Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = health halo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 459 KiB  
Case Report
Urinary Multidrug-Resistant Klebsiella pneumoniae: Essential Oil Countermeasures in a One Health Case Report
by Mălina-Lorena Mihu, Cristiana Ştefania Novac, Smaranda Crăciun, Nicodim Iosif Fiţ, Cosmina Maria Bouari, George Cosmin Nadăş and Sorin Răpuntean
Microorganisms 2025, 13(8), 1807; https://doi.org/10.3390/microorganisms13081807 - 1 Aug 2025
Viewed by 430
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to only 5 agents. One month later, repeat testing showed that tetracycline alone remained active, highlighting the strain’s rapidly evolving resistome. Given the scarcity of drug options, we performed an “aromatogram” with seven pure essential oils, propolis, and two commercial phytotherapeutic blends. Biomicin Forte® produced a 30 mm bactericidal halo, while thyme, tea tree, laurel, and palmarosa oils yielded clear inhibition zones of 11–22 mm. These in vitro data demonstrate that carefully selected plant-derived products can target CR-Kp where conventional antibiotics fail. Integrating aromatogram results into One Health’s stewardship plans may therefore help preserve last-line antibiotics and provide adjunctive options for persistent urinary infections. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

6 pages, 537 KiB  
Opinion
The EU Health Technology Assessment Regulation Halo Effect: Are Cross-Functional Teams Ready?
by Sian Tanner, Rebecca Coady, Ana Lisica, Edel Falla and Anke van Engen
J. Mark. Access Health Policy 2025, 13(1), 3; https://doi.org/10.3390/jmahp13010003 - 30 Jan 2025
Viewed by 1385
Abstract
The focus of manufacturers preparing for implementation of the EU HTA Regulation (HTAR) in 2025 has understandably been on their market access teams, and how they can be best equipped to adapt to this significant change. Considering the critical nature of market access [...] Read more.
The focus of manufacturers preparing for implementation of the EU HTA Regulation (HTAR) in 2025 has understandably been on their market access teams, and how they can be best equipped to adapt to this significant change. Considering the critical nature of market access in ensuring innovation reaches patients, it should be no surprise that the EU HTAR will have impacts far beyond this function. Here, we utilize published EU HTAR guidance, a pragmatic literature review, internal analysis, and insights from engagements with manufacturers, to outline some of the key cross-functional considerations arising from JSC and JCA, and how manufacturers should account for these in their EU HTAR readiness plans. Full article
(This article belongs to the Collection European Health Technology Assessment (EU HTA))
Show Figures

Figure 1

20 pages, 7681 KiB  
Article
A Short Sequence Targets Transmembrane Proteins to Primary Cilia
by Viviana Macarelli, Edward C. Harding, David C. Gershlick and Florian T. Merkle
Cells 2024, 13(13), 1156; https://doi.org/10.3390/cells13131156 - 6 Jul 2024
Viewed by 2725
Abstract
Primary cilia are finger-like sensory organelles that extend from the bodies of most cell types and have a distinct lipid and protein composition from the plasma membrane. This partitioning is maintained by a diffusion barrier that restricts the entry of non-ciliary proteins, and [...] Read more.
Primary cilia are finger-like sensory organelles that extend from the bodies of most cell types and have a distinct lipid and protein composition from the plasma membrane. This partitioning is maintained by a diffusion barrier that restricts the entry of non-ciliary proteins, and allows the selective entry of proteins harboring a ciliary targeting sequence (CTS). However, CTSs are not stereotyped and previously reported sequences are insufficient to drive efficient ciliary localisation across diverse cell types. Here, we describe a short peptide sequence that efficiently targets transmembrane proteins to primary cilia in all tested cell types, including human neurons. We generate human-induced pluripotent stem cell (hiPSC) lines stably expressing a transmembrane construct bearing an extracellular HaloTag and intracellular fluorescent protein, which enables the bright, specific labeling of primary cilia in neurons and other cell types to facilitate studies of cilia in health and disease. We demonstrate the utility of this resource by developing an image analysis pipeline for the automated measurement of primary cilia to detect changes in their length associated with altered signaling or disease state. Full article
(This article belongs to the Special Issue The Role of Cilia in Health and Diseases)
Show Figures

Graphical abstract

11 pages, 4104 KiB  
Article
Preparation and Characterization of Lutein Co-Amorphous Formulation with Enhanced Solubility and Dissolution
by Xuening Song, Yingting Luo, Wenduo Zhao, Simiao Liu, Yuzhuo Wang and Hao Zhang
Foods 2024, 13(13), 2029; https://doi.org/10.3390/foods13132029 - 26 Jun 2024
Cited by 4 | Viewed by 1872
Abstract
Lutein is an oxygenated fat-soluble carotenoid and a functional compound with proven health benefits for the human body. Nevertheless, the poor water solubility and low oral bioavailability of lutein greatly limit its application. To address this, we developed an effective approach to enhance [...] Read more.
Lutein is an oxygenated fat-soluble carotenoid and a functional compound with proven health benefits for the human body. Nevertheless, the poor water solubility and low oral bioavailability of lutein greatly limit its application. To address this, we developed an effective approach to enhance the water solubility of lutein through co-amorphous formulation. Specifically, the lutein-sucralose co-amorphous mixture was prepared at a molar ratio of 1:1 using ethanol and water as solvents by employing the solvent evaporation method, followed by solid-state characterization and dissolution testing conducted to assess the properties of the formulation. The X-ray diffraction pattern with an amorphous halo and the differential scanning calorimetry thermogram with no sharp melting peaks confirmed the formation of a binary co-amorphous system. Changes in peak shape, position, and intensity observed in the Fourier transform infrared spectroscopy spectrum revealed intermolecular interactions between lutein and sucralose molecules, while molecular dynamics simulations identified interaction sites between their hydroxyl groups. Additionally, dissolution testing demonstrated better dissolution performance of lutein in the co-amorphous form compared to pure lutein and physical mixture counterparts. Our findings present a novel strategy for improving the water solubility of lutein to make better use of it. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

14 pages, 891 KiB  
Article
Front-of-Package Protein Labels on Cereal Create Health Halos
by Gina Pope McKeon and William K. Hallman
Foods 2024, 13(8), 1139; https://doi.org/10.3390/foods13081139 - 9 Apr 2024
Cited by 1 | Viewed by 2994
Abstract
Front-of-package protein labels are frequently added to breakfast cereals, aimed at increasing purchases by consumers who believe they would benefit from eating more protein. However, the overall nutritional compositions of such products are often not significantly better than similar products without protein labels, [...] Read more.
Front-of-package protein labels are frequently added to breakfast cereals, aimed at increasing purchases by consumers who believe they would benefit from eating more protein. However, the overall nutritional compositions of such products are often not significantly better than similar products without protein labels, and may contain more sugar, sodium, and calories to improve taste. We conducted an online survey with 1022 US adults to examine consumer perceptions of two cereals (Special K Original and Special K Protein). Participants perceived Special K Protein as healthier and more nutritious, though less tasty, than Special K Original. Special K Protein was perceived as providing greater health benefits, such as being more likely to help them build muscle, stay healthy, and live longer. Many participants perceived no differences in the amounts of certain nutrients between the cereals, such as sugar (54.5%), sodium (59.2%), and calories (49.1%). Yet, when serving sizes are equalized to one cup, Special K Protein has more sugar, sodium, and calories than Special K Original. Though most participants reported viewing the Facts Up Front label, only 21.3% correctly chose Special K Original as having the larger serving size. This pattern of results suggests the presence of a health halo surrounding the protein-labeled product. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 7004 KiB  
Article
Derivatization-Enhanced Analysis of Glucocorticoids for Structural Characterization by Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry
by Yuqi Ge, Mengpan Liu, Xiaojun Deng and Lei Liao
Molecules 2024, 29(1), 200; https://doi.org/10.3390/molecules29010200 - 29 Dec 2023
Cited by 1 | Viewed by 1805
Abstract
Glucocorticoids are classified in section S9 of the Prohibited List of the World Anti-Doping Agency, due to a potential risk to improving physical performance and causing harm to the health of athletes. Based on the similar physiological actions of glucocorticoids, both differentiating known [...] Read more.
Glucocorticoids are classified in section S9 of the Prohibited List of the World Anti-Doping Agency, due to a potential risk to improving physical performance and causing harm to the health of athletes. Based on the similar physiological actions of glucocorticoids, both differentiating known glucocorticoids and identifying unknown glucocorticoids are important for doping control. Gas chromatography coupled with mass spectrometry plays an important role in structural characterization because of abundant structural diagnostic ions produced by electron ionization. It also provides a chance to study the fragmentation patterns. Thus, an enhanced derivatization procedure was optimized to produce trimethylsilylated glucocorticoids and structural diagnostic ions of nineteen trimethylsilylated glucocorticoids were obtained by gas chromatography-orbitrap high-resolution mass spectrometry. In our study, glucocorticoids were classified as: 3-keto-4-ene, 1,4-diene-3-keto, 3α-hydroxy with saturated A-ring, 21-hydroxy-20-keto and halo substituent glucocorticoids based on their structural difference. Structural diagnostic ions that contributed to structural characterization were specifically presented and the fragment patterns were demonstrated according to the above categories. This study not only gave new insights into the structural characterization of these glucocorticoids but also provided evidence for tracing unknown glucocorticoids or chemically modified molecules. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

13 pages, 3530 KiB  
Article
Assessment of Polydopamine to Reduce Streptococcus mutans Adhesion to a Dental Polymer
by Santiago Arango-Santander, Carlos Martinez, Claudia Bedoya-Correa, Juliana Sanchez-Garzon and John Franco
Pathogens 2023, 12(10), 1223; https://doi.org/10.3390/pathogens12101223 - 8 Oct 2023
Cited by 2 | Viewed by 2023
Abstract
Bacterial adhesion to the surface of materials is the first step in biofilm formation, which will lead to conditions that may compromise the health status of patients. Recently, polydopamine (PDA) has been proposed as an antibacterial material. Therefore, the objective of the current [...] Read more.
Bacterial adhesion to the surface of materials is the first step in biofilm formation, which will lead to conditions that may compromise the health status of patients. Recently, polydopamine (PDA) has been proposed as an antibacterial material. Therefore, the objective of the current work was to assess and compare the adhesion of Streptococcus mutans to the surface of poly(methyl methacrylate) (PMMA) discs that were modified using PDA following a biomimetic approach versus smooth PDA-coated PMMA surfaces. In addition, an assessment of the growth inhibition by PDA was performed. PMMA discs were manufactured and polished; soft lithography, using the topography from the Crocosmia aurea leaf, was used to modify their surface. PDA was used to smooth-coat PMMA discs by dip-coating. The growth inhibition was measured using an inhibition halo. The surfaces were characterized by means of atomic force microscopy (AFM), the contact angle (CA), and Fourier-transform infrared spectroscopy (FTIR). Polydopamine exhibited a significant antibacterial effect when used directly on the S. mutans planktonic cells, but such an effect was not as strong when modifying the PMMA surfaces. These results open the possibility of using polydopamine to reduce the adhesion and growth of S. mutans, which might have important consequences in the dental field. Full article
(This article belongs to the Special Issue Advanced Research on the Streptococcus mutans)
Show Figures

Figure 1

23 pages, 4599 KiB  
Article
Eco-Friendly Degradation of Natural Rubber Powder Waste Using Some Microorganisms with Focus on Antioxidant and Antibacterial Activities of Biodegraded Rubber
by Nahed A. EL-Wafai, Aya M. I. Farrag, Howaida M. Abdel-Basit, Mohamed I. Hegazy, Soha Talal Al-Goul, Mada F. Ashkan, Diana A. Al-Quwaie, Fatimah S. Alqahtani, Shimaa A. Amin, Mohamed N. Ismail, Abbas A. Yehia and Khaled A. El-Tarabily
Processes 2023, 11(8), 2350; https://doi.org/10.3390/pr11082350 - 4 Aug 2023
Cited by 5 | Viewed by 3679
Abstract
Natural rubber (NR) powder wastes contribute to the pollution of the environment and pose a risk to human health. Therefore, Escherichia coli AY1 and Aspergillus oryzae were used to degrade NR in the present investigation. The biodegradation was further confirmed using E. coli [...] Read more.
Natural rubber (NR) powder wastes contribute to the pollution of the environment and pose a risk to human health. Therefore, Escherichia coli AY1 and Aspergillus oryzae were used to degrade NR in the present investigation. The biodegradation was further confirmed using E. coli AY1 and A. oryzae’s ability to create biofilm, which grew on the surface of the NR. Additionally, the biodegraded NR was examined by scanning electron microscopy (SEM), attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy, and gas chromatography–mass spectrometry (GC–MS). The highest weight loss (69%) of NR was detected (p < 0.05) after 210 d of incubation with the mixed microbial culture (E. coli AY1 + A. oryzae). In the SEM, the surface of the control treatment appeared uniform and normal, whereas the surface of the microbial treatment displayed an irregular shape, with apparent particle deformation and surface erosion. After biodegradation by E. coli AY1 and A. oryzae, the particle size range of the untreated NR dropped from (5.367–9.623 µm) to (2.55–6.549 µm). After treating NR with E. coli AY1 and A. oryzae, new bands appeared in the ATR–FTIR technique; others shifted down in the range of 3910–450 cm−1, suggesting the existence of active groups belonging to alcohol, secondary amine, aromatic amine, conjugated anhydride, aldehyde, alkene, and halo compounds. On the other hand, the GC–MS profile reports a significant decline (p < 0.05) in the amount of hydrocarbons while simultaneously reporting a significant increase (p < 0.05) in the proportion of oxygenated, sulfurous, and nitrogenous compounds. These active groups are attributed to the antioxidant and antibacterial properties of biodegraded NR by a mixture of E. coli AY1 and A. oryzae, which rose 9-fold (p < 0.05) compared to untreated NR. Through the use of this research, we will be able to transform NR waste into a valuable product that possesses both antioxidant and antibacterial properties. Full article
(This article belongs to the Special Issue Microbial Bioremediation of Environmental Pollution (2nd Edition))
Show Figures

Figure 1

20 pages, 7285 KiB  
Article
Aqueous Extracts of Fermented Macrofungi Cultivated in Oilseed Cakes as a Carbon Source for Probiotic Bacteria and Potential Antibacterial Activity
by Joice Raísa Barbosa Cunha, Daiana Wischral, Rubén Darío Romero Peláez, Pérola De Oliveira Magalhães, Marina Borges Guimarães, Maria Aparecida de Jesus, Ceci Sales-Campos, Thais Demarchi Mendes, Eustáquio Souza Dias, Simone Mendonça and Félix Gonçalves de Siqueira
Metabolites 2023, 13(7), 854; https://doi.org/10.3390/metabo13070854 - 18 Jul 2023
Viewed by 1686
Abstract
Plant biomass colonized by macrofungi can contain molecules with bioactive properties with applications to human/animal health. This work aimed to verify antibacterial activities from aqueous extracts from oil seed cakes of Jatropha curcas (JSC) and cottonseed (CSC), fermented by macrofungi for probiotic bacteria [...] Read more.
Plant biomass colonized by macrofungi can contain molecules with bioactive properties with applications to human/animal health. This work aimed to verify antibacterial activities from aqueous extracts from oil seed cakes of Jatropha curcas (JSC) and cottonseed (CSC), fermented by macrofungi for probiotic bacteria cultivation. Coriolopsis sp., Tyromyces sp., Panus lecomtei, and Pleurotus pulmonarius were cultivated in solid and submerged media. The aqueous extract of unfermented JSC was more efficient than glucose for the growth of all probiotic bacteria. Extracts from four macrofungi fermented in CSC favored Lactobacillus acidophilus growth. In solid fermentation, macrofungi extracts cultivated in JSC favored Bifidobacterium lactis growth. All fungi extracts showed more significant growth than carbohydrates among the four probiotic bacteria evaluated. Regarding antimicrobial activities, no fungal extract or bacterial supernatant showed a more significant inhibition halo for enteropathogenic bacteria than ampicillin (control). Extracts from P. lecomtei and Coriolopsis sp. in CSC showed inhibition halos for Salmonella enterica. Supernatants from L. acidophilus, B. lactis, and Lactobacillus rhamnosus resulted in more significant inhibition of Staphylococcus aureus than the control, which indicates possible antimicrobial activity. Unfermented JSC supernatant showed better results for bacterial growth, while supernatants and aqueous extracts from CSC fermentation can be used for probiotic bacteria culture. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

32 pages, 3833 KiB  
Article
Comprehensive Phytochemical Analysis and Bioactivity Evaluation of Padina boergesenii: Unveiling Its Prospects as a Promising Cosmetic Component
by Haresh S. Kalasariya, Leonel Pereira and Nikunj B. Patel
Mar. Drugs 2023, 21(7), 385; https://doi.org/10.3390/md21070385 - 29 Jun 2023
Cited by 15 | Viewed by 8921
Abstract
Marine macroalgae, such as Padina boergesenii, are gaining recognition in the cosmetics industry as valuable sources of natural bioactive compounds. This study aimed to investigate the biochemical profile of P. boergesenii and evaluate its potential as a cosmetic ingredient. Fourier-transform infrared (FTIR), [...] Read more.
Marine macroalgae, such as Padina boergesenii, are gaining recognition in the cosmetics industry as valuable sources of natural bioactive compounds. This study aimed to investigate the biochemical profile of P. boergesenii and evaluate its potential as a cosmetic ingredient. Fourier-transform infrared (FTIR), gas chromatography–mass spectrometry (GCMS), and high-resolution liquid chromatography–mass spectrometry quadrupole time-of-flight (HRLCMS QTOF) analyses were employed to assess the functional groups, phycocompounds, and beneficial compounds present in P. boergesenii. Pigment estimation, total phenol and protein content determination, DPPH antioxidant analysis, and tyrosinase inhibition assay were conducted to evaluate the extracts’ ability to counteract oxidative stress and address hyperpigmentation concerns. Elemental composition and amino acid quantification were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and HRLCMS, respectively. FTIR spectroscopy confirmed diverse functional groups, including halo compounds, alcohols, esters, amines, and acids. GCMS analysis identified moisturizing, conditioning, and anti-aging compounds such as long-chain fatty alcohols, fatty esters, fatty acids, and hydrocarbon derivatives. HRLCMS QTOF analysis revealed phenolic compounds, fatty acid derivatives, peptides, terpenoids, and amino acids with antioxidant, anti-inflammatory, and skin-nourishing properties. Elemental analysis indicated varying concentrations of elements, with silicon (Si) being the most abundant and copper (Cu) being the least abundant. The total phenol content was 86.50 µg/mL, suggesting the presence of antioxidants. The total protein content was 113.72 µg/mL, indicating nourishing and rejuvenating effects. The ethanolic extract exhibited an IC50 value of 36.75 μg/mL in the DPPH assay, indicating significant antioxidant activity. The methanolic extract showed an IC50 value of 42.784 μg/mL. Furthermore, P. boergesenii extracts demonstrated 62.14% inhibition of tyrosinase activity. This comprehensive analysis underscores the potential of P. boergesenii as an effective cosmetic ingredient for enhancing skin health. Given the increasing use of seaweed-based bioactive components in cosmetics, further exploration of P. boergesenii’s potential in the cosmetics industry is warranted to leverage its valuable properties. Full article
(This article belongs to the Special Issue Marine Cosmeceuticals)
Show Figures

Graphical abstract

19 pages, 3185 KiB  
Article
Microwave-Assisted Synthesis of Aminophosphonic Derivatives and Their Antifungal Evaluation against Lomentospora prolificans
by Zuleyma Martínez-Campos, Mariana Elizondo-Zertuche, Emanuel Hernández-Núñez, Eugenio Hernández-Fernández, Efrén Robledo-Leal and Susana T. López-Cortina
Molecules 2023, 28(10), 3995; https://doi.org/10.3390/molecules28103995 - 10 May 2023
Cited by 3 | Viewed by 2418
Abstract
Lomentospora prolificans is a pathogenic and multidrug-resistant fungus that can infect both immunocompetent and immunocompromised patients, with mortality rates up to 87%. The World Health Organization (WHO) included this fungal species in its first list of 19 priority fungal pathogens, which focused on [...] Read more.
Lomentospora prolificans is a pathogenic and multidrug-resistant fungus that can infect both immunocompetent and immunocompromised patients, with mortality rates up to 87%. The World Health Organization (WHO) included this fungal species in its first list of 19 priority fungal pathogens, which focused on fungal pathogens that can cause invasive acute and subacute systemic fungal infections. Therefore, there is a growing interest in finding new therapeutic alternatives. In this work, the synthesis of twelve α-aminophosphonates by the microwave-assisted Kabachnik–Fields reaction and twelve α-aminophosphonic acids by a monohydrolysis reaction is reported. All compounds were evaluated by the agar diffusion method as a preliminary screening in comparison with voriconazole, showing inhibition halos for compounds 7, 11, 13, 22 and 27. The five active compounds in the preliminary tests were evaluated against five strains of L. prolificans following protocol M38-A2 from CLSI. The results showed that these compounds exhibit antifungal activity in the concentration range of 900->900 μg/mL. Cytotoxicity against healthy COS-7 cells was also evaluated by the MTT assay, and it was shown that compound 22 was the least cytotoxic, with a viability of 67.91%, comparable to the viability exhibited by voriconazole (68.55%). Docking studies showed that the possible mechanism of action of the active compounds could be through the inhibition of the enzyme lanosterol-14-alpha-demethylase in an allosteric hydrophobic cavity. Full article
Show Figures

Figure 1

18 pages, 1086 KiB  
Article
A Cluster Randomized Controlled Trial of the Archena Infancia Saludable Project on 24-h Movement Behaviors and Adherence to the Mediterranean Diet among Schoolchildren: A Pilot Study Protocol
by José Francisco López-Gil, Antonio García-Hermoso, Lee Smith, Alejandra Gallego, Desirée Victoria-Montesinos, Yasmin Ezzatvar, Maria S. Hershey, Héctor Gutiérrez-Espinoza, Arthur Eumann Mesas, Estela Jiménez-López, Pedro Antonio Sánchez-Miguel, Alba López-Benavente, Laura Moreno-Galarraga, Sitong Chen, Javier Brazo-Sayavera, Alejandro Fernandez-Montero, Pedro Emilio Alcaraz, Josefa María Panisello Royo, Pedro J. Tárraga-López and Stefanos N. Kales
Children 2023, 10(4), 738; https://doi.org/10.3390/children10040738 - 17 Apr 2023
Cited by 1 | Viewed by 3647
Abstract
Objective: The aim of this paper is to describe the protocol of pilot cluster randomized controlled trial (RCT) that will evaluate the effects of a lifestyle-based intervention. The Archena Infancia Saludable project will have several objectives. The primary objective of this project is [...] Read more.
Objective: The aim of this paper is to describe the protocol of pilot cluster randomized controlled trial (RCT) that will evaluate the effects of a lifestyle-based intervention. The Archena Infancia Saludable project will have several objectives. The primary objective of this project is to determine the 6-month effects of a lifestyle-based intervention on adherence to 24-h movement behaviors and Mediterranean diet (MedDiet) in schoolchildren. The secondary objective of this project is to test the intervention effects of this lifestyle-based intervention on a relevant set of health-related outcomes (i.e., anthropometric measurements, blood pressure, perceived physical fitness, sleep habits, and academic performance). The tertiary objective is to investigate this intervention’s “halo” effect on parents’/guardians’ 24-h movement behaviors and adherence to the MedDiet. Methods: The Archena Infancia Saludable trial will be a cluster RCT submitted to the Clinical Trials Registry. The protocol will be developed according to SPIRIT guidelines for RCTs and CONSORT statement extension for cluster RCTs. A total of 153 eligible parents/guardians with schoolchildren aged 6–13 years will be randomized into an intervention group or a control group. This project focuses on two fundamental pillars: 24-h movement behaviors and MedDiet. It will mainly focus on the relationship between parents/guardians and their children. Behavior change strategies for dietary and 24-h movement behaviors in schoolchildren will be based on healthy lifestyle education for parents/guardians through infographics, video recipes, brief video clips, and videos. Conclusions: Most of the current knowledge on 24-h movement behaviors and adherence to the MedDiet is based on cross-sectional or longitudinal cohort studies, warranting a need to design and conduct RCTs to obtain more robust evidence on the effect of a healthy lifestyle program to increase 24-h movement behaviors and to improve adherence to the MedDiet in schoolchildren. Full article
(This article belongs to the Section Pediatric Gastroenterology and Nutrition)
Show Figures

Figure 1

20 pages, 1024 KiB  
Article
Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa
by Joana Coimbra-Gomes, Patrícia J. M. Reis, Tânia G. Tavares, Miguel A. Faria, F. Xavier Malcata and Angela C. Macedo
Molecules 2023, 28(8), 3285; https://doi.org/10.3390/molecules28083285 - 7 Apr 2023
Cited by 9 | Viewed by 3326
Abstract
The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand [...] Read more.
The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand of probiotic yoghurt and L. pentosus B281 from Greek probiotic table olives, in attempts to select strains with higher probiotic performances than those references. For functional properties, the i53 and i106 strains, respectively, exhibited: 22.2 ± 2.2% and 23.0 ± 2.2% for Caco-2 cell adhesion capacity; 21.6 ± 7.8% and 21.5 ± 1.4% for hydrophobicity; 93.0 ± 3.0% and 88.5 ± 4.5% for autoaggregation ability by 24 h of incubation; and ability to co-aggregate with selected pathogens—from 29 to 40% to Gram+ (e.g., Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212); and from 16 to 44% for Gram− (e.g., Escherichia coli ATCC 25922 and Salmonella enteritidis ATCC 25928). The strains proved to be resistant (i.e., halo zone ≤14 mm) to some antibiotics (e.g., vancomycin, ofloxacin, and streptomycin), but susceptible (i.e., halo zone ≥ 20 mm) to others (e.g., ampicillin and cephalothin). The strains exhibited health-beneficial enzymatic activity (such as acid phosphatase and naphthol-AS-BI-phosphohydrolase), but not health-harmful enzymatic activity (such as β-glucuronidase and N-acetyl-β-glucosaminidase). Additionally, the antioxidant activity and cholesterol assimilation features, respectively, of the strains were 19.6 ± 2.8% and 77.5 ± 0.5% for i53, and 19.6 ± 1.8% and 72.2 ± 0.9% for i106. This study indicated that the addition of L. pentosus strains i53 and/or i106 to Cobrançosa table olives is likely to enhance the added value of the final product, in view of the associated potential benefits upon human health. Full article
(This article belongs to the Special Issue Advances in Functional Foods)
Show Figures

Figure 1

24 pages, 2728 KiB  
Article
RETRACTED: Isolation and Characterization of a Novel Lytic Phage, vB_PseuP-SA22, and Its Efficacy against Carbapenem-Resistant Pseudomonas aeruginosa
by Addisu D. Teklemariam, Rashad R. Al-Hindi, Mona G. Alharbi, Ibrahim Alotibi, Sheren A. Azhari, Ishtiaq Qadri, Turki Alamri, Ahmed Esmael and Steve Harakeh
Antibiotics 2023, 12(3), 497; https://doi.org/10.3390/antibiotics12030497 - 2 Mar 2023
Cited by 16 | Viewed by 4612 | Retraction
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage [...] Read more.
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage had a podovirus morphology, which agreed with the results of whole genome sequencing. BLASTn search allowed us to classify vB_PseuP-SA22 into the genus Bruynoghevirus. The genome of vB_PseuP-SA22 consisted of 45,458 bp of double-stranded DNA, with a GC content of 52.5%. Of all the open reading frames (ORFs), only 26 (44.8%) were predicted to encode certain functional proteins, whereas the remaining 32 (55.2%) ORFs were annotated as sequences coding functionally uncharacterized hypothetical proteins. The genome lacked genes coding for toxins or markers of lysogenic phages, including integrases, repressors, recombinases, or excisionases. The phage produced round, halo plaques with a diameter of 1.5 ± 2.5 mm on the bacterial lawn. The TEM revealed that vB_PseuP-SA22 has an icosahedral head of 57.5 ± 4.5 nm in length and a short, non-contractile tail (19.5 ± 1.4 nm). The phage showed a latent period of 30 min, a burst size of 300 PFU/infected cells, and a broad host range. vB_PseuP-SA22 was found to be stable between 4–60 °C for 1 h, while the viability of the virus was reduced at temperatures above 60 °C. The phage showed stability at pH levels between 5 and 11. vB_PauP-SA22 reduced the number of live bacteria in P. aeruginosa biofilm by almost five logs. The overall results indicated that the isolated phage could be a candidate to control CRPA infections. However, experimental in vivo studies are essential to ensure the safety and efficacy of vB_PauP-SA22 before its use in humans. Full article
Show Figures

Figure 1

13 pages, 1870 KiB  
Article
Inhibitory Activity of Essential Oils of Mentha spicata and Eucalyptus globulus on Biofilms of Streptococcus mutans in an In Vitro Model
by Guillermo Ernesto Landeo-Villanueva, María Elena Salazar-Salvatierra, Julio Reynaldo Ruiz-Quiroz, Noemi Zuta-Arriola, Benjamín Jarama-Soto, Oscar Herrera-Calderon, Josefa Bertha Pari-Olarte and Eddie Loyola-Gonzales
Antibiotics 2023, 12(2), 369; https://doi.org/10.3390/antibiotics12020369 - 10 Feb 2023
Cited by 13 | Viewed by 4231
Abstract
The aim of this study was to evaluate the inhibitory activity of the commercially available essential oils of Mentha spicata (spearmint) and Eucalyptus globulus (eucalyptus) on Streptococcus mutans ATCC 25175 biofilms in vitro, emulating dental plaque conditions. The composition of the essential oils [...] Read more.
The aim of this study was to evaluate the inhibitory activity of the commercially available essential oils of Mentha spicata (spearmint) and Eucalyptus globulus (eucalyptus) on Streptococcus mutans ATCC 25175 biofilms in vitro, emulating dental plaque conditions. The composition of the essential oils (EOs) was determined using gas chromatography coupled with mass spectrometry (GC-MS), with the main metabolites being Carvone (57.93%) and Limonene (12.91%) for Mentha spicata and 1,8-Cineole (Eucalyptol) (65.83%) for Eucalyptus globulus. The inhibitory activity was evaluated using the methods of agar-well diffusion and colorimetric microdilution. The inhibition halos were 18.3 ± 0.47 mm and 27.0 ± 0.82 mm, and the MICs were 1.8484 mg/mL and 1.9168 mg/mL for the EOs of Mentha spicata and Eucalyptus globulus, respectively. The activity against the biofilms was evaluated on a substrate of bovine enamel pieces using a basal mucin medium (BMM) in anaerobic conditions with daily sucrose exposition cycles in order to emulate oral cavity conditions. The EOs were applied in a concentration of 0.5% in a sterile saline vehicle with 1% polysorbate 20. After 72 h of cultivation, a significant reduction was observed (p < 0.001%) on the biofilm biomass, which was evaluated by its turbidity in suspension and using a count of the recoverable organisms with regards to the control. The effects of the Eos were not significantly distinct from each other. The EOs showed antimicrobial activity against both the Streptococcus mutans planktonic and biofilm cultures. Thus, EOs may have great potential for the development of pharmaceutical and sanitary products for oral health. Full article
Show Figures

Figure 1

Back to TopTop