The Effect of Heat Input on the Microstructure and Mechanical Properties of Laser-Backing Welded X80 Steel
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Laser Welding
2.2.2. Microstructure and Microhardness Distribution Test
2.2.3. Impact Toughness and Fracture Analysis
3. Results and Discussion
3.1. Effect of Heat Input on the Weld Formation
3.2. Effect of Heat Input on Microstructure
3.3. Effect of Heat Input on the Joint Hardness
3.4. Effect of Heat Input on the Impact Toughness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, R.J.; Ji, L.K.; Li, W.W.; Liu, Y.; Huo, C. Progress and prospects of research and application of X80 pipeline steel and steel pipe in China. Oil Gas Storage Transp. 2020, 39, 612–618. [Google Scholar]
- Yang, Y.H.; Shi, L.; Xu, Z.; Lu, H.S.; Chen, X.; Wang, X. Fracture toughness of the materials in welded joint of X80 pipeline steel. Eng. Fract. Mech. 2015, 148, 337–349. [Google Scholar] [CrossRef]
- Xu, K. Comprehensive Study on Fatigue Properties of Welded Joints of X80 Welded Pipe. Ph.D. Thesis, Yanshan University, Qinhuangdao, China, 2020. [Google Scholar]
- Yan, C.Y.; Zhang, H.; Zhu, Z.J.; Zhang, K.Z.; Gu, Z.J.; Wang, B.S. Residual stress analysis of X80 pipeline steel by multi pass laser MIG hybrid welding. Trans. China Weld. Inst. 2021, 42, 28–34. [Google Scholar]
- Zhang, J.X.; Li, X.T.; Wang, J. Laser wobble welding process of SUS316 stainless steel. Appl. Laser 2022, 42, 24–32. [Google Scholar]
- Lei, Z.L.; Chen, Y.B.; Song, G.X.; Wang, Q. Weld appearance of CO2 laser-gas metal arc hybrid welding for ultra-low carbon bainitic steel. Chin. J. Lasers 2009, 36, 3068–3073. [Google Scholar]
- Akyel, F.; Üstündag, Ö.; Bakir, N.; Brunner-Schwer, C.; Gumenyuk, A.; Rethmeier, M. Influence of heat input on cooling rates and mechanical properties of laser hybridwelded thick structural steels. Weld. World 2025. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Min, L.; Xiao, B.Z.; Xue, L.; Zhao, S.Z.; Shen, J.B.; Xu, C.F. Effect of Heat Input on the Metal Microstructure and Mechanical Properties of Q960 High-Strength Steel Solid Core Welding Wire. Steel Res. Int. 2024, 95, 2400060. [Google Scholar] [CrossRef]
- Zou, D.M.; Qi, J.G.; Zhao, L.; Cao, Y. Effect of welding speed on bead appearance and low temperature impact toughness in lase-arc hybrid welding. Chin. J. Lasers 2022, 49, 0802014. [Google Scholar]
- Yang, J.W.; Chen, J.L.; Li, T.; Xiao, H.; Qiao, J. Study on microstructure and properties of QP980 high strength steel joint welded by small laser spot welding. Appl. Laser 2023, 43, 37–42. [Google Scholar]
- Zhang, Q.B.; Ren, L.N.; Lei, X.W.; Yang, J.D.; Zhang, K.; Zhang, J.X. Effect of Laser Heat Input on the Microstructures and Low-Cycle Fatigue Properties of Ti60 Laser Welded Joints. Crystals 2024, 14, 677. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.N.; Huan, P.C.; Liu, Z.G.; Zhang, M.; Chen, C.J.; Hu, Z.R. Effect of heat input on microstructure and properties of CP800 complex phase steel laser welded joints. Appl. Laser 2018, 38, 562–569. [Google Scholar]
- Jiang, B.; Huang, R.S.; Lei, Z.; Cao, H.; Sun, Q. Research status of 10kW level fiber laser welding technique of medium steel plate. Weld. Join. 2020, 2, 42–48. [Google Scholar]
- Jacek, G. Assessment of the effect of laser welding on the properties and structure of TMCP steel butt Joint. Materials 2020, 13, 1312. [Google Scholar] [CrossRef] [PubMed]
- Suder, W.; Ganguly, S.; Williams, S.; Yudodibroto, B. Root stability in hybrid laser welding. J. Laser Appl. 2017, 29, 022410. [Google Scholar] [CrossRef]
- Ramachandran, O.; Palaniyandi, K.; Natarajan, A. Metallurgical and mechanical properties of laser welded high strength low alloy steel. J. Adv. Res. 2016, 7, 463–472. [Google Scholar]
- Ribic, B.; Palmer, T.A.; Debroy, T. Problems and issues in laser-arc hybrid welding. Int. Mater. Rev. 2009, 54, 223. [Google Scholar] [CrossRef]
- Chen, T.W.; Wang, X.Y.; Xie, J.; Bai, N.; Peng, H.B.; Leng, C.; Xiong, Z.H. Laser-MIG hybrid welding of high-strength marine steel. Ordnance Mater. Sci. Eng. 2023, 46, 125–131. [Google Scholar]
- David, H.; Qi, L.H.; Huo, C.Y.; José, B.B.; Marcos, A.S.N.; Frank, J.B.; Zhang, Y.Q. X80 line pipes with several typical alloy designs and their girth welds. Pet. Tubul. GoodsInstr. 2021, 7, 55–61. [Google Scholar]
- Jin, J.D. A discussion on the heat input formula of welding. Weld. Join. 2001, 6, 42–43. [Google Scholar]
- Barbaro, F.; Zhu, Z.X.; Lenka, K.; Li, H.J.; Gray, J.M. Towards improved steel alloy designs for control of weld heat affected zone properties. In Proceedings of the 5th Baosteel Biennial Academic Conference, Shanghai, China, 4–6 June 2013; pp. 89–96. [Google Scholar]
- Liu, Q.Y. The alloy design and weldability of high performance pipeline steels. In Proceedings of the International Conference on Pipelines and Linepipe Steels, Xi’an, China, 27 April 2015. [Google Scholar]
Reference | Material Studied | Key Findings | Relevance to Current Study on X80 Laser Welding |
---|---|---|---|
Zou et al. [9] | Marine HSLA steel | Toughness peaks at an intermediate welding speed of 1.8 m/min. | Validates the optimization of welding speed (1.5–3 m/min) to balance penetration and toughness. |
Yang et al. [10] | QP980 steel | High heat input reduces ductility, but fracture remains ductile. | Supports controlled heat input to avoid over-hardening in X80 welds. |
Yang et al. [11] | CP800 steel | Higher heat input (52.5 J/mm) improves joint elongation. | Highlights need to balance heat input for X80: excessive energy risks grain coarsening; insufficient energy limits penetration. |
Jiang et al. [12] | X80 steel | A 10 kW laser achieves high-aspect-ratio (12:1) welds, reducing interlayer steps. | Justifies the use of 10 kW IPG LS-10000 laser for the single-pass welding of thick X80 plates. |
Jacek [13] | General steels | Keyhole welding enables full penetration with minimal deformation and no filler. | Guides parameter selection for keyhole stability in X80 welding to avoid spatter and root defects. |
Suder et al. [14] | General steels | Keyhole stability requires balanced energy density (8–10 kJ/cm2). | Provides threshold energy criteria for X80 deep-penetration welding to ensure smooth root profiles. |
Ramachandran [15] | HSLA steel | Penetration depth increases as welding speed decreases. | Welding parameter optimization for X80: laser power (8–12 kW) vs. speed (1.2–2.4 m/min). |
Ribic et al. [16] | Pipeline steels | Low heat input refines microstructure and toughness. | Aligns with X80 study’s goal to minimize HAZ grain growth via controlled heat input (≤40 kJ/m). |
Chen et al. [17] | Marine high-strength | Heat input directly expands HAZ size and peak emperature. | Emphasizes need to correlate X80 cooling rates (80–150 °C/s) with HAZ phase transformations. |
Han et al. [18] | X80 steel | Higher Nb content (0.08%) inhibits austenite grain growth, improving HAZ toughness. | Confirms microalloying strategy for X80 to enhance weld-zone toughness under varying heat inputs. |
Specimens | Mass Fraction of Chemical Elements | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Ni | Mo | Cr | Nb | Cu | V | Ti | Pcm | |
X80 | 0.07 | 0.21 | 1.71 | 0.009 | 0.002 | 0.13 | 0.09 | 0.17 | 0.05 | 0.12 | 0 | 0.014 | 0.185 |
SP1 | 0.047 | 0.22 | 1.67 | 0.009 | 0.001 | 0.18 | 0.11 | 0.21 | 0.055 | 0.11 | 0.007 | 0.016 | 0.16 |
SP2 | 0.063 | 0.22 | 1.70 | 0.010 | 0.002 | 0.21 | 0.24 | 0.24 | 0.067 | 0.01 | 0.005 | 0.009 | 0.19 |
SP3 | 0.05 | 0.20 | 1.62 | 0.008 | 0.002 | 0.26 | 0.17 | 0.24 | 0.071 | 0.015 | 0.006 | 0.013 | 0.17 |
SP4 | 0.044 | 0.18 | 1.69 | 0.010 | 0.002 | 0.18 | 0.21 | 0.23 | 0.079 | 0.18 | 0.005 | 0.014 | 0.17 |
SP5 | 0.056 | 0.20 | 1.82 | 0.010 | 0.002 | 0.06 | 0.17 | 0.32 | 0.085 | 0.06 | 0.038 | 0.012 | 0.19 |
Laser Power /kW | Welding Speed /(m·min−1) | Defocusing /mm | Root Gap (mm) | Shielding-Gas Flow Rate /(L·min−1) | Heat Input /(J·mm−1) |
---|---|---|---|---|---|
3.5 | 1.0 | −2 | 0.4 | 25 | 210 |
3.5 | 1.3 | −2 | 0.4 | 25 | 162 |
4.5 | 1.5 | −2 | 0.4 | 25 | 180 |
4.5 | 1.0 | −2 | 0.4 | 25 | 270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wei, G.; Shi, X.; Wang, F.; Zhang, S.; Yang, M.; Yan, C.; Li, S. The Effect of Heat Input on the Microstructure and Mechanical Properties of Laser-Backing Welded X80 Steel. Crystals 2025, 15, 359. https://doi.org/10.3390/cryst15040359
Wang C, Wei G, Shi X, Wang F, Zhang S, Yang M, Yan C, Li S. The Effect of Heat Input on the Microstructure and Mechanical Properties of Laser-Backing Welded X80 Steel. Crystals. 2025; 15(4):359. https://doi.org/10.3390/cryst15040359
Chicago/Turabian StyleWang, Changjiang, Gang Wei, Xiaosong Shi, Feng Wang, Shimin Zhang, Meimei Yang, Chen Yan, and Songyang Li. 2025. "The Effect of Heat Input on the Microstructure and Mechanical Properties of Laser-Backing Welded X80 Steel" Crystals 15, no. 4: 359. https://doi.org/10.3390/cryst15040359
APA StyleWang, C., Wei, G., Shi, X., Wang, F., Zhang, S., Yang, M., Yan, C., & Li, S. (2025). The Effect of Heat Input on the Microstructure and Mechanical Properties of Laser-Backing Welded X80 Steel. Crystals, 15(4), 359. https://doi.org/10.3390/cryst15040359