Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = hardening power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 7941 KiB  
Article
A Numerical Investigation of Plastic Energy Dissipation Patterns of Circular and Non-Circular Metal Thin-Walled Rings Under Quasi-Static Lateral Crushing
by Shunsong Guo, Sunting Yan, Ping Tang, Chenfeng Guan and Wei Zhang
Mathematics 2025, 13(15), 2527; https://doi.org/10.3390/math13152527 - 6 Aug 2025
Abstract
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are [...] Read more.
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are solved via numerical shooting methods. The theoretically predicted force-denting displacement relations agree excellently with both FEA and experimental results. The FEA simulation clearly reveals the coexistence of an upper moving plastic region and a fixed bottom plastic region. A robust automatic extraction method of the fully plastic region at the bottom from FEA is proposed. A modified criterion considering the unloading effect based on the resultant moment of cross-section is proposed to allow accurate theoretical estimation of the fully plastic region length. The detailed study implies an abrupt and almost linear drop of the fully plastic region length after the maximum value by the proposed modified criterion, while the conventional fully plastic criterion leads to significant over-estimation of the length. Evolution patterns of the upper and lower plastic regions in FEA are clearly illustrated. Furthermore, the distribution of plastic energy dissipation is compared in the bottom and upper regions through FEA and theoretical results. Purely analytical solutions are formulated for linear hardening material case by elliptical integrals. A simple algebraic function solution is derived without necessity of solving differential equations for general power-law hardening material case by adopting a constant curvature assumption. Parametric analyses indicate the significant effect of ovality and hardening on plastic region evolution and crushing force. This paper should enhance the understanding of the crushing behavior of circular and non-circular rings applicable to the structural engineering and impact of the absorption domain. Full article
(This article belongs to the Special Issue Numerical Modeling and Applications in Mechanical Engineering)
20 pages, 1890 KiB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 221
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

22 pages, 10412 KiB  
Article
Design and Evaluation of Radiation-Tolerant 2:1 CMOS Multiplexers in 32 nm Technology Node: Transistor-Level Mitigation Strategies and Performance Trade-Offs
by Ana Flávia D. Reis, Bernardo B. Sandoval, Cristina Meinhardt and Rafael B. Schvittz
Electronics 2025, 14(15), 3010; https://doi.org/10.3390/electronics14153010 - 28 Jul 2025
Viewed by 286
Abstract
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely [...] Read more.
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely used in data-path routing, clock networks, and reconfigurable systems, provides a critical benchmark for assessing radiation-hardened design methodologies. In this context, this work aims to analyze the power consumption, area overhead, and delay of 2:1 multiplexer designs under transient fault conditions, employing the CMOS and Differential Cascode Voltage Switch Logic (DCVSL) logic styles and mitigation strategies. Electrical simulations were conducted using 32 nm high-performance predictive technology, evaluating both the original circuit versions and modified variants incorporating three mitigation strategies: transistor sizing, D-Cells, and C-Elements. Key metrics, including power consumption, delay, area, and radiation robustness, were analyzed. The C-Element and transistor sizing techniques ensure satisfactory robustness for all the circuits analyzed, with a significant impact on delay, power consumption, and area. Although the D-Cell technique alone provides significant improvements, it is not enough to achieve adequate levels of robustness. Full article
Show Figures

Figure 1

41 pages, 16361 KiB  
Review
Progress on Sustainable Cryogenic Machining of Hard-to-Cut Material and Greener Processing Techniques: A Combined Machinability and Sustainability Perspective
by Shafahat Ali, Said Abdallah, Salman Pervaiz and Ibrahim Deiab
Lubricants 2025, 13(8), 322; https://doi.org/10.3390/lubricants13080322 - 23 Jul 2025
Viewed by 318
Abstract
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to [...] Read more.
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to maintain strength at high operating temperatures. Due to these characteristics, such materials are employed in applications such as aerospace, marine, energy generation, and structural. The purpose of this article is to investigate the machinability of these alloys under various cutting conditions. The purpose of this article is to compare cryogenic cooling and cryogenic processing from the perspective of machinability and sustainability in the manufacturing process. Compared to conventional machining, hybrid techniques, which mix cryogenic and minimal quantity lubricant, led to significantly reduced cutting forces of 40–50%, cutting temperatures and surface finishes by approximately 20–30% and more than 40%, respectively. A carbon footprint is determined by several factors including power consumption, energy requirements, and carbon dioxide emissions. As a result of the cryogenic technology, the energy consumption, power consumption, and CO2 emissions were reduced by 40%, 28%, and 35%. Full article
Show Figures

Figure 1

15 pages, 4528 KiB  
Article
Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors
by Alexey Dikov, Sergey Kislitsin, Boris Ivanov, Ruslan Kiryanov and Egor Maksimkin
Materials 2025, 18(14), 3391; https://doi.org/10.3390/ma18143391 - 19 Jul 2025
Viewed by 270
Abstract
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service [...] Read more.
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service life of nuclear reactors is a modern problem, since most operating reactors are early-generation reactors that have exhausted their design lifespan. The possibility of extending the service life is largely determined by the condition of the structural materials of the nuclear facility, i.e., their residual resources must ensure safe operation of the reactor. For the SAV-1 alloy, the structural material of the WWR-K reactor, studies were conducted on witness samples which were in the active zone during its operation for 56 years. It was found that yield strength and tensile strength of the irradiated SAV-1 alloy decreased by 24–48%, and relative elongation decreased by ~2% compared to the unirradiated alloy. Inside the grains and along their boundaries, there were particles of secondary phases enriched with silicon, which is typical for aged aluminum alloys. For irradiated structural steels of power reactors, studied at 350–450 C, hardening and a damping nature of creep were revealed, caused by dispersion hardening and the Hall–Petch effect. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

24 pages, 8373 KiB  
Article
Simple Strain Gradient–Divergence Method for Analysis of the Nanoindentation Load–Displacement Curves Measured on Nanostructured Nitride/Carbonitride Coatings
by Uldis Kanders, Karlis Kanders, Artis Kromanis, Irina Boiko, Ernests Jansons and Janis Lungevics
Coatings 2025, 15(7), 824; https://doi.org/10.3390/coatings15070824 - 15 Jul 2025
Viewed by 599
Abstract
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up [...] Read more.
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up to ~415 GPa. A novel empirical method was applied to extract stress–strain field (SSF) gradient and divergence profiles from nanoindentation load–displacement data. These profiles revealed complex, depth-dependent oscillations attributed to alternating strain-hardening and strain-softening mechanisms. Fourier analysis identified dominant spatial wavelengths, DWL, ranging from 4.3 to 42.7 nm. Characteristic wavelengths WL1 and WL2, representing fine and coarse oscillatory modes, were 8.2–9.2 nm and 16.8–22.1 nm, respectively, aligning with the superlattice period and grain-scale features. The hyperfine structure exhibited non-stationary behavior, with dominant wavelengths decreasing from ~5 nm to ~1.5 nm as the indentation depth increased. We attribute the SSF gradient and divergence spatial oscillations to alternating strain-hardening and strain-softening deformation mechanisms within the near-surface layer during progressive loading. This cyclic hardening–softening behavior was consistently observed across all NSC samples, suggesting it represents a general phenomenon in thin film/substrate systems under incremental nanoindentation loading. The proposed SSF gradient–divergence framework enhances nanoindentation analytical capabilities, offering a tool for characterizing thin-film coatings and guiding advanced tribological material design. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Graphical abstract

16 pages, 3637 KiB  
Article
A Radiation-Hardened Low-Power SRAM with Enhanced Write Capability for Space Applications
by Sang-Jin Kim and Sung-Hun Jo
Appl. Sci. 2025, 15(13), 6988; https://doi.org/10.3390/app15136988 - 20 Jun 2025
Viewed by 302
Abstract
With continued scaling of CMOS technology, the critical charge required for state retention in SRAM cells has decreased, leading to increased vulnerability to radiation-induced soft errors such as single-event upsets (SEUs) and single-event multi-node upsets (SEMNUs) in space environments. To address these reliability [...] Read more.
With continued scaling of CMOS technology, the critical charge required for state retention in SRAM cells has decreased, leading to increased vulnerability to radiation-induced soft errors such as single-event upsets (SEUs) and single-event multi-node upsets (SEMNUs) in space environments. To address these reliability challenges, this paper proposes a 16-transistor radiation-hardened SRAM cell, EWS-16T, designed to improve resilience against soft errors. The performance of the proposed EWS-16T cell was evaluated through the 90 nm CMOS process and compared with previously reported radiation-hardened cells, including QCCS, SCCS, SAW16T, HP16T, RHSCC16T, and S8P8N. The results show that EWS-16T achieves the shortest write access time (22.11 ps) and the highest word line write trip voltage (WWTV) (279 mV) among all comparison cells. In addition, it demonstrates excellent performance in terms of critical charge tolerance (>300 fC) and low hold power consumption (53 nW). Furthermore, a comprehensive performance evaluation using the electrical quality metric (EQM) confirms that the EWS-16T cell achieves an outstanding balance among write efficiency, power consumption, and soft error resilience. These results indicate that EWS-16T is a highly promising SRAM design capable of ensuring reliable operation even in radiation-intensive space environments. Full article
Show Figures

Figure 1

20 pages, 3369 KiB  
Article
Resilience Investment Against Extreme Weather Events Considering Critical Load Points in an Active Microgrid
by Avishek Sapkota and Rajesh Karki
Appl. Sci. 2025, 15(13), 6973; https://doi.org/10.3390/app15136973 - 20 Jun 2025
Viewed by 363
Abstract
The increasing frequency and severity of extreme weather events pose significant threats to power systems, particularly at the distribution level. The most detrimental consequence of such events is observed in critical loads due to high outage costs. As a result, there is a [...] Read more.
The increasing frequency and severity of extreme weather events pose significant threats to power systems, particularly at the distribution level. The most detrimental consequence of such events is observed in critical loads due to high outage costs. As a result, there is a pressing need for utilities to invest in enhancing system resilience, which requires a comprehensive resilience investment framework and metrics to evaluate system performance. This paper proposes a distribution system resilience assessment framework to guide strategic investment decisions. The framework incorporates a mathematical model that estimates system restoration time after an extreme event, considering the criticality of loads, the interdependence of component failures and repair sequences, and the availability of repair crews. In addition, two new resilience metrics—disconnected load point hours (DLH) and normalized DLH (NDLH)—are introduced, which provide a more comprehensive view of system resilience by reflecting both vulnerability and the ability to withstand and recover from extreme events. Case studies are performed on a modified IEEE 69-bus test system utilizing the developed framework. The results evaluate the effectiveness of different resilience investment strategies, including infrastructure hardening, distributed energy resources management, and repair process coordination, in improving the system resilience for maintaining the critical loads and the overall distribution system. Full article
(This article belongs to the Special Issue Smart Grids and Batteries for Sustainable Power Energy System)
Show Figures

Figure 1

14 pages, 2240 KiB  
Article
A Low-Power Read-Decoupled Radiation-Hardened 16T SRAM for Space Applications
by Sung-Jun Lim and Sung-Hun Jo
Appl. Sci. 2025, 15(12), 6536; https://doi.org/10.3390/app15126536 - 10 Jun 2025
Viewed by 440
Abstract
Advancements in CMOS technology have significantly reduced both transistor dimensions and inter-device spacing, leading to a lower critical charge at sensitive nodes. As a result, SRAM cells used in space applications have become increasingly vulnerable to single-event upset (SEU) caused by the harsh [...] Read more.
Advancements in CMOS technology have significantly reduced both transistor dimensions and inter-device spacing, leading to a lower critical charge at sensitive nodes. As a result, SRAM cells used in space applications have become increasingly vulnerable to single-event upset (SEU) caused by the harsh radiation environment. To ensure reliable operation under such conditions, radiation-hardened SRAM designs are essential. In this paper, we propose a low-power read-decoupled radiation-hardened 16T (LDRH16T) SRAM cell to mitigate the effects of SEU. The proposed cell is evaluated against several state-of-the-art soft-error-tolerant SRAM designs, including QUCCE12T, WE-QUATRO, RHBD10T, SIS10T, EDP12T, SEA14T, and SAW16T. Simulations are conducted using a 90 nm CMOS process at a supply voltage of 1 V and a temperature of 27 °C. Simulation results show that LDRH16T successfully recovers its original state after injection at all sensitive nodes. Furthermore, since its storage nodes are decoupled from the bit lines during read operations, the proposed cell achieves the highest read stability among the compared designs. It also exhibits superior write ability, shorter write delay, and significantly lower hold power consumption. In addition, LDRH16T demonstrates excellent overall performance across key evaluation metrics and proves its capability for reliable operation in space environments. Full article
Show Figures

Figure 1

16 pages, 2820 KiB  
Article
Rutting Behavior of Dual-Layer Asphalt Pavements Subjected to Variable Temperature
by Ya Tan, Yingjun Jiang, Chenfan Bai, Hongjiang Zhang, Yingchao Liang, Wenhui Lou and Zhejiang Chen
Materials 2025, 18(11), 2603; https://doi.org/10.3390/ma18112603 - 3 Jun 2025
Viewed by 445
Abstract
Traditional laboratory rutting tests are performed at a constant temperature by neglecting pavement temperature variation. The mechanical properties of asphalt are susceptible to temperature variation. This sensitivity to temperature variations significantly influences the performance and durability of asphalt pavements. Following this purpose, a [...] Read more.
Traditional laboratory rutting tests are performed at a constant temperature by neglecting pavement temperature variation. The mechanical properties of asphalt are susceptible to temperature variation. This sensitivity to temperature variations significantly influences the performance and durability of asphalt pavements. Following this purpose, a stepwise temperature-controlled rutting test method was proposed to investigate the rutting development of double-layer asphalt pavement (DLAP) under variable temperature. A time-hardening model was developed and employed to evaluate the rutting performance of DLAP under variable temperature. Results indicate that the rutting development of DLAP exhibits a stepwise variation when subjected to variable temperatures. Within a specific constant temperature range, rutting development can be fitted using a power function of load cycles. The rutting deformation of DLAP predominantly occurs at 20 °C; once the temperature exceeds 50 °C, the rutting development accelerates and becomes difficult to stabilize. The time-hardening model effectively captures the rutting development under variable temperature. The predicted values align closely with field values, which demonstrates the model’s feasibility in calculating rutting deformation under variable temperature. Under actual service conditions, the rutting development of DLAP follows a periodic S-shaped growth, yet this trend can still be represented by a power-law function. DLAP exhibits satisfactory durability and structural stability, effectively addressing the challenges posed by traffic loads and high temperatures in test sections. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 2426 KiB  
Article
Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics and Armands Leitans
Coatings 2025, 15(6), 674; https://doi.org/10.3390/coatings15060674 - 1 Jun 2025
Cited by 1 | Viewed by 548
Abstract
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high [...] Read more.
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high nanohardness (39–59 GPa), low friction, and excellent wear resistance. A novel analytical approach was introduced to extract stress–strain field (SSF) gradients and divergences from nanoindentation data, revealing alternating strain-hardening and strain-softening cycles beneath the incrementally loaded indenter. The discovered oscillatory behavior, consistent across all samples under the investigation, suggests a general deformation mechanism in thin films under incremental loading. Fourier analysis of the SSF gradient oscillatory pattern revealed a variety of characteristic dominant wavelengths within the length-scale interval (0.84–8.10) nm, indicating multi-scale nanomechanical responses. Additionally, the NTC samples display an anisotropic coating morphology exhibited as unidirectional undulating surface roughness waves, potentially attributed to atomic shadowing, strain-induced instabilities, and limited adatom diffusion. These findings deepen our understanding of nanoscale deformation in advanced PVD coatings and underscore the utility of SSF analysis for probing thin-film mechanics. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

14 pages, 4290 KiB  
Article
RHLP-18T: A Radiation-Hardened 18T SRAM with Enhanced Read Stability and Low Power Consumption
by Han-Gyeol Kim and Sung-Hun Jo
Appl. Sci. 2025, 15(10), 5712; https://doi.org/10.3390/app15105712 - 20 May 2025
Viewed by 461
Abstract
Electronic equipment in space is constantly exposed to high-energy particles, which can induce Single Event Upsets (SEUs) in memory components, threatening system reliability. To address this critical challenge, we propose RHLP-18T, a radiation-hardened 18-transistor (18T) Static Random-Access Memory (SRAM) cell designed to enhance [...] Read more.
Electronic equipment in space is constantly exposed to high-energy particles, which can induce Single Event Upsets (SEUs) in memory components, threatening system reliability. To address this critical challenge, we propose RHLP-18T, a radiation-hardened 18-transistor (18T) Static Random-Access Memory (SRAM) cell designed to enhance robustness against radiation-induced faults. The proposed cell integrates circuit-level Radiation-Hardened-by-Design (RHBD) techniques to mitigate both SEUs and multi-node upsets. Comprehensive simulations were conducted using 90 nm CMOS technology, benchmarking RHLP-18T against nine existing RHBD cells (RHBD14T, HPHS12T, NRHC14T, QCCS12T, RHMC12T, RHWC12T, SEA14T, SIMR-18T, and SERSC16T). Simulation results demonstrate that the proposed RHLP-18T cell exhibits superior SEU tolerance, achieving a Read Static Noise Margin (RSNM) over three times higher than the next best design. Moreover, the proposed cell achieves the lowest hold power consumption among all evaluated cells. These improvements result in the highest Figure of Merit (FOM), indicating that RHLP-18T provides an optimal trade-off between robustness and overall performance for operation in radiation-exposed environments. Full article
Show Figures

Figure 1

18 pages, 7543 KiB  
Article
Effects of Prior Heat Treatment and Induction Hardening on the Properties of JIS SUJ3 Bearing Steel
by Shao-Quan Lu, Liu-Ho Chiu, Pei-Jung Chang and Chung-Kwei Lin
Materials 2025, 18(8), 1797; https://doi.org/10.3390/ma18081797 - 15 Apr 2025
Viewed by 481
Abstract
Bearing steels are frequently used in highly loaded components, such as roller bearings, due to their excellent hardenability and wear resistance. Microstructure, hardness, and residual stress distribution of the bearings significantly affect the wear resistance of the parts. In the present study, experiments [...] Read more.
Bearing steels are frequently used in highly loaded components, such as roller bearings, due to their excellent hardenability and wear resistance. Microstructure, hardness, and residual stress distribution of the bearings significantly affect the wear resistance of the parts. In the present study, experiments investigated the effects of austenitizing temperature (850, 900, and 950 °C), with or without cryogenic treatment, and induction hardening treatment (9 and 12 kW) on the microstructure, microhardness, the amount of retained austenite, surface residual stress, and wear behavior of JIS SUJ3 steel. The experimental results revealed that the austenitized specimens’ microstructure consisted of martensite, retained austenite, and dispersed granular alloy carbide exhibiting high hardness. After cryogenic or induction hardening treatment, the surface residual stress of austenitized specimens exhibited compressive stress rather than its original tensile stress state. The induction hardening treatment can significantly increase the microhardness of austenitized specimens, followed by quenching. Furthermore, the induction-hardened surface possessed less retained austenite. For practical industrial applications, a prior austenitizing heat treatment at 950 °C followed by hardening with an induction power of 12 kW was the optimal parameter for JIS SUJ3 bearing steel. The maximum microhardness and surface residual stress were 920 HV0.3 and −1083 MPa, respectively, while the lowest weight loss was 0.5 mg after the 10,000-revolution wear test. Full article
Show Figures

Figure 1

12 pages, 6351 KiB  
Article
The Effect of Heat Input on the Microstructure and Mechanical Properties of Laser-Backing Welded X80 Steel
by Changjiang Wang, Gang Wei, Xiaosong Shi, Feng Wang, Shimin Zhang, Meimei Yang, Chen Yan and Songyang Li
Crystals 2025, 15(4), 359; https://doi.org/10.3390/cryst15040359 - 14 Apr 2025
Viewed by 504
Abstract
The research and related tests aimed to investigate the effect of different heat inputs on the microstructure and properties of the joint when using laser-backing welding for X80 steel, with the purpose of guiding a reasonable adjustment of heat inputs to obtain a [...] Read more.
The research and related tests aimed to investigate the effect of different heat inputs on the microstructure and properties of the joint when using laser-backing welding for X80 steel, with the purpose of guiding a reasonable adjustment of heat inputs to obtain a sound and high-quality joint, and ultimately laying the foundation for the engineering application of laser-backing welding. The fiber-laser-backing welding is performed on a 22 mm thick X80 steel, before which a groove is prepared and assembled; joints were obtained under different heat inputs (162, 180, 210, 270 J/mm) with orthogonal combinations of laser power and welding speed. The microstructure and properties of the joints were characterized by using an optical microscope, scanning electron microscope, and microhardness tester. According to this investigation, the morphology of the joint is directly affected by the heat input, and insufficient heat input (<180 J/mm) will lead to an unacceptable weld profile. The width of the weld and heat-affected zone gets bigger as the heat input increases. The hardness nephograms of the joints under different heat inputs show that the weld has the highest hardness, followed by the coarse-grain heat-affected zone and the fine-grain heat-affected zone, sequentially. The less heat input, the lower the joint hardness; when the heat input increases to 270 J/mm, the coarse-grain zone near the fusion line shows obvious hardening. In addition, heat input also affects the impact toughness of the weld. The grain size of X80 steel with a lower content of niobium easily becomes coarse under excessive heat input (270 J/mm), resulting in the degradation of the grain-boundary slip ability; hence, the impact toughness of the joint deteriorates. The optimal heat input of 210 J/mm was identified, achieving a grain size of nearly 14 µm and providing a balanced combination of lower strength and higher impact toughness. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

22 pages, 3629 KiB  
Review
Replacing Sand in Concrete: Review on Potential for Utilization of Bottom Ash from Combustion of Wood in Circulating Fluidized Bed Boilers
by Anders Hedegaard Jensen, Carola K. Edvardsen and Lisbeth M. Ottosen
Recycling 2025, 10(2), 73; https://doi.org/10.3390/recycling10020073 - 14 Apr 2025
Viewed by 1285
Abstract
Aggregates such as sand and gravel are the most mined resources on Earth and are the largest component in concrete. They are essential for construction but are becoming increasingly scarce. At the same time, large amounts of biomass ashes are produced in wood-fired [...] Read more.
Aggregates such as sand and gravel are the most mined resources on Earth and are the largest component in concrete. They are essential for construction but are becoming increasingly scarce. At the same time, large amounts of biomass ashes are produced in wood-fired power plants, offering potential as a partial substitute for decreasing sand resources. Due to the combustion technology of circulating fluidized bed boilers, their bottom ash offers high potential as a viable alternative to natural sand. This review examines previous research to assess the feasibility of replacing sand in concrete with bottom ash. Specific cementitious products are identified, where the substitution could realistically be performed in the concrete industry. Benefits and issues with partial substitution of bottom ash from wood combustion are discussed, and gaps in the research regarding sand replacements with bottom ash, notably the durability of the resulting concrete, are shown. Bottom ash has positive properties relevant for use in mortar and concrete, both regarding physical and chemical properties. Although limited research exists in the field, several researchers have demonstrated promising results when substituting sand for bottom ash in mortars. For lower substitution levels, little effect on the fresh and hardened properties is found. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

Back to TopTop