Derivatization-Enhanced Analysis of Glucocorticoids for Structural Characterization by Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Optimization of the Derivatization Procedure
2.1.1. Optimization of the Derivatization Reagent
2.1.2. Optimization of Derivatization Temperature
2.1.3. Optimization of Derivatization Duration
2.1.4. Optimization of Derivatization Reagent Volume
2.2. Structural Characterization of Glucocorticoids
2.2.1. Class I: 3-Keto-4-Ene Glucocorticoids
2.2.2. Class II: 1,4-Diene-3-Keto Glucocorticoids
2.2.3. Class III: 3α-Hydroxy with Saturated A-Ring Glucocorticoids
2.2.4. Class: IV: 21-Hydroxy-20-Keto Glucocorticoids
2.2.5. Class V: Halogen Substituent Glucocorticoids
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Derivatization
4.3. GC-MS Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKeever, T.; Mortimer, K.; Wilson, A.; Walker, S.; Brightling, C.; Skeggs, A.; Pavord, I.; Price, D.; Duley, L.; Thomas, M.; et al. Quadrupling Inhaled Glucocorticoid Dose to Abort Asthma Exacerbations. New. Engl. J. Med. 2018, 378, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Alangari, A.A. Genomic and Non-genomic Actions of Glucocorticoids in Asthma. Ann. Thorac. Med. 2010, 5, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Ora, J.; Calzetta, L.; Matera, M.G.; Cazzola, M.; Rogliani, P. Advances with Glucocorticoids in the Treatment of Asthma: State of the Art. Expert Opin. Pharmacother. 2020, 21, 2305–2316. [Google Scholar] [CrossRef] [PubMed]
- Dean, B.J.F.; Carr, A.J. The Effects of Glucocorticoid on Tendon and Tendon Derived Cells. In Metabolic Influences on Risk for Tendon Disorders, 1st ed.; Ackermann, P.W., Hart, D.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 920, pp. 239–246. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Huang, J.-Y.; Tang, C.-Q.; Chen, X.; Yin, Z.; Heng, B.-C.; Chen, W.-S.; Shen, W.-L. Small Molecule Therapeutics for Inflammation-associated Chronic Musculoskeletal Degenerative Diseases: Past, Present and Future. Exp. Cell Res. 2017, 359, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rizza, R.A.; Mandarino, L.J.; Gerich, J.E. Cortisol-Induced Insulin Resistance in Man: Impaired Suppression of Glucose Production and Stimulation of Glucose Utilization due to a Postreceptor Defect of Insulin Action. J. Clin. Endocrinol. Metab. 1982, 54, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Horber, F.F.; Scheidegger, J.R.; Grunig, B.E.; Frey, F.J. Evidence that Prednisone-Induced Myopathy Is Reversed by Physical Training. J. Clin. Endocrinol. Metab. 1985, 61, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Q.; Jahn, L.A.; Long, W.; Fryburg, D.A.; Wei, L.-P.; Barrett, E.J. Branched Chain Amino Acids Activate Messenger Ribonucleic Acid Translation Regulatory Proteins in Human Skeletal Muscle, and Glucocorticoids Blunt This Action. J. Clin. Endocrinol. Metab. 2001, 86, 2136–2143. [Google Scholar] [CrossRef]
- Meszaros, K.; Patocs, A. Glucocorticoids Influencing Wnt/β-Catenin Pathway; Multiple Sites, Heterogeneous Effects. Molecules 2020, 25, 1489. [Google Scholar] [CrossRef]
- Ekeuku, S.O.; Mohd Ramli, E.S.; Abdullah Sani, N.; Abd Ghafar, N.; Soelaiman, I.N.; Chin, K.-Y. Tocotrienol as a Protecting Agent against Glucocorticoid-Induced Osteoporosis: A Mini Review of Potential Mechanisms. Molecules 2022, 27, 5862. [Google Scholar] [CrossRef]
- Broersen, L.H.A.; Pereira, A.M.; Jorgensen, J.O.L.; Dekkers, O.M. Adrenal Insufficiency in Corticosteroids Use: Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2015, 100, 2171–2180. [Google Scholar] [CrossRef]
- Henzen, C.; Suter, A.; Lerch, E.; Urbinelli, R.; Schorno, X.H.; Briner, V.A. Suppression and Recovery of Adrenal Response after Short-Term, High-Dose Glucocorticoid Treatment. Lancet 2000, 355, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Salek, F.S.; Bigos, K.L.; Kroboth, P.D. The Influence of Hormones and Pharmaceutical Agents on DHEA and DHEA-S Concentrations: A Review of Clinical Studies. J. Clin. Pharmacol. 2002, 42, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Duclos, M. Evidence on Ergogenic Action of Glucocorticoids as a Doping Agent Risk. Physician Sportsmed. 2010, 38, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Pigozzi, F.; Di Gianfrancesco, A.; Zorzoli, M.; Bachl, N.; Mc Donagh, D.; Cummiskey, J.; Di Luigi, L.; Pitsiladis, Y.; Borrione, P. Why Glucocorticosteroids Should Remain in the List of Prohibited Substances: A Sports Medicine Viewpoint. Int. J. Immunopathol. Pharmacol. 2012, 25, 19–24. [Google Scholar] [CrossRef] [PubMed]
- 2024 List of Prohibited Substances and Methods. Available online: https://www.wada-ama.org/sites/default/files/2023-09/2024list_en_final_22_september_2023.pdf (accessed on 28 September 2023).
- 2022 Summary of Major Modifications and Explanatory Notes. Available online: https://www.wada-ama.org/sites/default/files/resources/files/2022list_explanatory_note_final_en.pdf (accessed on 30 September 2021).
- Hawley, J.M.; Keevil, B.G. Endogenous Glucocorticoid Analysis by Liquid chromatography-tandem mass spectrometry in Routine Clinical Laboratories. J. Steroid Biochem. Mol. Biol. 2016, 162, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Protti, M.; Mandrioli, R.; Mercolini, L. Microsampling and LC-MS/MS for Antidoping Testing of Glucocorticoids in Urine. Bioanalysis 2020, 12, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Coll, S.; Monfort, N.; Alechaga, E.; Matabosch, X.; Pozo, O.J.; Pérez-Mañá, C.; Ventura, R. Elimination Profiles of Prednisone and Prednisolone after Different Administration Routes: Evaluation of the Reporting Level and Washout Periods to Ensure Safe Therapeutic Administrations. Drug Test. Anal. 2021, 13, 571–582. [Google Scholar] [CrossRef]
- Speltini, A.; Merlo, F.; Maraschi, F.; Marrubini, G.; Faravelli, A.; Profumo, A. Magnetic Micro-Solid-Phase Extraction Using a Novel Carbon-Based Composite Coupled with HPLC–MS/MS for Steroid Multiclass Determination in Human Plasma. Molecules 2021, 26, 2061. [Google Scholar] [CrossRef]
- Yao, Q.-Y.; Guo, Y.-C.; Xue, J.-S.; Kong, D.-M.; Li, J.; Tian, X.-Y.; Hao, C.-Y.; Zhou, T.-Y. Development and Validation of a LC-MS/MS Method for Simultaneous Determination of Six Glucocorticoids and Its Application to a Pharmacokinetic Study in Nude Mice. J. Pharm. Biomed. 2020, 179, 112980. [Google Scholar] [CrossRef]
- Marcos, J.; Pozo, O.J. Derivatization of Steroids in Biological Samples for GC–MS and LC–MS Analyses. Bioanalysis 2015, 7, 2515–2536. [Google Scholar] [CrossRef]
- Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H.L. Gas chromatography/mass spectrometry (GC/MS) Remains a Pre-eminent Discovery Tool in Clinical Steroid Investigations even in the Era of Fast Liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 2010, 121, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.C.; Hauschild, J.P.; Quarmby, S.T.; Krumwiede, D.; Lange, O.; Lemke, R.A.S.; Grosse-Coosmann, F.; Horning, S.; Donohue, T.J.; Westphall, M.S.; et al. Development of a GC/Quadrupole-Orbitrap Mass Spectrometer, Part I: Design and Characterization. Anal. Chem. 2014, 86, 10036–10043. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, G.D.; Rodrigues, L.M.; dos Santos, L.; Zheng, X.; Gujar, A.; Cole, J.; Padilha, M.C.; Neto, F.R.D. Non-targeted Acquisition Strategy for Screening Doping Compounds Based on GC-EI-hybrid quadrupole-Orbitrap mass spectrometry: A Focus on Exogenous Anabolic Steroids. Drug Test. Anal. 2018, 10, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Postigo, C.; Cojocariu, C.I.; Richardson, S.D.; Silcock, P.J.; Barcelo, D. Characterization of Iodinated Disinfection By-products in Chlorinated and Chloraminated Waters Using Orbitrap Based Gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 3401–3411. [Google Scholar] [CrossRef] [PubMed]
- Sapozhnikova, Y. Non-targeted Screening of Chemicals Migrating from Paper-based Food Packaging by GC-Orbitrap mass spectrometry. Talanta 2021, 226, 122120. [Google Scholar] [CrossRef] [PubMed]
- Donike, M. N-Methyl-N-trimethylsilyl-trifluoracetamid, ein neues Silylierungsmittel aus der reihe der silylierten amide. J. Chromatogr. A 1969, 42, 103–104. [Google Scholar] [CrossRef]
- Robles, J.; Marcos, J.; Renau, N.; Garrostas, L.; Segura, J.; Ventura, R.; Barceló, B.; Barceló, A.; Pozo, O.J. Quantifying Endogenous Androgens, Estrogens, Pregnenolone and Progesterone Metabolites in Human Urine by Gas Chromatography Tandem Mass Spectrometry. Talanta 2017, 169, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-P.; Ge, Y.-Q.; Xu, X.; Liao, L. Quantification of Urinary Steroids by Supported Liquid Extraction with GC-MS/MS: Unravelling Cyclic Fluctuations of Steroid Profiling in Regular Menstrual Cycle. J. Pharm. Biomed. 2022, 216, 114789. [Google Scholar] [CrossRef]
- De Brabanter, N.; Van Gansbeke, W.; Geldof, L.; Van Eenoo, P. An Improved Gas Chromatography Screening Method for Doping Substances Using Triple Quadrupole Mass Spectrometry, with an Emphasis on Quality Assurance. Biomed. Chromatogr. 2012, 26, 1416–1435. [Google Scholar] [CrossRef]
- Segura, J.; Ventura, R.; Jurado, C. Derivatization Procedures for Gas chromatographic–mass spectrometric Determination of Xenobiotics in Biological Samples, with Special Attention to Drugs of Abuse and Doping Agents. J. Chromatogr. B 1998, 713, 61–90. [Google Scholar] [CrossRef]
- Evershed, R.P.; Mercer, J.G.; Rees, H.H. Capillary Gas chromatography-mass spectrometry of Ecdysteroids. J. Chromatogr. A 1987, 390, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Girault, J.; Istin, B.; Fourtillan, J.B. A Rapid and Highly Sensitive Method for the Quantitative Determination of Dexamethasone in Plasma, Synovial Fluid and Tissues by Combined Gas Chromatography/Negative Ion Chemical Ionization Mass Spectrometry. Biomed. Environ. Mass Spectrom. 1990, 19, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Simpson, P.M. A Method for the Estimation of Some Synthetic Glucocorticosteroids in Rat Muscle. J. Chromatogr. A 1973, 77, 161–174. [Google Scholar] [CrossRef]
- Amendola, L.; Garribba, F.; Botrè, F. Determination of Endogenous and Synthetic Glucocorticoids in Human Urine by Gas chromatography–mass spectrometry Following Microwave-assisted Derivatization. Anal. Chim. Acta 2003, 489, 233–243. [Google Scholar] [CrossRef]
- Liao, S.; Liang, T.; Fang, S.; Castañeda, E.; Shao, T.-C. Steroid Structure and Androgenic Activity: Specificities Involved in the Receptor Binding and Nuclear Retention of Various Androgens. J. Biol. Chem. 1973, 248, 6154–6162. [Google Scholar] [CrossRef]
- Fragkaki, A.G.; Angelis, Y.S.; Koupparis, M.; Tsantili-Kakoulidou, A.; Kokotos, G.; Georgakopoulos, C. Structural Characteristics of Anabolic Androgenic Steroids Contributing to Binding to the Androgen Receptor and to Their Anabolic and Androgenic Activities: Applied Modifications in the Steroidal Structure. Steroids 2009, 74, 172–197. [Google Scholar] [CrossRef]
- Dhayat, N.A.; Frey, A.C.; Frey, B.M.; d‘Uscio, C.H.; Vogt, B.; Rousson, V.; Dick, B.; Flück, C.E. Estimation of Reference Curves for the Urinary Steroid Metabolome in the First Year of Life in Healthy Children: Tracing the Complexity of Human Postnatal Steroidogenesis. J. Steroid Biochem. Mol. Biol. 2015, 154, 226–236. [Google Scholar] [CrossRef]
- Pozo, O.J.; Marcos, J.; Matabosch, X.; Ventura, R.; Segura, J. Using Complementary Mass Spectrometric Approaches for the Determination of Methylprednisolone Metabolites in Human Urine. Rapid Commun. Mass Spectrom. 2012, 26, 541–553. [Google Scholar] [CrossRef]
- Lee, W.; Lee, H.; Kim, Y.-L.; Lee, Y.-C.; Chung, B.-C.; Hong, J. Profiling of Steroid Metabolic Pathways in Human Plasma by GC-MS/MS Combined with Microwave-Assisted Derivatization for Diagnosis of Gastric Disorders. Int. J. Mol. Sci. 2021, 22, 1872. [Google Scholar] [CrossRef]
- De Clercq, N.; Julie, V.; Croubels, S.; Delahaut, P.; Vanhaecke, L. A Validated Analytical Method to Study the Long-term Stability of Natural and Synthetic Glucocorticoids in Livestock Urine Using Ultra-high Performance Liquid Chromatography Coupled to Orbitrap-high Resolution Mass Spectrometry. J. Chromatogr. A 2013, 1301, 111–121. [Google Scholar] [CrossRef]
- Herrero, P.; Cortes-Francisco, N.; Borrull, F.; Caixach, J.; Pocurull, E.; Marcé, R.M. Comparison of Triple Quadrupole Mass Spectrometry and Orbitrap High-resolution Mass Spectrometry in Ultrahigh Performance Liquid Chromatography for the Determination of Veterinary Drugs in Sewage: Benefits and Drawbacks. J. Mass Spectrom. 2014, 49, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.-K.; Lu, Q.; Lin, Z.; Hang, W.; Huang, B.-L. Laser-induced Acoustic Desorption Coupled with Electrospray Ionization Mass Spectrometry for Rapid Qualitative and Quantitative Analysis of Glucocorticoids Illegally Added in Creams. Analyst 2020, 145, 6625–6631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-L.; Li, Z.; Zhou, Z.-G.; Bai, Y.; Liu, H.-W. Rapid Screening and Quantification of Glucocorticoids in Essential Oils Using Direct Analysis in Real Time Mass Spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Sanghavi, B.J.; Moore, J.A.; Chavez, J.L.; Hagen, J.A.; Kelley-Loughnane, N.; Chou, C.F.; Swami, N.S. Aptamer-functionalized Nanoparticles for Surface Immobilization-free Electrochemical Detection of Cortisol in A Microfluidic Device. Biosens. Bioelectron. 2016, 78, 244–252. [Google Scholar] [CrossRef]
- Liu, C.-Q.; Xu, G.-J.; Li, B.-Y.; Wang, X.-L.; Lin, J.-M.; Zhao, R.-S. Three-dimensional Hydroxylated Covalent Organic Frameworks for Solid Phase Extraction of Glucocorticoids in Environmental Water Samples. Anal. Chim. Acta 2023, 1239, 340662. [Google Scholar] [CrossRef]
- De Clercq, N.; Bussche, J.V.; Croubels, S.; Delahaut, P.; Vanhaecke, L. Development and Validation of a High-resolution Mass-spectrometry-based Method to Study the Long-term Stability of Natural and Synthetic Glucocorticoids in Faeces. J. Chromatogr. A 2014, 1336, 76–86. [Google Scholar] [CrossRef]
- Gawlik, A.M.; Shmoish, M.; Hartmann, M.F.; Wudy, S.A.; Hochberg, Z. Steroid Metabolomic Signature of Insulin Resistance in Childhood Obesity. Diabetes Care 2020, 43, 405–410. [Google Scholar] [CrossRef]
NO. | Compounds | CAS | Chemical Formula | Structure |
---|---|---|---|---|
1 | 20β-Hydroxyprednisolone | 15847-24-2 | C21H30O5 | |
2 | 20β-Hydroxyprednisone | 600-92-0 | C21H28O5 | |
3 | Betamethasone | 378-44-9 | C22H29FO5 | |
4 | Budesonide | 51372-29-3 | C25H34O6 | |
5 | Ciclesonide | 126544-47-6 | C32H44O7 | |
6 | Clobetasol | 25122-41-2 | C22H28ClFO4 | |
7 | Cortisol | 50-23-7 | C21H30O5 | |
8 | Cortisone | 53-06-5 | C21H28O5 | |
9 | Desisobutyryl-ciclesonide | 161115-59-9 | C28H38O6 | |
10 | Desonide | 638-94-8 | C24H32O6 | |
11 | Fludrocortisone | 127-31-1 | C21H29FO5 | |
12 | Flunisolide | 3385-03-3 | C24H31FO6 | |
13 | Fluorometholone | 426-13-1 | C22H29FO4 | |
14 | Methylprednisolone | 83-43-2 | C22H30O5 | |
15 | Prednisolone | 50-24-8 | C21H28O5 | |
16 | Prednisone | 53-03-2 | C21H26O5 | |
17 | Tetrahydrocortisol | 53-02-1 | C21H34O5 | |
18 | Tetrahydrocortisone | 53-05-4 | C21H32O5 | |
19 | Triamcinolone | 124-94-7 | C21H27FO6 |
NO. | Derivatized Compounds | Diagnostic Ions a | Structural Categories b |
---|---|---|---|
1 | 20β-Hydroxyprednisolone-4TMS | 650.36688, 547.30896, 445.25887, 355.20878, 325.20136, 265.15887 | Class II |
2 | 20β-Hydroxyprednisone-3TMS | 576.31170, 473.25378, 371.20369, 281.25361, 251.14618 | Class II |
3 | Betamethasone-3TMS | 608.31793, 477.26510, 457.25887, 387.21501, 367.20878, 297.16492, 277.15869, 177.10741 | Class II, Class IV, Class V |
4 | Budesonide-2TMS | 574.31404, 443.26121, 353.21112, 323.20370, 281.15361 | Class II, Class IV |
5 | Ciclesonide-2TMS | 684.38721, 612.34768, 529.26161, 483.29251, 477.26669, 389.21426, 299.16417, 281.15361, 263.14304 | Class II |
6 | Clobetasol-3TMS | 626.28404, 591.31519, 501.26510, 481.25887, 471.25767, 411.21501, 391.20878, 291.09978, 243.12311 | Class II, Class V |
7 | Cortisol-4TMS | 650.36688 *, 519.31405, 447.27452, 429.26396, 357.22443, 339.21386, 267.17434, 249.16378, 208.12779 | Class I, Class IV |
8 | Cortisone-3TMS | 576.31171 *, 445.25887, 355.20878, 265.15869, 208.12779 | Class I, Class IV |
9 | Desisobutyryl-ciclesonide-2TMS | 614.34534, 531.25927, 483.29251, 389.21426, 363.23500, 299.16417, 281.15361, 263.14304 | Class II, Class IV |
10 | Desonide-2TMS | 560.29839, 429.24556, 371.20370, 339.19547, 309.18805, 281.15361, 263.14304 | Class II, Class IV |
11 | Fludrocortisone-4TMS | 668.35746, 537.30462, 447.25454, 427.24831, 357.20445, 337.19822, 208.12779 | Class I, Class IV, Class V |
12 | Flunisolide-2TMS | 578.28897, 505.22363, 447.23614, 427.22991, 357.18605, 309.18805, 299.14418, 279.13796 | Class II, Class IV, Class V |
13 | Fluorometholone-2TMS | 520.28349, 477.26510, 387.21501, 367.20878, 297.16492, 277.15869, 233.13562 | Class II, Class V |
14 | Methylprednisolone-3TMS | 590.32736, 459.27452, 369.22443, 325.20136, 279.17434, 264.15087 | Class II, Class IV |
15 | Prednisolone-4TMS | 648.35123, 633.32776, 558.30114, 528.29372, 468.25105, 331.15755, 169.06793 | Class II, Class IV |
648.35123 *, 558.30114, 517.29840, 427.24831, 337.19822, 206.11214 | Class II, Class IV | ||
16 | Prednisone-3TMS | 574.29606 *, 559.27258, 484.25496, 454.23854, 331.15755, 169.06793 | Class II, Class IV |
17 | Tetrahydrocortisol-5TMS | 726.43771 *, 711.41423, 636.38762, 531.31405, 331.15755, 169.06793 | Class III, Class IV |
18 | Tetrahydrocortisone-4TMS | 652.38253 *, 562.33244, 449.29017, 331.15755, 169.06793 | Class III, Class IV |
19 | Triamcinolone-4TMS | 682.33673, 577.26316, 551.28389, 461.23380, 441.22757, 371.18371, 351.17748, 341.17629, 281.13362, 261.12739 | Class II, Class IV, Class V |
NO. | Derivatized Compounds | Diagnostic Ions | Fragmentation Patterns |
---|---|---|---|
1 | 20β-Hydroxyprednisolone-4TMS | 325.20136 | [M-C8H21O2Si2-C8H8O]·+ |
2 | 20β-Hydroxyprednisone-3TMS | 251.14618 | [M-C8H21O2Si2-C8H8O]·+ |
3 | Betamethasone-3TMS | 177.10741 | [M-C11H31O4Si3-C8H8O]·+ |
4 | Budesonide-2TMS | 323.20370 | [M-C5H11O2Si-C8H8O]·+ |
5 | Ciclesonide-2TMS | 477.26669 | [M-CH3-C8H8O]·+ |
6 | Clobetasol-3TMS | 471.25767 | [M-Cl-C8H8O]·+ |
7 | Desisobutyryl-ciclesonide-2TMS | 363.23500 | [M-C5H11O2Si-C8H8O]·+ |
8 | Desonide-2TMS | 309.18805 | [M-C5H11O2Si-C8H8O]·+ |
9 | Flunisolide-2TMS | 309.18805 | [M-C5H11O2Si-C8H7OF]·+ |
10 | Fluorometholone-2TMS | 233.13562 | [M-C5H13O2Si-HF-C9H10O]·+ |
11 | Methylprednisolone-3TMS | 325.20136 | [M-C5H11O2Si-C9H10O]·+ |
12 | Prednisolone-4TMS | 528.29372 | [M-C8H8O]·+ |
206.11214 | [C12H18OSi]·+ | ||
13 | Prednisone-3TMS | 454.23854 | [M-C8H8O]·+ |
14 | Triamcinolone-4TMS | 341.17629 | [M-C8H21O3Si2-C8H8O]·+ |
NO. | Derivatized Compounds | Diagnostic Ions | Fragmentation Patterns |
---|---|---|---|
1 | Betamethasone-3TMS | 477.26510 | [M-C5H11O2Si]+ |
2 | Budesonide-2TMS | 443.26121 | [M-C5H11O2Si]+ |
3 | Cortisol-4TMS | 519.31405 | [M-C5H11O2Si]+ |
4 | Cortisone-3TMS | 445.25887 | [M-C5H11O2Si]+ |
5 | Desisobutyryl-ciclesonide-2TMS | 483.29251 | [M-C5H11O2Si]+ |
6 | Desonide-2TMS | 429.24556 | [M-C5H11O2Si]+ |
7 | Fludrocortisone-4TMS | 537.30462 | [M-C5H11O2Si]+ |
8 | Flunisolide-2TMS | 447.23614 | [M-C5H11O2Si]+ |
9 | Methylprednisolone-3TMS | 459.27452 | [M-C5H11O2Si]+ |
10 | Prednisolone-4TMS | 331.15755 | [C14H31O3Si3]·+ |
517.29840 | [M-C5H11O2Si]+ | ||
11 | Prednisone-3TMS | 331.15755 | [C14H31O3Si3]·+ |
12 | Tetrahydrocortisol-5TMS | 331.15755 | [C14H31O3Si3]·+ |
13 | Tetrahydrocortisone-4TMS | 331.15755 | [C14H31O3Si3]·+ |
14 | Triamcinolone-4TMS | 551.28389 | [M-C5H11O2Si]+ |
NO. | Derivatized Compounds | Diagnostic Ions | Fragmentation Patterns |
---|---|---|---|
1 | Betamethasone-3TMS | 477.26510-457.25887, 387.21501-367.20878, 297.16492-277.15869 | [M-HF]·+ |
2 | Clobetasol-3TMS | 501.26510-481.25887, 411.21501, 391.20878 | |
3 | Fludrocortisone-4TMS | 447.25454-427.24831, 357.20445-337.19822 | |
4 | Flunisolide-2TMS | 447.23614-427.22991, 299.14418-279.13796 | |
5 | Fluorometholone-2TMS | 387.21501-367.20878, 297.16492-277.15869 | |
6 | Triamcinolone-4TMS | 461.23380-441.22757, 371.18371-351.17748, 281.13362-261.12739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Y.; Liu, M.; Deng, X.; Liao, L. Derivatization-Enhanced Analysis of Glucocorticoids for Structural Characterization by Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry. Molecules 2024, 29, 200. https://doi.org/10.3390/molecules29010200
Ge Y, Liu M, Deng X, Liao L. Derivatization-Enhanced Analysis of Glucocorticoids for Structural Characterization by Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry. Molecules. 2024; 29(1):200. https://doi.org/10.3390/molecules29010200
Chicago/Turabian StyleGe, Yuqi, Mengpan Liu, Xiaojun Deng, and Lei Liao. 2024. "Derivatization-Enhanced Analysis of Glucocorticoids for Structural Characterization by Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry" Molecules 29, no. 1: 200. https://doi.org/10.3390/molecules29010200
APA StyleGe, Y., Liu, M., Deng, X., & Liao, L. (2024). Derivatization-Enhanced Analysis of Glucocorticoids for Structural Characterization by Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry. Molecules, 29(1), 200. https://doi.org/10.3390/molecules29010200