Relationship of Physical Activity Levels and Body Composition with Psychomotor Performance and Strength in Men
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Study Variables
2.3.1. Body Composition
2.3.2. Physical Activity
2.3.3. Motor Control
2.3.4. Strenght
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DXA | Dual-Energy X-ray Absorptiometry |
MCT | Motor Control Test |
DSI | Dynamic Strength Index |
PAL | Physical Activity Level |
BMI | Body Mass Index |
MET | Metabolic Equivalent of Task |
PRONAF | Nutritional and Physical Activity Program for Obesity Control |
SWA | SenseWear® Armband |
SPSS | Statistical Program for Social Science |
References
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Barbagallo, C.M. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- García Cruz, A.; Figueroa Suárez, J.; Osorio Ciro, J.; Rodríguez Chavarro, N.; Gallo Villegas, J. Association between nutritional status and physical abilities in children aged 6–18 years in Medellin (Colombia). An. Pediatría (Engl. Ed.) 2014, 81, 343–351. [Google Scholar] [CrossRef]
- Khodadad Kashi, S.; Mirzazadeh, Z.S.; Saatchian, V. A systematic review and meta-analysis of resistance training on quality of life, depression, muscle strength, and functional exercise capacity in older adults aged 60 years or more. Biol. Res. Nurs. 2023, 25, 88–106. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance training for older adults: Position statement from the national strength and conditioning association. J. Strength. Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Abdala, R.P.; Barbieri, W.; Bueno, C.R.; Gomes, M.M. Gait pattern, prevalence of falls and fear of falling in active and sedentary elderly women. Rev. Bras. Med. Esporte 2017, 23, 26–30. [Google Scholar] [CrossRef]
- Giuriato, M.; Pugliese, L.; Biino, V.; Bertinato, L.; La Torre, A.; Lovecchio, N. Association between motor coordination, body mass index, and sports participation in children 6–11 years old. Sport. Sci. Health 2019, 15, 463–468. [Google Scholar] [CrossRef]
- Koehler, K.; Drenowatz, C. Understanding the Interaction Between Physical Activity and Diet for the Promotion of Health and Fitness. Front. Nutr. 2022, 8, 835535. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, D.; Kim, S.K. Effects of Physical Activity on Body Composition, Muscle Strength, and Physical Function in Old Age: Bibliometric and Meta-Analyses. Healthcare 2024, 12, 197. [Google Scholar] [CrossRef]
- Prasertsakul, T.; Kaimuk, P.; Chinjenpradit, W.; Limroongreungrat, W.; Charoensuk, W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: A randomized preliminary study. Biomed. Eng. Online 2018, 17, 1–17. [Google Scholar] [CrossRef]
- Bårdstu, H.B.; Andersen, V.; Fimland, M.S.; Aasdahl, L.; Raastad, T.; Cumming, K.T.; Sæterbakken, A.H. Effectiveness of a resistance training program on physical function, muscle strength, and body composition in community-dwelling older adults receiving home care: A cluster-randomized controlled trial. Eur. Rev. Aging Phys. Act. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Strain, T.; Flaxman, S.; Guthold, R.; Semenova, E.; Cowan, M.; Riley, L.M.; Stevens, G.A. National, regional, and global trends in insufficient physical activity among adults from 2000 to 2022: A pooled analysis of 507 population-based surveys with 5·7 million participants. Lancet Glob. Health 2024, 12, e1232–e1243. [Google Scholar] [CrossRef]
- Mendes, M.D.A.; Da Silva, I.; Ramires, V.; Reichert, F.; Martins, R.; Ferreira, R.; Tomasi, E. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS ONE 2018, 13, e0200701. [Google Scholar] [CrossRef]
- Leal-Martin, J.; Munoz-Munoz, M.; Keadle, S.K.; Amaro-Gahete, F.; Alegre, L.M.; Mañas, A.; Ara, I. Resting oxygen uptake value of 1 metabolic equivalent of task in older adults: A systematic review and descriptive analysis. Sports Med. 2022, 52, 331–348. [Google Scholar] [CrossRef]
- Tanabe, H.; Akai, M.; Hayashi, K.; Yonemoto, K. Relationship between quantitative physical activity and deterioration of locomotive function: A cross-sectional study using baseline data from a cohort. BMC Geriatr. 2024, 24, 601. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Cai, Z.; Jiang, W.; Xin, X.; Wang, X.; Zhou, X. Correlates of physical activity levels, muscle strength, working memory, and cognitive function in older adults. Front. Aging Neurosci. 2023, 15, 1283864. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour, M.; Farokhi, A.; Najafian Razavi, M. Enhancing Elderly Well-being: The Impact of Fall-Proof Exercise Programs on Quality of Life. Int. J. Sport. Stud. Health 2024, 7, 8–18. [Google Scholar] [CrossRef]
- Schilling, R.; Schmidt, S.; Fiedler, J.; Woll, A. Associations between physical activity, physical fitness, and body composition in adults living in Germany: A cross-sectional study. PLoS ONE 2023, 18, e0293555. [Google Scholar] [CrossRef]
- Hita-Contreras, F.; Martínez-Amat, A.; Lomas-Vega, R.; Álvarez, P.; Mendoza, N.; Romero-Franco, N.; Aránega, A. Relationship of body mass index and body fat distribution with postural balance and risk of falls in Spanish postmenopausal women. Menopause 2013, 20, 202–208. [Google Scholar] [CrossRef]
- Misic, M.M.; Rosengren, K.S.; Woods, J.A.; Evans, E.M. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults. Gerontology 2007, 53, 260–266. [Google Scholar] [CrossRef]
- Winters, K.M.; Snow, C.M. Body composition predicts bone mineral density and balance in premenopausal women. J. Womens Health Gend. Based Med. 2000, 9, 865–872. [Google Scholar] [CrossRef]
- Jeong, H.; Johnson, A.W.; Feland, J.B.; Petersen, S.R.; Staten, J.M.; Bruening, D.A. Added body mass alters plantar shear stresses, postural control, and gait kinetics: Implications for obesity. PLoS ONE 2021, 16, e0246605. [Google Scholar] [CrossRef]
- Ruckenstein, M.J.; Shepard, N.T. Balance function testing: A rational approach. Otolaryngol. Clin. N. Am. 2000, 33, 507–517. [Google Scholar] [CrossRef]
- Axelrod, C.L.; Dantas, W.S.; Kirwan, J.P. Sarcopenic obesity: Emerging mechanisms and therapeutic potential. Metabolism 2023, 146, 155639. [Google Scholar] [CrossRef] [PubMed]
- Onofrei, R.R.; Amaricai, E. Postural balance in relation with vision and physical activity in healthy young adults. Int. J. Environ. Res. Public Health 2022, 19, 5021. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.J.; Bergouignan, A.; Dempsey, P.C.; Roschel, H.; Owen, N.; Gualano, B.; Dunstan, D.W. Physiology of sedentary behavior. Physiol. Rev. 2023, 103, 2561–2622. [Google Scholar] [CrossRef] [PubMed]
- Rachmawati, M.R.; Kusumaningsih, W.L.; Suhartini, S.M. Physically inactive as a risk factor for obesity and reduced physical function in young adults. Preprint 2023. [CrossRef]
- De Oliveira Neto, L.; de Oliveira, L.P.; Agrícola, P.M.D.; de Oliveira Tavares, V.D.; Gomes, I.C.; Sales, M.C.; Lima, K.C. Factors associated with sarcopenia in institutionalized elderly. J. Public Health 2021, 43, 806–813. [Google Scholar] [CrossRef]
- García-Liñeira, J.; Leiros-Rodríguez, R.; Romo-Perez, V.; García-Soidan, J.L. Sex differences in postural control under unstable conditions in schoolchildren with accelerometric assessment. Gait Posture 2021, 87, 81–86. [Google Scholar] [CrossRef]
- Sarto, F.; Pizzichemi, M.; Chiossi, F.; Bisiacchi, P.; Franchi, M.V.; Narici, M.V.; Monti, E.; Paoli, A.; Marcolin, G. Physical active lifestyle promotes static and dynamic balance performance in young and older adults. Front. Physiol. 2022, 13, 986881. [Google Scholar] [CrossRef]
- Delfa de la Morena, J.M.; Rojo-Tirado, M.A.; Aparecida-Castro, E.; Aparecida-Doimo, L.; Miangolarra-Page, J.C.; Benito-Peinado, P.J.; Bores-García, D. Effects of body composition on postural balance in sedentary Spanish adult males: A cross-sectional study. Retos 2022, 45, 300–305. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, W.; Gong, L.; Liu, Q.; Qu, J. Isolated and Combined Effects of Sedentary Behaviour and Physical Activity on Muscle Strength in Older Adults. J. Clin. Nurs. 2025, 34, 3041–3042. [Google Scholar] [CrossRef]
- Tou, N.X.; Wee, S.L.; Pang, B.W.J.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Ng, T.P. Association of fat mass index versus appendicular lean mass index with physical function—The Yishun Study. Aging Health Res. 2022, 2, 100097. [Google Scholar] [CrossRef]
Group 1 (n = 32) | Group 2 (n = 32) | p-Value | Cohen’s d | |
---|---|---|---|---|
Age | 55.09 ± 5.40 | 55.28 ± 6.11 | 0.449 | −0.033 |
Weight | 75.29 ± 10.70 | 93.99 ± 13.91 | <0.001 | −1.507 |
Height | 1.74 ± 0.05 | 1.76 ± 0.06 | 0.078 | −0.362 |
Group 1 (n = 32) | Group 2 (n = 32) | p-Value | Cohen’s d | |
---|---|---|---|---|
Compound MCT | 137.91 ± 7.29 | 136.31 ± 8.27 | 0.208 | 0.205 |
Z MCT | −0.10 ± 0.93 | 0.102 ± 1.06 | 0.208 | −0.203 |
Average total return MCT | 140.05 ± 10.44 | 135.83 ± 7.75 | 0.041 | 0.459 |
Average total forward MCT | 140.5 ± 11.66 | 142.44 ± 14.38 | 0.298 | −0.144 |
Average right arm strength | 42.01 ± 6.71 | 42.8 ± 6.97 | 0.325 | −0.115 |
Maximum right arm strength | 43.72 ± 6.77 | 45.34 ± 7.52 | 0.184 | −0.226 |
Average left arm strength | 41.97 ± 6.41 | 42.16 ± 6.69 | 0.455 | −0.029 |
Average back strength | 98.96 ± 17.88 | 105.93 ± 17.51 | 0.06 | −0.394 |
Maximum back strength | 105.56 ± 17.30 | 112.46 ± 17.75 | 0.06 | −0.394 |
Average lower limb | 139.04 ± 24.79 | 140.03 ± 27.73 | 0.44 | −0.038 |
Maximum lower limb strength | 149.87 ± 25.36 | 148.48 ± 28.79 | 0.419 | 0.051 |
Dynamic Strength Index (DSI) | 4.58 ± 0.55 | 3.77 ± 0.57 | <0.001 | 1.446 |
Average METS | 1.65 ± 0.18 | 1.4 ± 0.16 | <0.001 | 1.468 |
AMIGO | 1.65 ± 0.18 | 1.39 ± 0.15 | <0.001 | 1.569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delfa-de-la-Morena, J.M.; Pinheiro Paes, P.; Júnior, F.C.; Feitosa, R.C.; Lima de Oliveira, D.P.; Mijarra-Murillo, J.-J.; García-González, M.; Riquelme-Aguado, V. Relationship of Physical Activity Levels and Body Composition with Psychomotor Performance and Strength in Men. Healthcare 2025, 13, 1789. https://doi.org/10.3390/healthcare13151789
Delfa-de-la-Morena JM, Pinheiro Paes P, Júnior FC, Feitosa RC, Lima de Oliveira DP, Mijarra-Murillo J-J, García-González M, Riquelme-Aguado V. Relationship of Physical Activity Levels and Body Composition with Psychomotor Performance and Strength in Men. Healthcare. 2025; 13(15):1789. https://doi.org/10.3390/healthcare13151789
Chicago/Turabian StyleDelfa-de-la-Morena, José Manuel, Pedro Pinheiro Paes, Frederico Camarotti Júnior, Rubem Cordeiro Feitosa, Débora Priscila Lima de Oliveira, Juan-José Mijarra-Murillo, Miriam García-González, and Víctor Riquelme-Aguado. 2025. "Relationship of Physical Activity Levels and Body Composition with Psychomotor Performance and Strength in Men" Healthcare 13, no. 15: 1789. https://doi.org/10.3390/healthcare13151789
APA StyleDelfa-de-la-Morena, J. M., Pinheiro Paes, P., Júnior, F. C., Feitosa, R. C., Lima de Oliveira, D. P., Mijarra-Murillo, J.-J., García-González, M., & Riquelme-Aguado, V. (2025). Relationship of Physical Activity Levels and Body Composition with Psychomotor Performance and Strength in Men. Healthcare, 13(15), 1789. https://doi.org/10.3390/healthcare13151789