Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,395)

Search Parameters:
Keywords = health profiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 701 KiB  
Article
Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion
by Ziva Vipotnik, Majda Golob and Alen Albreht
Plants 2025, 14(15), 2444; https://doi.org/10.3390/plants14152444 (registering DOI) - 7 Aug 2025
Abstract
The extract of powdered raspberry pomace was characterized in terms of its phenolic profile and antioxidant and antimicrobial activity. Kuromanin, chlorogenic acid, protocatechuic acid, and pelargonidin-3-O-glucoside were found to be the major phenolic compounds, while the antioxidant activity of the extract [...] Read more.
The extract of powdered raspberry pomace was characterized in terms of its phenolic profile and antioxidant and antimicrobial activity. Kuromanin, chlorogenic acid, protocatechuic acid, and pelargonidin-3-O-glucoside were found to be the major phenolic compounds, while the antioxidant activity of the extract correlated positively with the total phenolic content (TPC), which was 472.9 ± 0.1 mg GAE/g dw. The extract also showed good antimicrobial activity against Gram-positive foodborne bacteria. More importantly, in vitro bioaccessibility of phenols from the raspberry pomace extract was 5-fold higher when the extract was incorporated into meringue cookies. Although the concentrations of anthocyanins, flavonoids, and tannins decreased after the oral, gastric, and intestinal phases of digestion, the TPC slightly increased as the compounds were released from the food matrix. The content of available phenolics was 4-fold lower in the case of a commercial raspberry colorant, demonstrating that the waste from raspberry pomace could serve as a valuable health-promoting ingredient for functional food formulations. Full article
Show Figures

Figure 1

16 pages, 875 KiB  
Article
Profile of Selected MicroRNAs as Markers of Sex-Specific Anti-S/RBD Response to COVID-19 mRNA Vaccine in Health Care Workers
by Simona Anticoli, Maria Dorrucci, Elisabetta Iessi, Salvatore Zaffina, Rita Carsetti, Nicoletta Vonesch, Paola Tomao and Anna Ruggieri
Int. J. Mol. Sci. 2025, 26(15), 7636; https://doi.org/10.3390/ijms26157636 (registering DOI) - 7 Aug 2025
Abstract
Sex-based immunological differences significantly influence the outcome of vaccination, yet the molecular mediators underpinning these differences remain largely elusive. MicroRNAs (miRNAs), key post-transcriptional regulators of gene expression, have emerged as critical modulators of innate and adaptive immune responses. In this study, we investigated [...] Read more.
Sex-based immunological differences significantly influence the outcome of vaccination, yet the molecular mediators underpinning these differences remain largely elusive. MicroRNAs (miRNAs), key post-transcriptional regulators of gene expression, have emerged as critical modulators of innate and adaptive immune responses. In this study, we investigated the expression profile of selected circulating miRNAs as potential biomarkers of sex-specific humoral responses to the mRNA COVID-19 vaccine in a cohort of health care workers. Plasma samples were collected longitudinally at a defined time point (average 71 days) post-vaccination and analyzed using RT-qPCR to quantify a panel of immune-relevant miRNAs. Anti-spike (anti-S) IgG titers were measured by chemiluminescent immunoassays. Our results revealed sex-dependent differences in miRNA expression dynamics, with miR-221-3p and miR-148a-3p significantly overexpressed in vaccinated female HCWs and miR-155-5p overexpressed in vaccinated males. MiR-148a-3p showed a significant association with anti-S/RBD (RBD: receptor binding domain) IgG levels in a sex-specific manner. Bioinformatic analysis for miRNA targets indicated distinct regulatory networks and pathways involved in innate and adaptive immune responses, potentially underlying the differential immune activation observed between males and females. These findings support the utility of circulating miRNAs as minimally invasive biomarkers for monitoring and predicting sex-specific vaccine-induced immune responses and provide mechanistic insights that may inform tailored vaccination strategies. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Figure 1

18 pages, 7277 KiB  
Article
Comprehensive Analysis of the Molecular Epidemiological Characteristics of Duck-Derived Salmonella in Certain Regions of China
by Jiawen Chen, Xiangdi Li, Yanling Liu, Wenjia Rong, Laiyu Fu, Shuhua Wang, Yan Li, Xiaoxiao Duan, Yongda Zhao and Lili Guo
Microbiol. Res. 2025, 16(8), 184; https://doi.org/10.3390/microbiolres16080184 (registering DOI) - 7 Aug 2025
Abstract
Salmonella is a major foodborne pathogen, yet real-time data on duck-derived strains in China remain scarce. This study investigated the epidemiology, antimicrobial resistance (AMR), gene profiles, and PFGE patterns of 114 Salmonella isolates recovered from 397 deceased ducks (2021–2024) across nine provinces (isolation [...] Read more.
Salmonella is a major foodborne pathogen, yet real-time data on duck-derived strains in China remain scarce. This study investigated the epidemiology, antimicrobial resistance (AMR), gene profiles, and PFGE patterns of 114 Salmonella isolates recovered from 397 deceased ducks (2021–2024) across nine provinces (isolation rate: 28.72%). Fourteen serotypes were identified, with S. Typhimurium (23.68%), S. Indiana (21.93%), S. Kentucky (18.42%), and S. Enteritidis (12.28%) being predominant. Most isolates showed high resistance to β-lactams, tetracyclines, quinolones, and sulfonamides, with extensive multidrug resistance (MDR) observed—especially in S. Indiana, S. Typhimurium, and S. Kentucky. Among the 23 detected resistance genes, tet(B) had the highest prevalence (75.44%), particularly in S. Indiana. Biofilm formation was observed in 99.12% of isolates, with 84.21% demonstrating moderate to strong capacity. Eighteen virulence genes were detected; S. Enteritidis carried more spvB/C, sipB, and sodC1, while S. Indiana had higher cdtB carriage. PFGE revealed substantial genetic diversity among strains. This comprehensive analysis highlights the high AMR and biofilm potential of duck-derived Salmonella in China, emphasizing the urgent need for enhanced surveillance and control measures to mitigate public health risks. Full article
Show Figures

Figure 1

12 pages, 2254 KiB  
Article
SmartGel OV: A Natural Origanum vulgare-Based Adjunct for Periodontitis with Clinical and Microbiological Evaluation
by Casandra-Maria Radu, Carmen Corina Radu and Dana Carmen Zaha
Medicina 2025, 61(8), 1423; https://doi.org/10.3390/medicina61081423 - 7 Aug 2025
Abstract
Background and Objectives: Periodontitis is a chronic inflammatory disease that leads to progressive destruction of periodontal tissues and remains a significant global health burden. While conventional therapies such as scaling and root planning offer short-term improvements, they often fall short in maintaining [...] Read more.
Background and Objectives: Periodontitis is a chronic inflammatory disease that leads to progressive destruction of periodontal tissues and remains a significant global health burden. While conventional therapies such as scaling and root planning offer short-term improvements, they often fall short in maintaining long-term microbial control, underscoring the need for adjunctive strategies. This study evaluated the clinical and microbiological effects of a novel essential oil (EO)-based gel—SmartGel OV—formulated with Origanum vulgare. Materials and Methods: Thirty adults with periodontitis were enrolled in a 4-month observational study, during which SmartGel OV was applied daily via gingival massage. Clinical outcomes and bacterial profiles were assessed through probing measurements and real-time PCR analysis. Additionally, a pilot AI-based tool was explored as a supplemental method to monitor inflammation progression through intraoral images. Results: Significant reductions were observed in Fusobacterium nucleatum and Capnocytophaga spp., accompanied by improvements in clinical markers, including probing depth, bleeding on probing, and plaque index. The AI framework successfully identified visual inflammation changes and supported early detection of non-responsiveness. Conclusions: SmartGel OV demonstrates promise as a natural adjunctive treatment for periodontitis and AI monitoring was included as an exploratory secondary tool to assess feasibility for future remote tracking. Full article
(This article belongs to the Special Issue Current and Future Trends in Dentistry and Oral Health)
Show Figures

Figure 1

24 pages, 639 KiB  
Review
A Systemic Perspective of the Link Between Microbiota and Cardiac Health: A Literature Review
by Ionica Grigore, Oana Roxana Ciobotaru, Delia Hînganu, Gabriela Gurau, Dana Tutunaru and Marius Valeriu Hînganu
Life 2025, 15(8), 1251; https://doi.org/10.3390/life15081251 - 7 Aug 2025
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, with long-term hospitalization becoming increasingly frequent in advanced or chronic cases. In this context, the interplay between systemic factors such as lipid metabolism, circulating metabolites, gut microbiota, and oral health is gaining attention [...] Read more.
Cardiovascular diseases (CVDs) are the leading global cause of death, with long-term hospitalization becoming increasingly frequent in advanced or chronic cases. In this context, the interplay between systemic factors such as lipid metabolism, circulating metabolites, gut microbiota, and oral health is gaining attention for its potential role in influencing inflammation, cardiometabolic risk, and long-term outcomes. Despite their apparent independence, these domains are increasingly recognized as interconnected and influential in cardiovascular pathophysiology. Methods: This narrative review was conducted by analyzing studies published between 2015 and 2024 from databases including PubMed, Scopus, and Web of Science. Keywords such as “lipid profile,” “metabolomics,” “gut microbiota,” “oral health,” and “cardiovascular disease” were used. Original research, meta-analyses, and reviews relevant to hospitalized cardiac patients were included. A critical integrative approach was applied to highlight cross-domain connections. Results and Discussion: Evidence reveals significant interrelations between altered lipid profiles, gut dysbiosis (including increased TMAO levels), metabolic imbalances, and oral inflammation. Each component contributes to a systemic pro-inflammatory state that worsens cardiovascular prognosis, particularly in long-term hospitalized patients. Despite isolated research in each domain, there is a paucity of studies integrating all four. The need for interdisciplinary diagnostic models and preventive strategies is emphasized, especially in populations with frailty or immobilization. Conclusions: Monitoring lipid metabolism, metabolomic shifts, gut microbial balance, and oral status should be considered part of comprehensive cardiovascular care. Gut microbiota exerts a dual role in cardiac health: when balanced, it supports anti-inflammatory and metabolic homeostasis; when dysbiotic, it contributes to systemic inflammation and worsened cardiac outcomes. Future research should aim to develop integrative screening tools and personalized interventions that address the multifactorial burden of disease. A systemic approach may improve both short- and long-term outcomes in this complex and vulnerable patient population. Full article
(This article belongs to the Special Issue The Emerging Role of Microbiota in Health and Diseases)
Show Figures

Figure 1

52 pages, 1574 KiB  
Review
Anti-QS Strategies Against Pseudomonas aeruginosa Infections
by Abdelaziz Touati, Nasir Adam Ibrahim, Lilia Tighilt and Takfarinas Idres
Microorganisms 2025, 13(8), 1838; https://doi.org/10.3390/microorganisms13081838 - 7 Aug 2025
Abstract
Pseudomonas aeruginosa poses significant health threats due to its multidrug-resistant profile, particularly affecting immunocompromised individuals. The pathogen’s ability to produce virulence factors and antibiotic-resistant biofilms, orchestrated through quorum-sensing (QS) mechanisms, complicates conventional therapeutic interventions. This review aims to critically assess the potential of [...] Read more.
Pseudomonas aeruginosa poses significant health threats due to its multidrug-resistant profile, particularly affecting immunocompromised individuals. The pathogen’s ability to produce virulence factors and antibiotic-resistant biofilms, orchestrated through quorum-sensing (QS) mechanisms, complicates conventional therapeutic interventions. This review aims to critically assess the potential of anti-QS strategies as alternatives to antibiotics against P. aeruginosa infections. Comprehensive literature searches were conducted using databases such as PubMed, Scopus, and Web of Science, focusing on studies addressing QS inhibition strategies published recently. Anti-QS strategies significantly attenuate bacterial virulence by disrupting QS-regulated genes involved in biofilm formation, motility, toxin secretion, and immune evasion. These interventions reduce the selective pressure for resistance and enhance antibiotic efficacy when used in combination therapies. Despite promising outcomes, practical application faces challenges, including specificity of inhibitors, pharmacokinetic limitations, potential cytotoxicity, and bacterial adaptability leading to resistance. Future perspectives should focus on multi-target QS inhibitors, advanced delivery systems, rigorous preclinical validations, and clinical translation frameworks. Addressing current limitations through multidisciplinary research can lead to clinically viable QS-targeted therapies, offering sustainable alternatives to traditional antibiotics and effectively managing antibiotic resistance. Full article
(This article belongs to the Collection Feature Papers in Medical Microbiology)
Show Figures

Figure 1

22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

26 pages, 3575 KiB  
Article
Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
by Lea Karlsberger, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat and Julian Weghuber
Mar. Drugs 2025, 23(8), 322; https://doi.org/10.3390/md23080322 - 6 Aug 2025
Abstract
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo [...] Read more.
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2–9) than AN (DP 2–7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed. Full article
Show Figures

Figure 1

18 pages, 2727 KiB  
Article
Comparative Evaluation of Tongue and Periodontal Pocket Microbiome in Relation to Helicobacter pylori Gastric Disease: 16S rRNA Gene Sequencing Analysis
by Fausto Zamparini, Alessio Buonavoglia, Francesco Pellegrini, Georgia Diakoudi, Matteo Pavoni, Giulia Fiorini, Vittorio Sambri, Andrea Spinelli, Dino Vaira, Maria Giovanna Gandolfi and Carlo Prati
Antibiotics 2025, 14(8), 804; https://doi.org/10.3390/antibiotics14080804 - 6 Aug 2025
Abstract
Objective: To analyze the composition of the oral microbiome in periodontal pocket lesions and on the tongue dorsum of patients with Helicobacter pylori-associated gastric disease. Materials and Methods: Patients diagnosed with gastric disease and H. pylori (HP+) were evaluated in comparison to [...] Read more.
Objective: To analyze the composition of the oral microbiome in periodontal pocket lesions and on the tongue dorsum of patients with Helicobacter pylori-associated gastric disease. Materials and Methods: Patients diagnosed with gastric disease and H. pylori (HP+) were evaluated in comparison to a control group of H. pylori-negative patients without gastric disease (HP−). Periodontal and oral health clinical parameters (PPD, BoP, PSE, plaque score and modified DMFT) were assessed for each patient. Microbiological samples were collected from the deepest periodontal pockets and tongue dorsum, followed by DNA extraction, 16S rRNA PCR amplification, and Next-Generation-Sequencing (NGS) analyses. Results: Sixty-seven patients (27F; 40M, aged 35–85 years) were enrolled. Of these, 52 were HP+ and 15 were HP−. HP+ patients exhibited a significantly higher presence of decayed teeth (p < 0.05) and slightly fewer missing teeth (p > 0.05). The plaque score was significantly higher in HP+ patients (p < 0.05), while PPD and BoP showed no significant differences (p > 0.05). NGS analysis revealed no presence of H. pylori in any samples of both periodontal and tongue sites. HP+ patients showed a distinct microbial composition, including higher prevalence of Capnocytophaga, Fusobacterium, and Peptostreptococcus genera in both locations (pockets and tongue dorsum). Conclusions: The study demonstrated that HP+ patients exhibit distinct oral microbial profiles compared to HP− patients, especially in areas with deeper periodontal pockets. H. pylori was not detected in the oral microbiomes of either group. Full article
(This article belongs to the Special Issue Microbial Biofilms: Identification, Resistance and Novel Drugs)
Show Figures

Figure 1

15 pages, 271 KiB  
Article
Are We Considering All the Potential Drug–Drug Interactions in Women’s Reproductive Health? A Predictive Model Approach
by Pablo Garcia-Acero, Ismael Henarejos-Castillo, Francisco Jose Sanz, Patricia Sebastian-Leon, Antonio Parraga-Leo, Juan Antonio Garcia-Velasco and Patricia Diaz-Gimeno
Pharmaceutics 2025, 17(8), 1020; https://doi.org/10.3390/pharmaceutics17081020 - 6 Aug 2025
Abstract
Background: Drug–drug interactions (DDIs) may occur when two or more drugs are taken together, leading to undesired side effects or potential synergistic effects. Most clinical effects of drug combinations have not been assessed in clinical trials. Therefore, predicting DDIs can provide better patient [...] Read more.
Background: Drug–drug interactions (DDIs) may occur when two or more drugs are taken together, leading to undesired side effects or potential synergistic effects. Most clinical effects of drug combinations have not been assessed in clinical trials. Therefore, predicting DDIs can provide better patient management, avoid drug combinations that can negatively affect patient care, and exploit potential synergistic combinations to improve current therapies in women’s healthcare. Methods: A DDI prediction model was built to describe relevant drug combinations affecting reproductive treatments. Approved drug features (chemical structure of drugs, side effects, targets, enzymes, carriers and transporters, pathways, protein–protein interactions, and interaction profile fingerprints) were obtained. A unified predictive score revealed unknown DDIs between reproductive and commonly used drugs and their associated clinical effects on reproductive health. The performance of the prediction model was validated using known DDIs. Results: This prediction model accurately predicted known interactions (AUROC = 0.9876) and identified 2991 new DDIs between 192 drugs used in different female reproductive conditions and other drugs used to treat unrelated conditions. These DDIs included 836 between drugs used for in vitro fertilization. Most new DDIs involved estradiol, acetaminophen, bupivacaine, risperidone, and follitropin. Follitropin, bupivacaine, and gonadorelin had the highest discovery rate (42%, 32%, and 25%, respectively). Some were expected to improve current therapies (n = 23), while others would cause harmful effects (n = 11). We also predicted twelve DDIs between oral contraceptives and HIV drugs that could compromise their efficacy. Conclusions: These results show the importance of DDI studies aimed at identifying those that might compromise or improve their efficacy, which could lead to personalizing female reproductive therapies. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
14 pages, 1384 KiB  
Article
Volatile Essential Oils from Different Tree Species Influence Scent Impression and Physiological Response
by Eri Matsubara and Naoyuki Matsui
Molecules 2025, 30(15), 3288; https://doi.org/10.3390/molecules30153288 - 6 Aug 2025
Abstract
The large number of underutilized tree residues in Japan is a matter of concern, and their appropriate application needs to be promoted. Trees are very diverse, and there are differences in the volatile essential oil compounds and biological activities among different tree species. [...] Read more.
The large number of underutilized tree residues in Japan is a matter of concern, and their appropriate application needs to be promoted. Trees are very diverse, and there are differences in the volatile essential oil compounds and biological activities among different tree species. However, the effects of these tree species’ characteristics on human sensitivity and mental and physical functionality remain underexplored. This study investigated the effects of essential oils from multiple tree species on subjective and physiological responses. The essential oils from nine tree species were tested, subjective scent assessments were conducted, and their effect on autonomic nervous activity was measured. The volatile profiles of the oils were analyzed using gas chromatography–mass spectrometry. Our findings revealed clear differences in the composition of volatile essential oils among species, which influenced the scent evaluation and individual preferences. We suggest that scent preferences have the potential to influence physiological responses. The findings indicate that volatile essential oils could play a potential role in making use of tree resources effectively, and they may also be beneficial for maintaining human health. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 732 KiB  
Article
L-Arginine Effect as an Additive on Overall Performance, Health Status, and Expression of Stress Molecular Markers in Nile Tilapia (Oreochromis niloticus) Under Chronic Salinity Exposure
by Andrea Itzel Munguía-Casillas, María Teresa Viana, Miroslava Vivanco-Aranda, Luis Eduardo Ruiz-González, Emyr Saul Peña-Marín and Oscar Basilio Del Rio-Zaragoza
Fishes 2025, 10(8), 387; https://doi.org/10.3390/fishes10080387 - 6 Aug 2025
Abstract
Growing freshwater fish in saline environments is being explored as a potential solution to the freshwater shortage. However, growing these organisms in suboptimal salinity conditions leads to chronic stress that can be challenging to manage. To address this goal, it is crucial to [...] Read more.
Growing freshwater fish in saline environments is being explored as a potential solution to the freshwater shortage. However, growing these organisms in suboptimal salinity conditions leads to chronic stress that can be challenging to manage. To address this goal, it is crucial to improve the health of fish through the use of dietary supplements. This study evaluated the effects of varying levels of arginine supplementation on the growth, health status, and expression of stress-related molecular markers in juveniles of Nile tilapia exposed to chronic salinity stress. The tilapia were fed four experimental diets supplemented with 0, 1, 2, and 3% of L-arginine (T0, T1, T2, and T3). After an acclimatization period, the tilapias were exposed to a salinity level of 20‰ for 57 days in a recirculating aquaculture system. Our findings revealed that overall performance parameters were significantly influenced by L-arginine supplementation, except for the condition factor, viscerosomatic index, and hepatosomatic index. Additionally, intermediate levels of L-arginine supplementation positively influenced various blood parameters, including hematological profiles (hemoglobin and leukocytes), blood chemistry (total protein, albumin, globulin, and triglycerides), and the frequency of certain nuclear abnormalities. Furthermore, L-arginine supplementation appeared to regulate the expression of molecular markers related to stress and the immune system. In conclusion, this study indicates that L-arginine supplementation can help alleviate the chronic stress caused by salinity in juvenile Nile tilapia. Full article
(This article belongs to the Special Issue Fish Hematology)
Show Figures

Figure 1

20 pages, 1722 KiB  
Article
Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
by Daniela Zalazar-García, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia and María Paula Fabani
Horticulturae 2025, 11(8), 925; https://doi.org/10.3390/horticulturae11080925 (registering DOI) - 5 Aug 2025
Abstract
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in [...] Read more.
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in the stomach. Pistachio consumption provides several health benefits, primarily due to its antioxidant properties and high content of essential nutrients. In this study, we analyzed the mineral composition, total phenolic content (TP), antioxidant activity (AA), and UHPLC/MS-MS polyphenolic profile of three Argentinian pistachio crops. Additionally, the physicochemical parameters and the elemental profiles of the growing soils were determined, as they influence mineral uptake and the synthesis of bioactive compounds in pistachio kernels. The TP was not significantly modified by the growing soils, with Crop3 presenting the highest TP content (276 ± 14 mg GA/100 g DW). Crop3 exhibited 18% higher TP content compared to Crop2. Similarly, FRAP values ranged from 28.0 to 36.5 mmol TE/100 g DW, with Crop1 showing a 30% increase compared to Crop2. DPPH values varied from 19.0 to 24.3 mmol TE/100 g DW, with Crop1 displaying 28% higher activity than Crop2. However, the polyphenolic profile was similar for all crops analyzed. Thirty compounds were identified; only Crop 1 contained the flavanone eriodyctiol and the isoflavone genistein, while the flavanone naringenin and the flavone luteolin were identified in Crop1 and Crop3. Regarding mineral content, the pistachio kernels mainly contained K, Ca, and Mg. Multivariate analyses revealed distinct elemental and antioxidant profiles among crops. LDA achieved classification accuracies of 77.7% for soils and 74.4% for kernels, with Pb, Zn, Cu, Rb, Sr, and Mn as key discriminants. CCA confirmed strong soil–kernel mineral correlations (r = 1), while GPA showed higher congruence between antioxidant traits and kernel composition than with soil geochemistry. These findings underscore the importance of soil composition in determining the nutritional quality of pistachio kernels, thereby supporting the beneficial health effects associated with pistachio consumption. Full article
Show Figures

Figure 1

17 pages, 2994 KiB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

19 pages, 847 KiB  
Article
Characterization and Selection of Lycium barbarum Cultivars Based on Physicochemical, Bioactive, and Aromatic Properties
by Juan Carlos Solomando González, María José Rodríguez Gómez, María Ramos García, Noelia Nicolás Barroso and Patricia Calvo Magro
Horticulturae 2025, 11(8), 924; https://doi.org/10.3390/horticulturae11080924 (registering DOI) - 5 Aug 2025
Abstract
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties [...] Read more.
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties (total soluble solids, titratable acidity, and pH), bioactive compound (sugars and organic acids, total and individual phenolic and carotenoid compounds, and antioxidant activities (DPPH and CUPRAC assay)), and aromatic profiles (by GC-MS) to assess their suitability for fresh consumption or incorporation into food products. G4 exhibited the most favorable physicochemical characteristics, with the highest total soluble solids (20.2 °Brix) and sugar content (92.8 g 100 g−1 dw). G5 stood out for its lower titratable acidity (0.34%) and highest ripening index (54.8), indicating desirable flavor attributes. Concerning bioactive compounds, G3 and G4 showed the highest total phenolic content (17.9 and 19.1 mg GAE g−1 dw, respectively), with neochlorogenic acid being predominant. G4 was notable for its high carotenoid content, particularly zeaxanthin (1722.6 μg g−1 dw). These compounds significantly contributed to antioxidant activity. Volatile organic compound (VOC) profiles revealed alcohols and aldehydes as the dominant chemical families, with hexanal being the most abundant. G5 and G7 exhibited the highest total VOC concentrations. Principal component analysis grouped G3 and G4 based on their high sugar and phenolic content, while G5 and G7 were characterized by their complex aromatic profiles. Therefore, G3 and G4 are promising candidates for fresh consumption and potential functional applications, while G5 and G7 are particularly suitable for new product development due to their nutraceutical and aromatic value. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

Back to TopTop