Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,037)

Search Parameters:
Keywords = greenhouse vegetable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 871 KiB  
Article
Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type
by Rafael Barbosa Diógenes Lienard, Annanda Souza de Campos, Lucas Graciolli Savian, Barbara Valentim de Oliveira, Felippe Coelho de Souza and Paulo André Trazzi
Forests 2025, 16(8), 1292; https://doi.org/10.3390/f16081292 (registering DOI) - 7 Aug 2025
Abstract
Swietenia macrophylla King, commonly known as Brazilian mahogany, is a high-value neotropical tree species currently threatened due to intensive logging in previous decades. Technologies aimed at clonal production are essential for this species’ conservation and sustainable use at times of climate change and [...] Read more.
Swietenia macrophylla King, commonly known as Brazilian mahogany, is a high-value neotropical tree species currently threatened due to intensive logging in previous decades. Technologies aimed at clonal production are essential for this species’ conservation and sustainable use at times of climate change and increasing demand for ecological restoration. The aim of the present study is to develop a low-cost protocol for mahogany clonal propagation through mini-cutting by assessing clonal mini-hedge nutrition, vegetative propagule type and indole-3-butyric acid (IBA) application effects on rooting and early clone growth. The experiment was conducted in nursery under controlled conditions based on using basal and apical mini-cuttings rooted in a low-cost mini-greenhouse subjected to three nutrient solution concentrations (50%, 100%, and 200%) and five IBA doses (0–8000 ppm). The mini-cutting technique proved efficient and led to over 90% survival after the hardening phase. The 200% nutrient solution concentration allowed balanced performance between cutting types and optimized clonal yield. IBA concentration at 4000 ppm accounted for higher root percentages at the bottom of the tube and the trend towards higher dry biomass production at 160 days. The results highlighted mini-cutting’s potential as a viable mahogany conservation and sustainable production technique. It also supported tropical forestry sector adaptation to challenges posed by climate change. Full article
17 pages, 1459 KiB  
Article
Assessing Controlled Traffic Farming as a Precision Agriculture Strategy for Minimising N2O Losses
by Bawatharani Raveendrakumaran, Miles Grafton, Paramsothy Jeyakumar, Peter Bishop and Clive Davies
Nitrogen 2025, 6(3), 63; https://doi.org/10.3390/nitrogen6030063 - 4 Aug 2025
Viewed by 158
Abstract
Intensive vegetable farming emits high nitrous oxide (N2O) due to traffic-induced compaction, highlighting the need for preventing nitrogen (N) losses through better traffic management. This study examined the effects of Controlled Traffic Farming (CTF) and Random Traffic Farming (RTF) on N [...] Read more.
Intensive vegetable farming emits high nitrous oxide (N2O) due to traffic-induced compaction, highlighting the need for preventing nitrogen (N) losses through better traffic management. This study examined the effects of Controlled Traffic Farming (CTF) and Random Traffic Farming (RTF) on N2O emissions using intact soil cores (diameter: 18.7 cm; depth: 25 cm) collected from a vegetable production system in Pukekohe, New Zealand. Soil cores from CTF beds, CTF tramlines, and RTF plots were analysed under fertilised (140 kg N/ha) and unfertilised conditions. N2O fluxes were monitored over 58 days using gas chambers. The fertilised RTF system significantly (p < 0.05) increased N2O emissions (5.4 kg N2O–N/ha) compared to the unfertilised RTF system (1.53 kg N2O–N/ha). The emission from fertilised RTF was 46% higher than the maximum N2O emissions (3.7 kg N2O–N/ha) reported under New Zealand pasture conditions. The fertilised CTF system showed a 31.6% reduction in N2O emissions compared to fertilised RTF and did not differ significantly from unfertilised CTF. In general, CTF has demonstrated some resilience against fertiliser-induced N2O emissions, indicating the need for further investigation into its role as a greenhouse gas mitigation strategy. Full article
Show Figures

Figure 1

21 pages, 1488 KiB  
Article
Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
by Gülcay Ercan Oğuztürk, Müberra Pulatkan, Cem Alparslan and Türker Oğuztürk
Plants 2025, 14(15), 2420; https://doi.org/10.3390/plants14152420 - 4 Aug 2025
Viewed by 187
Abstract
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The [...] Read more.
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The experiment was conducted under controlled greenhouse conditions using a sterile perlite medium. Rooting trays were placed on bottom-heated propagation benches maintained at a set temperature of 25 ± 2 °C to stimulate root formation. However, the actual rooting medium temperature—measured manually every four days from the perlite zone using a calibrated thermometer—ranged between 18 °C and 22 °C, with an overall average of approximately 20 ± 2 °C. The average values of these root-zone temperatures were used in the statistical analyses. Rooting percentage, root number, root length, callus formation, and mortality rate were recorded after 120 days. In addition to classical one-way ANOVA, response surface methodology (RSM) was employed to model and optimize the interactions between auxin type, concentration, and temperature. The results revealed that 5000 ppm IBA significantly enhanced rooting performance, yielding the highest rooting percentage (85%), average root number (5.80), and root length (6.30 cm). RSM-based regression models demonstrated strong predictive power, with the model for rooting percentage explaining up to 92.79% of the total variance. Temperature and auxin concentration were identified as the most influential linear factors, while second-order and interaction terms—particularly T·ppm—contributed substantially to root length variation. These findings validate IBA as the most effective exogenous auxin for the vegetative propagation of Photinia × fraseri Dress. and provide practical recommendations for optimizing hormone treatments. Moreover, the study offers a robust statistical modeling framework that can be applied to similar propagation systems in woody ornamental plants. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

16 pages, 6389 KiB  
Article
Biocontrol Potential of Rhizosphere Bacteria Against Fusarium Root Rot in Cowpea: Suppression of Mycelial Growth and Conidial Germination
by Qinghua Zhu, Yixuan Ma, Tong Zhang, Weirong Liu, Songbai Zhang, Yue Chen, Di Peng and Xin Zhang
Biology 2025, 14(8), 921; https://doi.org/10.3390/biology14080921 - 23 Jul 2025
Viewed by 277
Abstract
The cultivation of cowpea (Vigna unguiculata), a vital vegetable crop, faces significant threats from Fusarium spp.-induced root rot. In this study, three fungal pathogens (Fusarium falciforme HKFf, Fusarium incarnatum HKFi, and Fusarium oxysporum HKFo) were isolated from symptomatic cowpea plants, [...] Read more.
The cultivation of cowpea (Vigna unguiculata), a vital vegetable crop, faces significant threats from Fusarium spp.-induced root rot. In this study, three fungal pathogens (Fusarium falciforme HKFf, Fusarium incarnatum HKFi, and Fusarium oxysporum HKFo) were isolated from symptomatic cowpea plants, and we screened 90 rhizobacteria from healthy rhizospheres using six culture media. Among these pathogens, Priestia megaterium TSA-10E showed a notable suppression of F. oxysporum HKFo (63.21%), F. incarnatum HKFi (55.16%), and F. falciforme HKFf (50.93%). In addition, Bacillus cereus KB-6 inhibited the mycelial growth of F. incarnatum HKFi and F. oxysporum HKFo by 42.39% and 47.93%, respectively. Critically, cell-free filtrates from P. megaterium TSA-10E and B. cereus KB-6 cultures reduced conidial germination in F. oxysporum HKFo and F. incarnatum HKFi, highlighting their role in disrupting the early infection stages. In greenhouse trials, TSA-10E and KB-6 reduced disease severity by 48.7% and 40.4%, respectively, with treated plants maintaining healthy growth while untreated controls succumbed to wilting. Broad-spectrum assays revealed that B. subtilis TSA-6E and P. megaterium TSA-10E were potent antagonists against both economic and grain crop pathogens. These findings underscore the potential of rhizobacteria as sustainable biocontrol agents for managing root rot disease caused by Fusarium spp. in cowpea cultivation. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants (2nd Edition))
Show Figures

Figure 1

26 pages, 5423 KiB  
Article
Using System Thinking to Identify Food Wastage (FW) Leverage Points in Four Different Food Chains
by Annelies Verspeek-van der Stelt, Frederike Praasterink, Evelot Westerink-Duijzer, Ayella Spaapen, Woody Maijers and Antien Zuidberg
Sustainability 2025, 17(14), 6523; https://doi.org/10.3390/su17146523 - 16 Jul 2025
Viewed by 310
Abstract
About one third of all food produced for human consumption is lost or wasted, leading to societal, economic and environmental challenges. This study identifies the most important food wastage (FW) leverage points and their interrelations with specific food chains. Semi-structured interviews were conducted [...] Read more.
About one third of all food produced for human consumption is lost or wasted, leading to societal, economic and environmental challenges. This study identifies the most important food wastage (FW) leverage points and their interrelations with specific food chains. Semi-structured interviews were conducted across four different food chains (milk, poultry, potatoes and greenhouse-grown fruit and vegetables) from primary production to food service. The outcomes of the interviews were summarized via a systems approach and validated during co-creation sessions. A total of twenty-two FW leverage points were identified across the food chains, consisting of four major hotspots, six patterns of behaviours, six structures and six mental models. Common transformative leverage points across all food chains were damaged products, oversupply, regulations and standards that limit product use and a lack of prioritization of FW reduction. Additionally, this study found that co-creation sessions with stakeholders from across the food chains could facilitate the formation of coalitions of willing companies, encouraging collaborative efforts to reduce FW. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

21 pages, 5735 KiB  
Article
Estimation of Tomato Quality During Storage by Means of Image Analysis, Instrumental Analytical Methods, and Statistical Approaches
by Paris Christodoulou, Eftichia Kritsi, Georgia Ladika, Panagiota Tsafou, Kostantinos Tsiantas, Thalia Tsiaka, Panagiotis Zoumpoulakis, Dionisis Cavouras and Vassilia J. Sinanoglou
Appl. Sci. 2025, 15(14), 7936; https://doi.org/10.3390/app15147936 - 16 Jul 2025
Viewed by 309
Abstract
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays [...] Read more.
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays (including total phenolic content and antioxidant and antiradical activity assessments), and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy. Additionally, water activity, moisture content, total soluble solids, texture, and color were evaluated. Most physicochemical changes occurred between days 14 and 17, without major impact on overall fruit quality. A progressive transition in peel hue from orange to dark orange, and increased surface irregularity of their textural image were noted. Moreover, the combined use of instrumental and image analyses results via multivariate analysis allowed the clear discrimination of tomatoes according to storage days. In this sense, tomato samples were effectively classified by ATR-FTIR spectral bands, linked to carotenoids, phenolics, and polysaccharides. Machine learning (ML) models, including Random Forest and Gradient Boosting, were trained on image-derived features and accurately predicted shelf life and quality traits, achieving R2 values exceeding 0.9. The findings demonstrate the effectiveness of combining imaging, spectroscopy, and ML for non-invasive tomato quality monitoring and support the development of predictive tools to improve postharvest handling and reduce food waste. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

27 pages, 1957 KiB  
Article
Vegetable Productivity, Soil Physicochemical and Biochemical Properties, and Microbiome in Response to Organic Substitution in an Intensive Greenhouse Production System
by Xing Liu, Haohui Xu, Yanan Cheng, Ying Zhang, Yonggang Li, Fei Wang, Changwei Shen and Bihua Chen
Agriculture 2025, 15(14), 1493; https://doi.org/10.3390/agriculture15141493 - 11 Jul 2025
Viewed by 289
Abstract
Partial substitution of mineral N fertilizer with manure (organic substitution) is considered as an effective way to reduce N input in intensive agroecosystems. Here, based on a 3-year field experiment, we assessed the influence of different organic substitution ratios (15%, 30%, 45%, and [...] Read more.
Partial substitution of mineral N fertilizer with manure (organic substitution) is considered as an effective way to reduce N input in intensive agroecosystems. Here, based on a 3-year field experiment, we assessed the influence of different organic substitution ratios (15%, 30%, 45%, and 60%, composted chicken manure applied) on vegetable productivity and soil physicochemical and biochemical properties as well as microbiome (metagenomic sequencing) in an intensive greenhouse production system (cucumber-tomato rotation). Organic substitution ratio in 30% got a balance between stable vegetable productivity and maximum N reduction. However, higher substitution ratios decreased annual vegetable yield by 23.29–32.81%. Organic substitution (15–45%) improved soil fertility (12.18–19.94% increase in soil total organic carbon content) and such improvement was not obtained by higher substitution ratio. Soil mean enzyme activity was stable to organic substitution despite the activities of some selected enzymes changed (catalase, urease, sucrase, and alkaline phosphatase). Organic substitution changed the species and functional structures rather than diversity of soil microbiome, and enriched the genes related to soil denitrification (including nirK, nirS, and nosZ). Besides, the 30% of organic substitution obviously enhanced soil microbial network complexity and this enhancement was mainly associated with altered soil pH. At the level tested herein, organic substitution ratio in 30% was suitable for greenhouse vegetable production locally. Long-term influence of different organic substitution ratios on vegetable productivity and soil properties in intensive greenhouse system needs to be monitored. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

21 pages, 10356 KiB  
Article
Autonomous Greenhouse Cultivation of Dwarf Tomato: Performance Evaluation of Intelligent Algorithms for Multiple-Sensor Feedback
by Stef C. Maree, Pinglin Zhang, Bart M. van Marrewijk, Feije de Zwart, Monique Bijlaard and Silke Hemming
Sensors 2025, 25(14), 4321; https://doi.org/10.3390/s25144321 - 10 Jul 2025
Viewed by 431
Abstract
Greenhouse horticulture plays an important role globally by producing nutritious fruits and vegetables with high resource use efficiency. Modern greenhouses are large-scale high-tech production factories that are increasingly data-driven, and where climate and irrigation control are gradually becoming more autonomous. This is enabled [...] Read more.
Greenhouse horticulture plays an important role globally by producing nutritious fruits and vegetables with high resource use efficiency. Modern greenhouses are large-scale high-tech production factories that are increasingly data-driven, and where climate and irrigation control are gradually becoming more autonomous. This is enabled by technological developments and driven by shortages in skilled labor and the demand for improved resource use efficiency. In the Autonomous Greenhouse Challenge, it has been shown that controlling greenhouse cultivation can be done efficiently with intelligent algorithms. For an optimal strategy, however, it is essential that control algorithms properly account for crop responses, which requires appropriate sensors, reliable data, and accurate models. This paper presents the results of the 4th Autonomous Greenhouse Challenge, in which international teams developed six intelligent algorithms that fully controlled a dwarf tomato cultivation, a crop that is well-suited for robotic harvesting, but for which little prior cultivation data exists. Nevertheless, the analysis of the experiment showed that all teams managed to obtain a profitable strategy, and the best algorithm resulted a production equivalent to 45 kg/m2/year, higher than in the commercial practice of high-wire cherry tomato growing. The predominant factor was found to be the much higher plant density that can be achieved in the applied growing system. More difficult challenges were found to be related to measuring crop status to determine the harvest moment. Finally, this experiment shows the potential for novel greenhouse cultivation systems that are inherently well-suited for autonomous control, and results in a unique and rich dataset to support future research. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture: 2nd Edition)
Show Figures

Figure 1

25 pages, 8005 KiB  
Article
Field Evaluation of a Transplanter and a Collector Under Development for Korean Spring Cabbage Production in Greenhouses
by Md Nasim Reza, Md Rejaul Karim, Md Razob Ali, Kyu-Ho Lee, Emmanuel Bicamumakuba, Ka Young Lee and Sun-Ok Chung
AgriEngineering 2025, 7(7), 226; https://doi.org/10.3390/agriengineering7070226 - 9 Jul 2025
Viewed by 387
Abstract
Cabbage (Brassica rapa L. ssp. Pekinensis) is an important vegetable crop in the Republic of Korea, due to its essential role in kimchi production. However, labor shortages and an aging population necessitate mechanization to sustain productivity. This study aimed to evaluate the [...] Read more.
Cabbage (Brassica rapa L. ssp. Pekinensis) is an important vegetable crop in the Republic of Korea, due to its essential role in kimchi production. However, labor shortages and an aging population necessitate mechanization to sustain productivity. This study aimed to evaluate the field performance of a cabbage transplanter under development with a commercial transplanter and a cabbage collector under greenhouse conditions. This study evaluated transplanting efficiency, planting performance, and yield of cabbage using seedlings at three distinct age groups (30, 35, and 43 days). A cabbage transplanter (Transplanter A) under development, a commercial model (Transplanter B), and manual transplanting were used for comparative analysis. At harvest, a tractor-mounted cabbage collector was used to collect and pack all the cabbages. Transplanter A demonstrated a forward speed of 1.27 km/h and an average planting rate of 2365 seedlings/h, significantly higher than manual transplanting (513 seedlings/h). The effective field capacity (EFC) ranged from 0.11 to 0.13 ha/h, compared to 0.019–0.028 ha/h for manual planting. While Transplanter A showed a higher missing transplant rate (18.17%) than Transplanter B (7.67%), it maintained consistently lower bad planting rates (2.5–4.5%) compared to Transplanter B (3.3–8.8%). In addition, it produced significantly higher cabbage weights (6070 g/plant) and better root metrics than manual transplanting. The cabbage collector achieved 100% efficiency with no crop damage or contamination. The transplanter under development proved effective for greenhouse use, offering faster operation, better planting accuracy, and higher yields, supporting broader mechanization in Korean agriculture. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

32 pages, 2059 KiB  
Review
A State-of-the-Art Review on the Potential of Waste Cooking Oil as a Sustainable Insulating Liquid for Green Transformers
by Samson Okikiola Oparanti, Esther Ogwa Obebe, Issouf Fofana and Reza Jafari
Appl. Sci. 2025, 15(14), 7631; https://doi.org/10.3390/app15147631 - 8 Jul 2025
Viewed by 496
Abstract
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to [...] Read more.
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to their biodegradability, non-toxicity to aquatic and terrestrial ecosystems, and lower carbon emissions. Adopting vegetable-based insulating liquids also aligns with United Nations Sustainable Development Goals (SDGs) 7 and 13, which focus on cleaner energy sources and reducing carbon emissions. Despite these benefits, most commercially available vegetable-based insulating liquids are derived from edible seed oils, raising concerns about food security and the environmental footprint of large-scale agricultural production, which contributes to greenhouse gas emissions. In recent years, waste cooking oils (WCOs) have emerged as a promising resource for industrial applications through waste-to-value conversion processes. However, their potential as transformer insulating liquids remains largely unexplored due to limited research and available data. This review explores the feasibility of utilizing waste cooking oils as green transformer insulating liquids. It examines the conversion and purification processes required to enhance their suitability for insulation applications, evaluates their dielectric and thermal performance, and assesses their potential implementation in transformers based on existing literature. The objective is to provide a comprehensive assessment of waste cooking oil as an alternative insulating liquid, highlight key challenges associated with its adoption, and outline future research directions to optimize its properties for high-voltage transformer applications. Full article
(This article belongs to the Special Issue Novel Advances in High Voltage Insulation)
Show Figures

Figure 1

20 pages, 2498 KiB  
Article
Supplementary Light and Retardant Application During the Rooting Stage Improve the Final Performances of Petunia and Calibrachoa Plants
by Bożena Szewczyk-Taranek, Iwona Domagała-Świątkiewicz, Anna Kapczyńska, Paweł Marcinkowski and Bożena Pawłowska
Agronomy 2025, 15(7), 1644; https://doi.org/10.3390/agronomy15071644 - 6 Jul 2025
Viewed by 312
Abstract
The efficient production of high-quality bedding plants is essential for greenhouse growers aiming to meet market demands while minimising costs. This study investigated the effects of supplemental lighting (prolonged photoperiod) and retardant treatments on the growth, development, mineral composition, and flowering of vegetatively [...] Read more.
The efficient production of high-quality bedding plants is essential for greenhouse growers aiming to meet market demands while minimising costs. This study investigated the effects of supplemental lighting (prolonged photoperiod) and retardant treatments on the growth, development, mineral composition, and flowering of vegetatively propagated Petunia × atkinsiana (Surfinia® ‘Lime’ and ‘Purple’) and Calibrachoa × hybrida (Superbells® ‘Unique Red’ and ‘Unique Golden Yellow’) cultivars. The plants were subjected to extended lighting for up to 16 h during the rooting phase and treated with or without a growth retardant. The supplemental light significantly accelerated the flowering, improved the shoot branching, and enhanced the mineral nutrient accumulation, particularly of calcium, sulphur, and magnesium. The illuminated plants also exhibited higher chlorophyll content and more favourable dry-mass accumulation. The growth retardants reduced the plant height and concentrations of nitrogen, phosphorus, and potassium but increased the calcium and magnesium contents. The combination of lighting and growth regulation optimised the plant morphology and nutritional status, producing compact, well-branched plants with enhanced visual appeal. Earlier flowering of illuminated plants is valuable from a commercial perspective, allowing earlier selling and improved product marketability. These findings confirm the synergistic benefits of early photoperiod control and chemical growth regulation in enhancing the commercial quality and sustainability of bedding plant production. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 979 KiB  
Article
Greenhouse Evaluation of Conventional and Biorational Insecticides for Managing the Invasive Thrips parvispinus (Karny) (Thysanoptera: Thripidae)
by Livia M. S. Ataide, German Vargas, Yisell Velazquez-Hernandez, Marcello De Giosa, Isamar Reyes-Arauz, Paola Villamarin, Maria A. Canon, Simon S. Riley and Alexandra M. Revynthi
Agriculture 2025, 15(13), 1451; https://doi.org/10.3390/agriculture15131451 - 5 Jul 2025
Viewed by 415
Abstract
Thrips parvispinus (Karny) is an invasive pest of vegetable and ornamentals in the United States. To support ornamental growers to control T. parvispinus infestations, we tested seven conventional (spinosad, chlorfenapyr, sulfoxaflor–spinetoram, pyridalyl, tolfenpyrad, abamectin, and cyclaniliprole–flonicamid) and two biorational insecticides (mineral oil and [...] Read more.
Thrips parvispinus (Karny) is an invasive pest of vegetable and ornamentals in the United States. To support ornamental growers to control T. parvispinus infestations, we tested seven conventional (spinosad, chlorfenapyr, sulfoxaflor–spinetoram, pyridalyl, tolfenpyrad, abamectin, and cyclaniliprole–flonicamid) and two biorational insecticides (mineral oil and sesame oil) under greenhouse conditions on mandevilla (Mandevilla splendens) and gardenia (Gardenia jasminoides), primary T. parvispinus ornamental hosts. Two insecticide applications were performed: a curative, treating an existing infestation, and a prophylactic, treating a plant prior to the thrips release. In the curative application, ten larvae and ten adults were released two weeks prior to treatment. Three leaves from the upper, middle, and lower canopy were collected 24 h, 7-, and 14-days post-treatment to assess thrips mortality. In the prophylactic application, plants were first sprayed with insecticides, and thrips were introduced 24 h later, but followed the same sampling method. In mandevilla, chlorfenapyr, abamectin, and spinosad caused the highest thrips mortality in both application types. Among horticultural oils, mineral oil and sesame oil increased mortality in prophylactic applications only. In gardenia, neither curative nor prophylactic applications of these products led to significant thrips mortality, and the possible reasons and recommendations for best thrips management are presented. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

11 pages, 2183 KiB  
Article
Effects of Light Supplementation on Lettuce Growth, Yield, and Water Use During Winter Season in North Mississippi
by Ibukun T. Ayankojo, Thomas Horgan and Jeff Wilson
Agronomy 2025, 15(7), 1635; https://doi.org/10.3390/agronomy15071635 - 4 Jul 2025
Viewed by 338
Abstract
Most vegetable crop production in Mississippi (MS) occurs during the summer, characterized by high temperature and relative humidity. Lettuce yield and harvest quality are significantly affected by heat stress. To avoid the heat stress of the summer months, lettuce production in MS is [...] Read more.
Most vegetable crop production in Mississippi (MS) occurs during the summer, characterized by high temperature and relative humidity. Lettuce yield and harvest quality are significantly affected by heat stress. To avoid the heat stress of the summer months, lettuce production in MS is either produced in controlled environments or during the winter months with cooler temperatures. This period, however, coincides with months with low solar radiation and shorter day length, resulting in a longer growing season and poor harvest quality. Therefore, this study was conducted to determine the optimum duration of light supplement on the growth, yield, and water use of greenhouse (GH) lettuce during the winter season in north Mississippi. In this study, three daily supplemental light duration regimes, 0 h, 4 h, and 8 h, starting at sunset, were evaluated across two lettuce cultivars, Green Forest (GF) and Ruby (RB). The study indicated that supplemental lighting significantly increased lettuce growth, yield, and water use. Although day length extension from 4 to 8 h of supplemental light had no yield benefits on the RB cultivar, extending day length from 4 to 8 h increased GF yield by 42%. It was also observed that the effects of light supplementation during low natural light quality at early or later growth stages differ between cultivars. Based on the results obtained from this study, a 4 h and 8 h post-sunset light supplementation is considered optimum for RB and GF lettuce cultivars, respectively, during the winter growing season in MS. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

22 pages, 2503 KiB  
Article
Spatiotemporal Profiling of the Pathogen Complex Causing Common Bean Root Rot in China
by Li Yang, Xiao-Hong Lu, Bo-Ming Wu, Zeng-Ming Zhong and Shi-Dong Li
Agriculture 2025, 15(13), 1426; https://doi.org/10.3390/agriculture15131426 - 2 Jul 2025
Viewed by 287
Abstract
Root rot, a globally devastating disease of common bean (Phaseolus vulgaris L.), remains a major constraint on bean production across China. Despite its agricultural impact, the pathogen complex associated with this disease has been poorly characterized in most provinces. To address this [...] Read more.
Root rot, a globally devastating disease of common bean (Phaseolus vulgaris L.), remains a major constraint on bean production across China. Despite its agricultural impact, the pathogen complex associated with this disease has been poorly characterized in most provinces. To address this critical knowledge gap, we conducted nationwide surveys during 2016–2018, systematically sampling 1–10 symptomatic plants from each of 121 (2016) and 170 (2018) field sites across 17 provinces in China’s major vegetable production regions. Isolates obtained from symptomatic root tissues underwent morphological screening, followed by molecular identification using partial sequences of EF1-α for Fusarium species and ITS regions for other genera. Pathogenicity of representative isolates was subsequently confirmed through controlled greenhouse assays. This integrated approach revealed fourteen fungal and oomycete genera, with Fusarium (predominantly F. oxysporum and F. solani) and Rhizoctonia (R. solani) emerging as the most prevalent pathogens. Notably, pathogen composition exhibited significant regional variation and underwent temporal shifts across developmental stages. Additionally, F. oxysporum, F. solani, and R. solani demonstrated significant interspecies associations with frequent co-occurrence in bean root rot systems. Collectively, this first comprehensive characterization of China’s common bean root rot complex not only clarifies spatial–temporal pathogen dynamics but also provides actionable insights for developing region- and growth stage-specific management strategies, particularly through targeted control of dominant pathogens during key infection windows. Full article
Show Figures

Figure 1

20 pages, 2735 KiB  
Article
Leaf Area Estimation in High-Wire Tomato Cultivation Using Plant Body Scanning
by Hiroki Naito, Tokihiro Fukatsu, Kota Shimomoto, Fumiki Hosoi and Tomohiko Ota
AgriEngineering 2025, 7(7), 206; https://doi.org/10.3390/agriengineering7070206 - 1 Jul 2025
Viewed by 504
Abstract
Accurate estimation of the leaf area index (LAI), a key indicator of canopy development and light interception, is essential for improving productivity in greenhouse tomato cultivation. This study presents a non-destructive LAI estimation method using side-view images captured by a vertical scanning system. [...] Read more.
Accurate estimation of the leaf area index (LAI), a key indicator of canopy development and light interception, is essential for improving productivity in greenhouse tomato cultivation. This study presents a non-destructive LAI estimation method using side-view images captured by a vertical scanning system. The system recorded the full vertical profile of tomato plants grown under two deleafing strategies: modifying leaf height (LH) and altering leaf density (LD). Vegetative and leaf areas were extracted using color-based masking and semantic segmentation with the Segment Anything Model (SAM), a general-purpose deep learning tool. Regression models based on leaf or all vegetative pixel counts showed strong correlations with destructively measured LAI, particularly under LH conditions (R2 > 0.85; mean absolute percentage error ≈ 16%). Under LD conditions, accuracy was slightly lower due to occlusion and leaf orientation. Compared with prior 3D-based methods, the proposed 2D approach achieved comparable accuracy while maintaining low cost and a labor-efficient design. However, the system has not been tested in real production, and its generalizability across cultivars, environments, and growth stages remains unverified. This proof-of-concept study highlights the potential of side-view imaging for LAI monitoring and calls for further validation and integration of leaf count estimation. Full article
Show Figures

Figure 1

Back to TopTop