Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (675)

Search Parameters:
Keywords = green waste management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4895 KB  
Article
Circular Design for Made in Italy Furniture: A Digital Tool for Data and Materials Exchange
by Lorenzo Imbesi, Serena Baiani, Sabrina Lucibello, Emanuele Panizzi, Paola Altamura, Viktor Malakuczi, Luca D’Elia, Carmen Rotondi, Mariia Ershova, Gabriele Rossini and Alessandro Aiuti
Sustainability 2026, 18(2), 1061; https://doi.org/10.3390/su18021061 - 20 Jan 2026
Viewed by 100
Abstract
Despite European and international regulatory frameworks promoting circular economy principles, sustainability in the furniture sector is still challenged by the limited access to reliable information about circular materials for designers, manufacturers, and waste managers in the Made-in-Italy furniture ecosystem. This research develops a [...] Read more.
Despite European and international regulatory frameworks promoting circular economy principles, sustainability in the furniture sector is still challenged by the limited access to reliable information about circular materials for designers, manufacturers, and waste managers in the Made-in-Italy furniture ecosystem. This research develops a digital infrastructure to address these information gaps through mixed methodology, combining desk research on regulatory frameworks and existing platforms; field research involving stakeholder mapping and interviews with designers, manufacturers, and waste managers; and the experimental development of AI-enhanced digital tools. The result integrates a web-based platform for circular materials with a CAD plugin supporting real-time sustainability assessment. As AI-assisted data entry showed a reduced form completion time while maintaining accuracy through human verification, testing also revealed how the system effectively bridges knowledge gaps between stakeholders operating in currently siloed value chains. The platform is a critical step in enabling designers to incorporate circular materials during the early design stages, while providing manufacturers access to verified punctual sustainability data compliant with mandatory Green Public Procurement criteria. Beyond the development of an innovative digital tool, the study outlines a corresponding operational model as a practical framework for strengthening the transition toward a circular economy in the Italian furniture industry. Full article
Show Figures

Figure 1

24 pages, 1959 KB  
Review
Licorice (Glycyrrhiza glabra): Botanical Aspects, Multisectoral Applications, and Valorization of Industrial Waste for the Recovery of Natural Fiber in a Circular Economy Perspective
by Luigi Madeo, Anastasia Macario, Federica Napoli and Pierantonio De Luca
Fibers 2026, 14(1), 14; https://doi.org/10.3390/fib14010014 - 19 Jan 2026
Viewed by 69
Abstract
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. [...] Read more.
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. This review integrates botanical knowledge with engineering and industrial perspectives, highlighting the role of licorice fiber in advancing sustainable innovation. The natural fiber obtained from licorice roots exhibits notable physical and mechanical qualities, including lightness, biodegradability, and compatibility with bio-based polymer matrices. These attributes make it a promising candidate for biocomposites used in green building and other sectors of the circular economy. Developing efficient recovery processes requires collaboration across disciplines, combining expertise in plant science, materials engineering, and industrial technology. The article also examines the economic and regulatory context driving the transition toward more circular and traceable production models. Increasing interest from companies, research institutions, and public bodies in valorizing licorice fiber and its derivatives is opening new market opportunities. Potential applications extend to agroindustry, eco-friendly cosmetics, bioeconomy, and sustainable construction. By linking botanical insights with innovative waste management strategies, licorice emerges as a resource capable of supporting integrated, competitive, and environmentally responsible industrial practices. Full article
Show Figures

Figure 1

51 pages, 4273 KB  
Review
Sustainable Polyurethane Systems: Integrating Green Synthesis and Closed-Loop Recovery
by Tae Hui Kim, Hyeong Seo Kim and Sang-Ho Lee
Polymers 2026, 18(2), 246; https://doi.org/10.3390/polym18020246 - 16 Jan 2026
Viewed by 212
Abstract
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. [...] Read more.
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. Consequently, most end-of-life PU waste is currently managed through landfilling or incineration, resulting in significant resource loss and environmental impact. To address these challenges, this review presents an integrated perspective on sustainable PU systems by unifying green synthesis strategies with closed-loop recovery approaches. First, recent advances in bio-based polyols and phosgene-free isocyanate synthesis derived from renewable resources—such as plant oils, carbohydrates, and lignin—are discussed as viable means to reduce dependence on petrochemical feedstocks and mitigate toxicity concerns. Next, emerging chemical recycling methodologies, including acidolysis and aminolysis, are reviewed with a focus on the selective recovery of high-purity monomers. Finally, PU vitrimers and dynamic covalent polymer networks (DCPNs) based on urethane bond exchange reactions are examined as reprocessable architectures that combine thermoplastic-like processability with the mechanical robustness of thermosets. By integrating synthesis, recovery, and reuse within a unified framework, this review aims to outline a coherent pathway toward establishing a sustainable circular economy for PU materials. Full article
(This article belongs to the Special Issue Advanced Cross-Linked Polymer Network)
Show Figures

Graphical abstract

23 pages, 4471 KB  
Article
Experimental Investigation on the Performance of Full Tailings Cemented Backfill Material in a Lead–Zinc Mine Based on Mechanical Testing
by Ning Yang, Renze Ou, Ruosong Bu, Daoyuan Sun, Fang Yan, Hongwei Wang, Qi Liu, Mingdong Tang and Xiaohui Li
Materials 2026, 19(2), 351; https://doi.org/10.3390/ma19020351 - 15 Jan 2026
Viewed by 222
Abstract
With the increasing requirements for “Green Mine” construction, Cemented Tailings Backfill (CTB) has emerged as the preferred strategy for solid waste management and ground pressure control in underground metal mines. However, full tailings, characterized by wide particle size distribution and high fine-grained content, [...] Read more.
With the increasing requirements for “Green Mine” construction, Cemented Tailings Backfill (CTB) has emerged as the preferred strategy for solid waste management and ground pressure control in underground metal mines. However, full tailings, characterized by wide particle size distribution and high fine-grained content, exhibit complex physicochemical properties that lead to significant non-linear behavior in slurry rheology and strength evolution, posing challenges for accurate prediction using traditional empirical formulas. Addressing the issues of significant strength fluctuations and difficulties in mix proportion optimization in a specific lead–zinc mine, this study systematically conducted physicochemical characterizations, slurry sedimentation and transport performance evaluations, and mechanical strength tests. Through multi-factor coupling experiments, the synergistic effects of cement type, cement-to-tailings (c/t) ratio, slurry concentration, and curing age on backfill performance were elucidated. Quantitative results indicate that solids mass concentration is the critical factor determining transportability. Concentrations exceeding 68% effectively mitigate segregation and stratification during the filling process while maintaining optimal fluidity. Regarding mechanical properties, the c/t ratio and concentration show a significant positive correlation with Uniaxial Compressive Strength (UCS). For instance, with a 74% concentration and 1:4 c/t ratio, the 3-day strength increased by 1.4 times compared to the 68% concentration, with this increment expanding to 2.0 times by 28 days. Furthermore, a comparative analysis of four cement types revealed that 42.5# cement offers superior techno-economic indicators in terms of reducing binder consumption and enhancing early-age strength. This research not only establishes an optimized mix proportion scheme tailored to the operational requirements of the lead–zinc mine but also provides a quantitative scientific basis and theoretical framework for the material design and safe production of CTB systems incorporating high fine-grained full tailings. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

16 pages, 2243 KB  
Article
Assessment of Solid Biomass Combustion in Natural Fiber Packages
by Michał Chabiński, Andrzej Szlęk, Sławomir Sładek and Agnieszka Korus
Energies 2026, 19(2), 391; https://doi.org/10.3390/en19020391 - 13 Jan 2026
Viewed by 166
Abstract
Urban tree-management operations generate substantial amounts of woody biomass that often remain underutilized despite their potential value as a local renewable fuel. This study investigates the possibility of using woodchips and sawdust delivered from municipal tree-cutting activities as boiler fuel, with a specific [...] Read more.
Urban tree-management operations generate substantial amounts of woody biomass that often remain underutilized despite their potential value as a local renewable fuel. This study investigates the possibility of using woodchips and sawdust delivered from municipal tree-cutting activities as boiler fuel, with a specific focus on how fuel moisture, particle size, and natural-fiber packaging influence combustion performance and emission characteristics. In collaboration with a municipal greenery-cutting company, representative batches of biomass were collected, characterized through proximate and ultimate analyses, and combusted in a small-scale boiler. Unlike conventional densification routes (pelletization/briquetting), the proposed approach uses combustible natural-fiber packaging to create modular ‘macro-pellets’ from minimally processed urban residues. The study quantifies how this low-energy packaging concept affects emissions and boiler efficiency relative to loose chips/sawdust at two moisture levels. The results demonstrate that packaging the fuel in jute bags markedly improved performance for both woodchips and sawdust by stabilizing the fuel bed, enhancing air distribution, and reducing emissions of incomplete combustion products. Boiler efficiency increased from approximately 60% for raw unpackaged fuels to 71–75% for the dried and jute-packaged variants. The findings highlight that simple preprocessing steps—drying and packaging in natural-fiber bags—can substantially enhance the energy recovery potential of urban green waste, offering a practical pathway for integrating municipal biomass residues into a sustainable fuel. Full article
(This article belongs to the Special Issue Recent Advances in Biomass Combustion)
Show Figures

Figure 1

25 pages, 1403 KB  
Review
Green Innovation for Solid Post-Distillation Residues Valorization: Narrative Review of Circular Bio-Economy Solutions
by Milica Aćimović, Anita Leovac Maćerak, Branimir Pavlić, Vladimir Sikora, Tijana Zeremski, Tamara Erceg and Djordje Djatkov
Processes 2026, 14(2), 244; https://doi.org/10.3390/pr14020244 - 9 Jan 2026
Viewed by 430
Abstract
The production of essential oils generates substantial quantities of solid post-distillation residues, a largely unutilized waste stream rich in bioactive compounds (e.g., phenolics, flavonoids) as well as polysaccharides. Managing this organic waste presents both environmental and economic challenges. This review critically examines environmentally [...] Read more.
The production of essential oils generates substantial quantities of solid post-distillation residues, a largely unutilized waste stream rich in bioactive compounds (e.g., phenolics, flavonoids) as well as polysaccharides. Managing this organic waste presents both environmental and economic challenges. This review critically examines environmentally friendly green innovations and resource-efficient technologies within circular bio-economy strategies for valorizing these residues, focusing on four primary conversion pathways: physico-mechanical, thermochemical, biological, and chemical methods. We highlight their potential for practical applications, including the extraction of active compounds for food, cosmetic, and pharmaceutical industries, utilization in agriculture, incorporation into construction materials and wastewater treatment. Despite these opportunities, wider industrial adoption remains limited by high processing costs and the lack of scalable, cost-effective technologies. Key research gaps included the need for methods applicable at the farm level, optimization of the residue-specific conversion process, and life-cycle assessments to evaluate environmental and economic impacts. Addressing these gaps is crucial to fully exploit the economic and ecological potential of post-distillation solid residues and integrate them into sustainable circular bio-economy practices through various processes. Full article
(This article belongs to the Special Issue Analysis and Processes of Bioactive Components in Natural Products)
Show Figures

Figure 1

17 pages, 3122 KB  
Article
Urban Waste Composition Associated with Online Food Delivery in Bangkok, Thailand, with Emphasis on Plastic Waste Management
by Yanasinee Suma, Chongrak Polprasert and Numfon Eaktasang
Urban Sci. 2026, 10(1), 38; https://doi.org/10.3390/urbansci10010038 - 9 Jan 2026
Viewed by 210
Abstract
The rapid growth of online food delivery in urban areas reflects changing consumer lifestyles, but it has also contributed to increasing plastic waste and challenges in waste management. This study investigated the composition of municipal solid waste (MSW) related to online food delivery, [...] Read more.
The rapid growth of online food delivery in urban areas reflects changing consumer lifestyles, but it has also contributed to increasing plastic waste and challenges in waste management. This study investigated the composition of municipal solid waste (MSW) related to online food delivery, consumer ordering behavior, and single-use plastic (SUP) generation in households in the Bangkok Metropolitan Area. Data were collected from 385 food delivery customers via online questionnaires. The results show that the proportion of plastic waste in MSW has increased, with 76.6% of participants reporting higher online food delivery usage. SUPs from food delivery, including non-essential items such as plastic films, spoons, and cutlery, were prevalent, and participants rarely selected green options to opt out of receiving them. These findings highlight the need for targeted interventions, including closed-loop management involving producers, platforms, consumers, and government. Policy recommendations include implementing extended producer responsibility (EPR) for environmentally friendly packaging, providing incentives for merchants and consumers to reduce SUP, applying the polluter-pays principle (PPP) to users, and designing government policies to regulate SUP and improve plastic waste management. Full article
Show Figures

Graphical abstract

26 pages, 2307 KB  
Article
Ecological and Microbial Processes in Green Waste Co-Composting for Pathogen Control and Evaluation of Compost Quality Index (CQI) Toward Agricultural Biosafety
by Majda Oueld Lhaj, Rachid Moussadek, Hatim Sanad, Khadija Manhou, M’hamed Oueld Lhaj, Meriem Mdarhri Alaoui, Abdelmjid Zouahri and Latifa Mouhir
Environments 2026, 13(1), 43; https://doi.org/10.3390/environments13010043 - 9 Jan 2026
Viewed by 427
Abstract
Composting represents a sustainable and effective strategy for converting organic waste into nutrient-rich soil amendments, providing a safer alternative to raw manure, which poses significant risks of soil, crop, and water contamination through pathogenic microorganisms. This study, conducted under semi-arid Moroccan conditions, investigated [...] Read more.
Composting represents a sustainable and effective strategy for converting organic waste into nutrient-rich soil amendments, providing a safer alternative to raw manure, which poses significant risks of soil, crop, and water contamination through pathogenic microorganisms. This study, conducted under semi-arid Moroccan conditions, investigated the efficiency of co-composting green garden waste with sheep manure in an open window system, with the objective of assessing pathogen inactivation and evaluating compost quality. The process, conducted over 120 days, maintained thermophilic temperatures exceeding 55 °C, effectively reducing key pathogens including Escherichia coli, total coliforms, Staphylococcus aureus, and sulfite-reducing Clostridia (SRC), while Salmonella was not detected throughout the composting period. Pathogen reductions exceeded 3.52-log despite moderate temperature fluctuations, indicating that additional sanitization mechanisms beyond heat contributed to inactivation. Compost quality, assessed using the CQI, classified Heap 2 (fallen leaves + sheep manure) as good quality (4.06) and Heap 1 (green waste + sheep manure) as moderate quality (2.47), corresponding to differences in microbial dynamics and compost stability. These findings demonstrate that open windrow co-composting is a practical, low-cost, and effective method for safe organic waste management. It supports sustainable agriculture by improving soil health, minimizing environmental and public health risks, and providing guidance for optimizing composting protocols to meet regulatory safety standards. Full article
(This article belongs to the Special Issue Circular Economy in Waste Management: Challenges and Opportunities)
Show Figures

Figure 1

34 pages, 1919 KB  
Review
Life Cycle Optimization of Circular Industrial Processes: Advances in By-Product Recovery for Renewable Energy Applications
by Kyriaki Kiskira, Sofia Plakantonaki, Nikitas Gerolimos, Konstantinos Kalkanis, Emmanouela Sfyroera, Fernando Coelho and Georgios Priniotakis
Clean Technol. 2026, 8(1), 5; https://doi.org/10.3390/cleantechnol8010005 - 5 Jan 2026
Viewed by 513
Abstract
The global shift toward renewable energy and circular economy models requires industrial systems that minimize waste and recover value across entire life cycles. This review synthesizes recent advances in by-product recovery technologies supporting renewable energy and circular industrial processes. Thermal, biological, chemical/electrochemical, and [...] Read more.
The global shift toward renewable energy and circular economy models requires industrial systems that minimize waste and recover value across entire life cycles. This review synthesizes recent advances in by-product recovery technologies supporting renewable energy and circular industrial processes. Thermal, biological, chemical/electrochemical, and biotechnological routes are analyzed across battery and e-waste recycling, bioenergy, wastewater, and agri-food sectors, with emphasis on integration through Life Cycle Assessment (LCA), techno-economic analysis (TEA), and multi-criteria decision analysis (MCDA) coupled to process simulation, digital twins, and artificial intelligence tools. Policy and economic frameworks, including the European Green Deal and the Critical Raw Materials Act, are examined in relation to technology readiness and environmental performance. Hybrid recovery systems, such as pyro-hydro-bio configurations, enable higher resource efficiency and reduced environmental impact compared with stand-alone routes. Across all technologies, major hotspots include electricity demand, reagent use, gas handling, and concentrate management, while process integration, heat recovery, and realistic substitution credits significantly improve life cycle outcomes. Harmonized LCA-TEA-MCDA frameworks and digitalized optimization emerge as essential tools for scaling sustainable, resource-efficient, and low-impact industrial ecosystems consistent with circular economy and renewable energy objectives. Full article
Show Figures

Figure 1

10 pages, 2097 KB  
Article
Recycling Waste Plastics from Urban Landscapes to Porous Carbon for Clean Energy Storage
by Lin Ma and Xuecheng Chen
Polymers 2026, 18(1), 105; https://doi.org/10.3390/polym18010105 - 30 Dec 2025
Viewed by 257
Abstract
With the rapid increase in plastic consumption worldwide, the resulting plastic waste has had a significant negative impact on the environment. Converting waste plastics into carbon nanosheets (CNSs) has emerged as one of the most promising methods for both waste management and the [...] Read more.
With the rapid increase in plastic consumption worldwide, the resulting plastic waste has had a significant negative impact on the environment. Converting waste plastics into carbon nanosheets (CNSs) has emerged as one of the most promising methods for both waste management and the synthesis of high-performance carbon materials. The incorporation of palladium (Pd) nanoparticles onto CNSs can notably enhance their hydrogen storage capacity. To address the environmental pressures posed by waste plastic, we propose a strategy for synthesizing CNSs from waste polypropylene (PP). Hydrogen uptake Meas. at room temperature show that Pd-supported CNSs exhibit the highest hydrogen adsorption capacity of 0.43 wt% at 298 K and 41 bar. These findings confirm the critical influence of Pd content, particle size, and carbon structure on hydrogen storage performance under varying pressures. This study provides a new pathway for the valuable reutilization of waste plastics through functional energy conversion. This strategy not only aims to reduce plastic pollution but also creates a sustainable method for green energy storage. Full article
(This article belongs to the Collection Polymer Applications in Environmental Science)
Show Figures

Figure 1

8 pages, 2052 KB  
Proceeding Paper
No Food Waste Policy: Use of Smart Applications to Support the Green Deal Policy
by Sotiria Tsoukarella and Zacharoula Andreopoulou
Proceedings 2026, 134(1), 10; https://doi.org/10.3390/proceedings2026134010 - 30 Dec 2025
Viewed by 502
Abstract
The rapid development of Green Information Technology has contributed to reducing the environmental footprint and supporting more efficient resource management. Within this context, food waste reduction is a key priority of the European Green Deal and the Farm to Fork Strategy. This study [...] Read more.
The rapid development of Green Information Technology has contributed to reducing the environmental footprint and supporting more efficient resource management. Within this context, food waste reduction is a key priority of the European Green Deal and the Farm to Fork Strategy. This study records and analyzes 25 food waste-related smart applications identified during the first quarter of 2025 in Google Play and the Apple Store based on defined selection criteria. Their basic characteristics were analyzed and compared. Results indicate that redistribution applications dominate, whereas prevention-oriented applications remain limited in number. Although most of the applications enjoy positive ratings, their real effectiveness depends on user adoption and behavioral change, making prevention-oriented applications essential for achieving the EU 2030 target of reducing food waste by 50%. Full article
Show Figures

Figure 1

24 pages, 2076 KB  
Article
Construction Waste Documentation System in Poland: Current State and Prospects for Automation
by Joanna Sagan and Paula Wojtaszek
Sustainability 2026, 18(1), 77; https://doi.org/10.3390/su18010077 - 20 Dec 2025
Viewed by 485
Abstract
Efficient documentation and traceability of construction waste are essential for meeting the objectives of the European Green Deal and the Circular Economy. In Poland, the national Database on Products, Packaging, and Waste Management (BDO) serves as the central platform for recording and reporting [...] Read more.
Efficient documentation and traceability of construction waste are essential for meeting the objectives of the European Green Deal and the Circular Economy. In Poland, the national Database on Products, Packaging, and Waste Management (BDO) serves as the central platform for recording and reporting waste flows, including those generated by the construction sector. However, its current structure imposes substantial administrative burdens, particularly on large-scale projects involving thousands of waste transports. This study examines the documentation workflow within the BDO system as applied to construction activities. Using process mapping, field studies, and interviews, the research identifies key bottlenecks and opportunities for improvement, especially through automation enabled by the integration of external applications connected to BDO via its public Application Programming Interface (API). Among nine identified systems, one was selected due to its comprehensive functionalities tailored to construction-sector needs. A study involving thirty users demonstrated that implementation of this system reduced the time required to issue a Waste Transfer Card (KPO) by 77% and fully automated entries in the Waste Records Register (KEO). As a result, the average administrative workload decreased by 87%. For a representative demolition company generating approximately 46,000 KPOs annually, the total time savings correspond to 8.2 months of full-time administrative work. This reduction translates into annual savings exceeding PLN 47,000 and yields a return on investment of over 100% within the first year. Sensitivity analysis indicates that the system’s effectiveness decreases with lower documentation volumes. The findings confirm that targeted automation and improved interface design can significantly enhance the efficiency, accuracy, and transparency of construction waste documentation. Full article
Show Figures

Figure 1

22 pages, 3437 KB  
Review
Plastic Waste to Microplastic Pollution and Its Impacts: A Comprehensive Review on Delhi, India
by Rakshit Jakhar, Sarita Kumari Sandwal, Irfan Ali and Katarzyna Styszko
Appl. Sci. 2026, 16(1), 61; https://doi.org/10.3390/app16010061 - 20 Dec 2025
Viewed by 458
Abstract
Microplastics are very small particles of plastics, usually smaller than 5 mm. Microplastic pollution has emerged as a rising and challenging issue worldwide, posing serious threats to aquatic and terrestrial ecosystems and human health. Because of global demand and frequent use in daily [...] Read more.
Microplastics are very small particles of plastics, usually smaller than 5 mm. Microplastic pollution has emerged as a rising and challenging issue worldwide, posing serious threats to aquatic and terrestrial ecosystems and human health. Because of global demand and frequent use in daily routines, including clothing, packaging, and household items, the production of plastic is increasing annually. This study provides a comprehensive overview of the source, classification (based on shape, color, polymer), transportation, and impact of microplastic pollution. Depending upon size, mass, and density, microplastics can be transported to the environment via air and water. However, microplastics can be inhaled and ingested by humans, causing various health issues; for example, aquatic organisms like small fish ingest microplastics, which accumulate through the food chain and end up in the human body. This can lead to physiological harm, including inflammation, digestion tract obstruction, biomagnification throughout the food chain, and reproductive failure. This study further highlighted initiatives taken by government agencies to address plastic and microplastic pollution across India; for example, The Ministry of Environment Forest and Climate Change (MoEFCC) has formulated and amended the Plastic Waste Management (PWM) rules, Mission LiFE (LiFEStyle for Environment) launched campaigns such as “Say No to Single Use Plastic” and “One Nation, One Mission: End Plastic Pollution” to create awareness at the grassroot level, and institutions like the Food Safety and Standards Authority of India (FSSAI) have initiated a project to detect microplastics in food products. In addition, the National Green Tribunal (NGT) has instructed the Central Pollution Control Board (CPCB) to actively take measures to address microplastic pollution across Indian cities, focusing on key parameters like air, water, food, and humans. This study presents several recommendations, including detection and removal techniques (conventional, advanced, and removal); strengthening legislative policies such as Extended Producer Responsibility (EPR); research collaboration and monitoring with institutions such as CSIR-IITR, ICAR-CIFT, and BITS-Pilani; integrating EPR and Material Recovery Facilities (MRF) to develop a circular economy model; and mass awareness through government initiatives like the Swachh Bharat and Smart City programs to foster long-term behavioral change. Full article
Show Figures

Figure 1

25 pages, 7607 KB  
Article
Engaging Environmental Education for Sustainable Waste Management—The Greenopoli Education Framework
by Giovanni De Feo
Recycling 2026, 11(1), 2; https://doi.org/10.3390/recycling11010002 - 19 Dec 2025
Viewed by 917
Abstract
This paper presents Greenopoli, an innovative framework for sustainability and waste management education that has engaged over 600 schools and 90,000 students since 2014. Greenopoli is founded on the idea that children and youth can grasp environmental issues as well as adults and [...] Read more.
This paper presents Greenopoli, an innovative framework for sustainability and waste management education that has engaged over 600 schools and 90,000 students since 2014. Greenopoli is founded on the idea that children and youth can grasp environmental issues as well as adults and act as agents of change within their families and communities. The Greenopoli approach combines scientific accuracy with playful, creative pedagogy to simplify complex topics and stimulate peer-to-peer learning. It includes storytelling, games, field visits, and “green raps” (original environmental songs co-created with students). The framework is adaptive, with content and activities tailored to education stages from kindergarten through university. Educators adopt the role of moderators or facilitators, encouraging students to discuss and discover concepts collaboratively. Greenopoli’s participatory method has been implemented across all age groups, yielding enthusiastic engagement and tangible outcomes in waste sorting and recycling behaviors. The program’s reach has extended beyond schools through collaborations with national recycling consortia, NGOs, municipalities, and media (TV programs, social media, TEDx talks). Numerous awards and recognitions (2017–2025) have highlighted its impact. A comparative analysis shows that Greenopoli’s use of peer-led learning, gamification, and creative communication aligns with global best practices while offering a unique blend of tools. Greenopoli is a novel best-practice model in environmental education, bridging theory and practice and contributing to the goals of Education for Sustainable Development and a circular economy. It demonstrates the effectiveness of engaging youth as change-makers through interactive and creative learning, and it can inspire similar initiatives globally. Full article
Show Figures

Graphical abstract

15 pages, 3114 KB  
Article
From Waste to Thermal Barrier: Green Carbonation Synthesis of a Silica Aerogel from Coal Gangue
by Chenggang Chen, Heyu Li, Zhe Sun and Yan Cao
Appl. Sci. 2025, 15(24), 13156; https://doi.org/10.3390/app152413156 - 15 Dec 2025
Viewed by 428
Abstract
A sustainable pathway for converting low-value solid waste (Coal gangue, CG) into high-performance thermal insulation materials through a green synthesis strategy has been demonstrated. The SiO2 was successfully and efficiently extracted from CG in the form of sodium silicate. The subsequent sol–gel [...] Read more.
A sustainable pathway for converting low-value solid waste (Coal gangue, CG) into high-performance thermal insulation materials through a green synthesis strategy has been demonstrated. The SiO2 was successfully and efficiently extracted from CG in the form of sodium silicate. The subsequent sol–gel process of sodium silicate solution utilized an innovative CO2 carbonation method, which replaced the conventional use of strong acids, thereby reducing the carbon footprint and enhancing process safety. Hydrophobic SiO2 aerogel was subsequently prepared via ambient pressure drying, exhibiting a high specific surface area of 750.4 m2/g, a narrow pore size distribution ranging from 2 to 15 nm and a low thermal conductivity of 0.022 W·m−1·K−1. Furthermore, the powdered aerogel was shaped into a monolithic form using a simple molding technique, which conferred appreciable compressibility and resilience, maintaining the low thermal conductivity and hydrophobicity of the original aerogels, ensuring its functional integrity for practical applications. Practical thermal management tests including low and high temperature, conclusively demonstrated the superior performance of the prepared aerogel material. This work presents a viable and efficient waste-to-resource pathway for producing high-performance thermal insulation materials. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop