diet), the MS group (HFD+WB), and the MS+Lj group (HFD+WB and Lj CRL1231-dose 108 cells/day). Specifically, we analyzed the changes in the intestinal microbiota (IM), colonic FE activity, generation of FA-derived and fermentation metabolites, and metabolic and inflammatory parameters. Results: Improvements in the MS+Lj group compared to the MS group included the following: a—a 38% increase in colonic FE activity, leading to elevated levels of FA-derived metabolites (e.g., dihydroferulic, dihydroxyphenylpropionic, and hydroxyphenylpropionic acids); b—a significant shift in the IM composition, with a 3.4-fold decrease in Firmicutes and a 2.9-fold increase in Bacteroidetes; c—a decrease in harmful bacteria (Desulfovibrio) by 93%, and beneficial bacteria like Bifidobacterium increased significantly (6.58 log cells/g); d—a 33% increase in total SCFAs; e—a 26% reduction in the adiposity index; f—a 12% increase in HDL cholesterol and a 19% reduction in triglycerides; g—normalized glucose and insulin resulting in a 2-fold lower HOMA-IR index; h—an improved inflammatory profile by decreasing TNF-α, IFN-γ, and IL-6 (3-, 5-, and 2-fold, respectively) and increasing IL-10 by 2-fold; i—alleviation of liver damage by normalizing of transaminases AST (19.70 ± 2.97 U/L) and ALT (13.12 ± 0.88 U/L); j—evidence of reduced oxidative damage. Conclusions: The co-administration of L. johnsonii CRL1231 and WB exerts a synergistic effect in mitigating the features of MS in HFD-fed mice. This effect is mediated by modulation of the gut microbiota, increased release of bioactive FA-derived compounds, and restoration of metabolic and inflammatory homeostasis. This strategy represents a promising dietary approach for MS management through targeted microbiota–metabolite interactions. Full article
Show Figures

Graphical abstract

17 pages, 2953 KiB  
Article
Effects of Aronia melanocarpa-Based Fruit Juices on Metabolic Dysfunction-Associated Fatty Liver Disease in Rats
by Antoaneta Georgieva, Miroslav Eftimov, Nadezhda Stefanova, Maria Tzaneva, Petko Denev and Stefka Valcheva-Kuzmanova
Gastroenterol. Insights 2025, 16(3), 23; https://doi.org/10.3390/gastroent16030023 - 8 Jul 2025
Viewed by 423
Abstract
Background/Objective: Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined by the presence of hepatic steatosis, and is associated with obesity, diabetes, and other metabolic alterations. Feeding rats with a high-fat high-fructose (HFHF) diet is a reproducible experimental model of obesity/metabolic syndrome and [...] Read more.
Background/Objective: Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined by the presence of hepatic steatosis, and is associated with obesity, diabetes, and other metabolic alterations. Feeding rats with a high-fat high-fructose (HFHF) diet is a reproducible experimental model of obesity/metabolic syndrome and the related MAFLD. Aronia melanocarpa, Rosa canina, and Alchemilla vulgaris are polyphenol-rich plants with proven health benefits. The aim of this study was to reveal the effects of four Aronia melanocarpa-based fruit juices (AMBFJs) in HFHF-fed rats. Methods: The AMBFJs were AM20 and AM60 (produced from aronia berries at 20 °C and 60 °C, respectively), AMRC (aronia juice with Rosa canina), and AMAV (aronia juice with Alchemilla vulgaris). Male Wistar rats were allocated to 6 groups. Except for the Control, the rest of the groups were fed an HFHF diet for 60 days. Throughout the experiment, each of the AMBFJs was administered to one HFHF-fed group. Results: HFHF-fed rats had an increased calorie intake on the background of increased liquid and decreased food consumption. At the end of the experiment, they had similar body weights, slightly increased fat indices, increased levels of blood lipids and liver enzymes, as well as typical histopathological changes in liver and adipose tissue. AMBFJs-treated animals showed improvement in most of these parameters, especially in triglyceride levels, liver enzymes, and the histopathological changes in the liver and fat. AMAV, the juice with the highest polyphenolic content, had the highest effect on adiposity. Conclusion: In HFHF-fed rats, AMBFJs exerted beneficial effects on MAFLD probably due to their polyphenolic ingredients. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Graphical abstract

22 pages, 2773 KiB  
Article
Modulation of Gut Microbiota and Antibiotic Resistance Genes by Heat-Killed Enterococcus faecalis EF-2001 in High-Fat Diet-Induced Obesity Mice: A Shotgun Metagenomics Study
by Ranjith Kumar Manoharan, Kwon-Il Han, Hyun-Dong Shin, Yura Lee, Sunhwa Baek, Eunjung Moon, Youn Bum Park, Junhui Cho and Sathiyaraj Srinivasan
Bioengineering 2025, 12(7), 741; https://doi.org/10.3390/bioengineering12070741 - 7 Jul 2025
Viewed by 433
Abstract
The gut microbiome is vital in maintaining metabolic health, and dietary habits can significantly impact its composition. A high-fat diet (HFD) can disrupt gut microbial balance, contributing to obesity, insulin resistance, and fatty liver disease. This study explores the potential benefits of heat-killed [...] Read more.
The gut microbiome is vital in maintaining metabolic health, and dietary habits can significantly impact its composition. A high-fat diet (HFD) can disrupt gut microbial balance, contributing to obesity, insulin resistance, and fatty liver disease. This study explores the potential benefits of heat-killed Enterococcus faecalis EF-2001 (EF-2001) in restoring gut balance and improving metabolic health in HFD-fed mice (HFD-mice). HFD mice administered EF-2001 had 18% less body fat, 22% lower triglyceride levels, and significantly reduced liver enzyme markers, including aspartate aminotransferase (AST) by 28% and alanine aminotransferase (ALT) by 31%. Additionally, EF-2001 improved glucose metabolism, increasing glucose tolerance by 20% and insulin sensitivity by 15%, while reducing fat buildup in the liver by 24%, indicating protection against fatty liver disease. These changes correlated with better metabolic health and reduced inflammation. Our results show that EF-2001 supplementation helped counteract HFD-induced gut imbalances by increasing microbial diversity and supporting beneficial bacteria, such as Akkermansia and Ligilactobacillus spp. Our findings highlight the potential of heat-killed EF-2001 as a promising strategy to restore gut balance and mitigate diet-related metabolic issues. Furthermore, analysis of antibiotic resistance genes (ARGs) revealed that HFD mice exhibited an increased abundance of multidrug resistance genes, particularly those associated with antibiotic efflux mechanisms, such as bcrA, cdeA, and msbA. Notably, EF-2001 supplementation mitigated this increase, reducing the relative abundance of the above ARGs and suggesting a protective role in limiting the spread of antibiotic resistance linked to dysbiosis. EF-2001 offers a compelling approach to managing obesity and metabolic disorders, paving the way for microbiome-based health interventions. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

18 pages, 6772 KiB  
Article
Integrated Multi-Omics Analysis Reveals the Regulatory Mechanism of Peanut Skin Procyanidins on Lipid Metabolism in High-Fat-Diet-Induced Obese Mice
by Jinxin Shen, Yi Zhou, Daijun Yang, Ruonan Liu, Xiaoling Zhu and Rui Liu
Nutrients 2025, 17(13), 2228; https://doi.org/10.3390/nu17132228 - 5 Jul 2025
Viewed by 563
Abstract
Background: Obesity-associated metabolic disorders represent a critical global health challenge, which necessitates innovative strategies targeting lipid metabolism. Peanut skin procyanidins (PSPs), abundant bioactive compounds derived from agricultural by-products, show potential in lipid regulation, but molecular mechanisms remain unclear. Methods: This study [...] Read more.
Background: Obesity-associated metabolic disorders represent a critical global health challenge, which necessitates innovative strategies targeting lipid metabolism. Peanut skin procyanidins (PSPs), abundant bioactive compounds derived from agricultural by-products, show potential in lipid regulation, but molecular mechanisms remain unclear. Methods: This study integrated hepatic metabolomics, network pharmacology, and gut microbiota analysis to systematically decipher the mechanisms for PSP to ameliorate high-fat diet (HFD)-induced lipid metabolism disorders. Results: PSP intervention significantly attenuated HFD-induced increases in LDL-C, TG, and TC levels and effectively mitigated hepatic lipid accumulation. Metabolomics revealed that PSP reshaped hepatic lipid dynamics by modulating glycerophospholipid, linoleic acid, arachidonic acid, tryptophan, and nitrogen metabolism. Subsequent network pharmacology identified PLA2G10, PLA2G5, PLA2G2A, and CYP1B1 as the core targets, and PSP could markedly suppress their HFD-induced overexpression. Furthermore, PSP selectively reshaped the gut microbiota, enriching beneficial genera such as Akkermansia and Bacteroides while reducing the abundance of harmful bacteria within Firmicutes. PICRUSt-based functional prediction indicated that PSP alters gut microbial glutamine synthetase activity. Conclusions: Mechanistically, PSP regulates lipid metabolism by downregulating PLA2G10, PLA2G5, PLA2G2A, and CYP1B1 expression, remodeling gut microbiota structure, and increasing hepatic glutamine level. These findings provide novel insights into value-added utilization of agricultural byproducts and development of targeted intervention strategies for metabolic diseases. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

24 pages, 1637 KiB  
Review
Entomophagy: Nutritional Value, Benefits, Regulation and Food Safety
by Noélia A. Pinheiro, Liliana J. G. Silva, Angelina Pena and André M. P. T. Pereira
Foods 2025, 14(13), 2380; https://doi.org/10.3390/foods14132380 - 4 Jul 2025
Viewed by 373
Abstract
The consumption of insects as food is an ancient practice that remains widespread in many regions of Asia, Africa, Latin America, and Oceania. However, this tradition has largely disappeared in Western countries, where it is often met with aversion. Nutritionally, insects can contain [...] Read more.
The consumption of insects as food is an ancient practice that remains widespread in many regions of Asia, Africa, Latin America, and Oceania. However, this tradition has largely disappeared in Western countries, where it is often met with aversion. Nutritionally, insects can contain up to 60–70% protein (dry weight), along with beneficial fats, minerals, and vitamins, making them comparable to commonly consumed protein sources. Additionally, they contain bioactive compounds that offer health benefits and can contribute to reducing social inequalities in food access. As a sustainable protein source, insects have the potential to meet the demands of a projected global population of 9.7 billion by 2050. From a regulatory perspective, legislation on edible insects is still emerging in many parts of the world, with significant regional differences in the approval process, safety requirements, and permitted species. However, ensuring their safety—particularly in terms of production, preservation, storage, and potential health risks—is crucial. By addressing these concerns, it may be possible to shift the prevailing negative perception in Western societies and enhance consumer acceptance. Thus, we performed a literature review encompassing several issues regarding entomophagy, like insects’ nutritional composition, legislation, benefits, and food safety, and also addressing future perspectives. Full article
Show Figures

Figure 1

17 pages, 4949 KiB  
Article
Apple Juice Fermented with Lactiplantibacillus plantarum Improves Its Flavor Profile and Probiotic Potential
by Boqian Zhou, Zhuobin Xing, Yiting Wang, Xin Guan, Fuyi Wang, Jiaqi Yin, Zhibo Li, Qiancheng Zhao, Hongman Hou and Xue Sang
Foods 2025, 14(13), 2373; https://doi.org/10.3390/foods14132373 - 4 Jul 2025
Viewed by 469
Abstract
Fermented apple juice (FAJ), a nutrient-dense beverage rich in vitamins, offers multiple health benefits, including improved digestion, enhanced fat metabolism, and sustained energy provision with reduced caloric intake. To advance the development of probiotic-enriched flavored and functional juices, this study establishes Lactiplantibacillus plantarum [...] Read more.
Fermented apple juice (FAJ), a nutrient-dense beverage rich in vitamins, offers multiple health benefits, including improved digestion, enhanced fat metabolism, and sustained energy provision with reduced caloric intake. To advance the development of probiotic-enriched flavored and functional juices, this study establishes Lactiplantibacillus plantarum (L. plantarum) as a safe and effective starter culture for apple juice fermentation. The selected strain exhibited minimal biogenic amine synthesis, producing only 30.55 ± 1.2 mg/L of putrescine and 0.59 ± 0.55 mg/L of cadaverine, while histamine and tyramine were undetectable. Furthermore, the strain demonstrated no hemolytic activity and exhibited robust biofilm-forming capacity, reinforcing its suitability for fermentation applications. An electronic nose analysis revealed that L. plantarum significantly enriched the volatile compound profile of FAJ, leading to an improved flavor profile. The strain also displayed excellent growth adaptability in the apple juice matrix, further optimizing fermentation efficiency and sensory quality. Crucially, 16S rRNA sequencing demonstrated that FAJ specifically restructures the gut microbiota in obese individuals, significantly elevating the relative abundance of beneficial genera, including Enterococcus, Parabacteroides, and Bifidobacterium (p < 0.05). Concurrently, FAJ enhanced glycolytic activity, suggesting a potential role in metabolic regulation. Collectively, these findings confirm that L. plantarum-fermented FAJ combines favorable sensory properties and safety with promising anti-obesity effects mediated through gut microbiome modulation and metabolic pathway activation. This study provides a critical scientific foundation for designing next-generation functional fermented beverages with targeted health benefits. Full article
Show Figures

Figure 1

24 pages, 1882 KiB  
Review
Plant-Based Fermented Foods: Classification, Biochemical Transformations, and Health Benefits
by Beini Peng, Penghui Nie and Hengyi Xu
Fermentation 2025, 11(7), 364; https://doi.org/10.3390/fermentation11070364 - 24 Jun 2025
Viewed by 1081
Abstract
In recent years, plant-based fermented foods (PBFs) have become popular all over the world due to their high nutritional value. Compared with traditional foods, PBFs can effectively address dietary issues of high fat content, excessive calories, and elevated cholesterol levels in food formulations, [...] Read more.
In recent years, plant-based fermented foods (PBFs) have become popular all over the world due to their high nutritional value. Compared with traditional foods, PBFs can effectively address dietary issues of high fat content, excessive calories, and elevated cholesterol levels in food formulations, while providing higher nutritional value and enhanced sensory properties (taste and flavor) than conventional plant-based products. These characteristics make PBFs more suitable for people’s yearning for a healthy diet. This review discussed the close relationship between PBFs and human health, elaborating on the definition of PBFs, common types, and the beneficial effects that occur during the fermentation process for human health. Furthermore, we also explored the nutritional value of PBFs. Herein, PBFs are not only rich in probiotics, organic acids, and various bioactive substances that promote gut health and boost immunity but also play a positive role in preventing certain chronic diseases. Finally, this article looks forward to the future development trends of PBFs, predicting their significant potential in healthy eating and sustainability. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Graphical abstract

Back to TopTop