Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,667)

Search Parameters:
Keywords = green promotion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3001 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
21 pages, 1559 KiB  
Article
Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning
by Muzi Zhang, Boying Chi, Hongbin Gu, Jian Zhou, Honggang Chen, Weiwei Wang, Yicheng Wang, Juanjuan Chen, Xueqian Yang and Xuan Zhang
Water 2025, 17(15), 2352; https://doi.org/10.3390/w17152352 (registering DOI) - 7 Aug 2025
Abstract
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available [...] Read more.
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. Full article
(This article belongs to the Section Water and Climate Change)
29 pages, 1413 KiB  
Article
The Impact of VAT Credit Refunds on Enterprises’ Sustainable Development Capability: A Socio-Technical Systems Theory Perspective
by Jinghuai She, Meng Sun and Haoyu Yan
Systems 2025, 13(8), 669; https://doi.org/10.3390/systems13080669 - 7 Aug 2025
Abstract
We investigate whether China’s Value-Added Tax (VAT) Credit Refund policy influences firms’ sustainable development capability (SDC), which reflects innovation-driven growth and green development. Exploiting the 2018 implementation of the VAT Credit Refund policy as a quasi-natural experiment, we employ a difference-in-differences (DID) approach [...] Read more.
We investigate whether China’s Value-Added Tax (VAT) Credit Refund policy influences firms’ sustainable development capability (SDC), which reflects innovation-driven growth and green development. Exploiting the 2018 implementation of the VAT Credit Refund policy as a quasi-natural experiment, we employ a difference-in-differences (DID) approach and find causal evidence that the policy significantly enhances firms’ SDC. This suggests that fiscal instruments like VAT refunds are valued by firms as drivers of long-term sustainable and high-quality development. Our mediating analyses further reveal that the policy promotes firms’ SDC by strengthening artificial intelligence (AI) capabilities and facilitating intelligent transformation. This mechanism “AI Capability Building—Intelligent Transformation” aligns with the socio-technical systems theory (STST), highlighting the interactive evolution of technological and social subsystems in shaping firm capabilities. The heterogeneity analyses indicate that the positive effect of VAT Credit Refund policy on SDC is more pronounced among small-scale and non-high-tech firms, firms with lower perceived economic policy uncertainty, higher operational diversification, lower reputational capital, and those located in regions with a higher level of marketization. We also find that the policy has persistent long-term effects, with improved SDC associated with enhanced ESG performance and green innovation outcomes. Our findings have important implications for understanding the SDC through the lens of STST and offer policy insights for deepening VAT reform and promoting intelligent and green transformation in China’s enterprises. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

45 pages, 767 KiB  
Article
The Economic Effects of the Green Transition of the Greek Economy: An Input–Output Analysis
by Theocharis Marinos, Maria Markaki, Yannis Sarafidis, Elena Georgopoulou and Sevastianos Mirasgedis
Energies 2025, 18(15), 4177; https://doi.org/10.3390/en18154177 - 6 Aug 2025
Abstract
Decarbonization of the Greek economy requires significant investments in clean technologies. This will boost demand for goods and services and will create multiplier effects on output value added and employment, though reliance on imported technologies might increase the trade deficit. This study employs [...] Read more.
Decarbonization of the Greek economy requires significant investments in clean technologies. This will boost demand for goods and services and will create multiplier effects on output value added and employment, though reliance on imported technologies might increase the trade deficit. This study employs input–output analysis to estimate the direct, indirect, and multiplier effects of green transition investments on Greek output, value added, employment, and imports across five-year intervals from 2025 to 2050. Two scenarios are considered: the former is based on the National Energy and Climate Plan (NECP), driven by a large-scale exploitation of RES and technologies promoting electrification of final demand, while the latter (developed in the context of the CLEVER project) prioritizes energy sufficiency and efficiency interventions to reduce final energy demand. In the NECP scenario, GDP increases by 3–10% (relative to 2023), and employment increases by 4–11%. The CLEVER scenario yields smaller direct effects—owing to lower investment levels—but larger induced impacts, since energy savings boost household disposable income. The consideration of three sub-scenarios adopting different levels of import-substitution rates in key manufacturing sectors exhibits pronounced divergence, indicating that targeted industrial policies can significantly amplify the domestic economic benefits of the green transition. Full article
Show Figures

Figure 1

19 pages, 398 KiB  
Article
Analyzing Regional Disparities in China’s Green Manufacturing Transition
by Xuejuan Wang, Qi Deng, Riccardo Natoli, Li Wang, Wei Zhang and Catherine Xiaocui Lou
Sustainability 2025, 17(15), 7127; https://doi.org/10.3390/su17157127 - 6 Aug 2025
Abstract
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the [...] Read more.
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the panel data of 31 provinces in China from 2011 to 2021 and constructs an evaluation index system for the green transformation of the manufacturing industry from four dimensions: environment, resources, economy, and industrial structure. This not only comprehensively and systematically reflects the dynamic changes in the green transformation of the manufacturing industry but also addresses the limitations of currently used indices. The entropy value method is used to calculate the comprehensive score of the green transformation of the manufacturing industry, while the key factors influencing the convergence of the green transformation of the manufacturing industry are further explored. The results show that first, the overall level of the green transformation of the manufacturing industry has significantly improved as evidenced by an approximate 32% increase. Second, regional differences are significant with the eastern region experiencing significantly higher levels of transformation compared to the central and western regions, along with a decreasing trend from the east to the central and western regions. From a policy perspective, the findings suggest that tailored production methods for each region should be adopted with a greater emphasis on knowledge exchanges to promote green transition in less developed regions. In addition, further regulations are required which, in part, focus on increasing the degree of openness to the outside world to promote the level of green manufacturing transition. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

19 pages, 1102 KiB  
Article
Assessing the Adoption and Feasibility of Green Wall Systems in Construction Projects in Nigeria
by Oluwayinka Seun Oke, John Ogbeleakhu Aliu, Damilola Ekundayo, Ayodeji Emmanuel Oke and Nwabueze Kingsley Chukwuma
Sustainability 2025, 17(15), 7126; https://doi.org/10.3390/su17157126 - 6 Aug 2025
Abstract
This study aims to evaluate the level of awareness and practical adoption of green wall systems in the Nigerian construction industry. It seeks to examine the current state of green wall implementation and recommend strategies to enhance their integration into construction practices among [...] Read more.
This study aims to evaluate the level of awareness and practical adoption of green wall systems in the Nigerian construction industry. It seeks to examine the current state of green wall implementation and recommend strategies to enhance their integration into construction practices among Nigerian construction professionals. A thorough review of the existing literature was conducted to identify different types of green wall systems. Insights from this review informed the design of a structured questionnaire, which was distributed to construction professionals based in Lagos State. The data collected were analyzed using statistical tests. The study reveals that while there is generally high awareness of green wall systems among Nigerian construction professionals, the practical use remains low, with just 8 out of the 18 systems being actively implemented, eclipsing the mean value of 3.0. The findings underscore the need for targeted education, industry incentives, and increased advocacy to encourage the use of green wall systems in the Nigerian construction sector. The results have significant implications for the Nigerian construction industry. The limited awareness and adoption of green wall systems highlight the need for strategic actions from policymakers, industry leaders and educational institutions. Promoting the use of green walls could drive more sustainable building practices, improve environmental outcomes and support the broader goals of decarbonization and circularity in construction. This research adds to the body of knowledge on sustainable construction by offering a detailed evaluation of green wall awareness and adoption within the Nigerian context. While green wall systems have been studied globally, this research provides a regional perspective, which in this case focuses on Lagos State. The study’s recognition of the gap between awareness and implementation highlights an important area for future research and industry development. Full article
Show Figures

Figure 1

22 pages, 322 KiB  
Article
The Impact of Green Finance on Energy Transition Under Climate Change
by Zhengwei Ma and Xiangli Jiang
Sustainability 2025, 17(15), 7112; https://doi.org/10.3390/su17157112 - 6 Aug 2025
Abstract
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure [...] Read more.
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure and the upgrading of energy efficiency, this study investigates the impact and mechanisms of green finance on energy transition across 30 provinces (municipalities and autonomous regions) in China, with the exception of Tibet. In addition, the impact of climate change is incorporated into the analytical framework. Empirical results demonstrate that green finance development significantly accelerates energy transition, a conclusion robust to rigorous validation. Analysis of the mechanism shows that green finance promotes energy transition through the facilitation of technological innovation and the upgrade of industrial structures. Moreover, empirical evidence reveals that climate change undermines the promotional influence of sustainable finance on energy system transformation. The magnitude of this suppression varies nonlinearly across provincial jurisdictions with differing energy transition progress. Regional heterogeneity analyses further uncover marked discrepancies in climate–finance interactions, demonstrating amplified effects in coastal economic hubs, underdeveloped western provinces, and regions with mature eco-financial markets. According to these findings, actionable policy suggestions are put forward to strengthen green finance and accelerate energy transition. Full article
(This article belongs to the Special Issue Analysis of Energy Systems from the Perspective of Sustainability)
39 pages, 1121 KiB  
Article
Digital Finance, Financing Constraints, and Green Innovation in Chinese Firms: The Roles of Management Power and CSR
by Qiong Zhang and Zhihong Mao
Sustainability 2025, 17(15), 7110; https://doi.org/10.3390/su17157110 - 6 Aug 2025
Abstract
With the increasing global emphasis on sustainable development goals, and in the context of pursuing high-quality sustainable development of the economy and enterprises, this study empirically examines the effect of digital finance on corporate financing constraints and the impact on corporate green innovation [...] Read more.
With the increasing global emphasis on sustainable development goals, and in the context of pursuing high-quality sustainable development of the economy and enterprises, this study empirically examines the effect of digital finance on corporate financing constraints and the impact on corporate green innovation with a sample of China’s A-share-listed companies in the period of 2011–2020 and explores the issue from the perspectives of management power and corporate social responsibility (CSR) at the micro level of enterprises. The empirical results show that digital finance can indeed alleviate corporate financing constraints. Still, the synergistic effect of the two on corporate green innovation produces a “quantitative and qualitative separation” effect, which only promotes the enhancement of iconic green innovation, and the effect on substantive green innovation is not obvious. The power of management and CSR performanceshave different moderating roles in the alleviation of financing constraints by the empowerment of digital finance. Management power and corporate social responsibility have different moderating effects on digital financial empowerment to alleviate financing constraints. The findings of this study enrich the research in related fields and provide more basis for the promotion of digital financial policies and more solutions for the high-quality development of enterprises. Full article
(This article belongs to the Special Issue Advances in Economic Development and Business Management)
Show Figures

Figure 1

30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 21837 KiB  
Article
Decoding China’s Transport Decarbonization Pathways: An Interpretable Spatio-Temporal Neural Network Approach with Scenario-Driven Policy Implications
by Yanming Sun, Kaixin Liu and Qingli Li
Sustainability 2025, 17(15), 7102; https://doi.org/10.3390/su17157102 - 5 Aug 2025
Abstract
The transportation sector, as a major source of carbon emissions, plays a crucial role in the realization of dual carbon goals worldwide. In this study, an improved least absolute shrinkage and selection operator (LASSO) is used to identify six key factors affecting transportation [...] Read more.
The transportation sector, as a major source of carbon emissions, plays a crucial role in the realization of dual carbon goals worldwide. In this study, an improved least absolute shrinkage and selection operator (LASSO) is used to identify six key factors affecting transportation carbon emissions (TCEs) in China. Aiming at the spatio-temporal characteristics of transportation carbon emissions, a CNN-BiLSTM neural network model is constructed for the first time for prediction, and an improved whale optimization algorithm (EWOA) is introduced for hyperparameter optimization, finding that the prediction model combining spatio-temporal characteristics has a more significant prediction accuracy, and scenario forecasting was carried out using the prediction model. Research indicates that over the past three decades, TCEs have demonstrated a rapid growth trend. Under the baseline, green, low-carbon, and high-carbon scenarios, peak carbon emissions are expected in 2035, 2031, 2030, and 2040. The adoption of a low-carbon scenario represents the most advantageous pathway for the sustainable progression of China’s transportation sector. Consequently, it is imperative for China to accelerate the formulation and implementation of low-carbon policies, promote the application of clean energy and facilitate the green transformation of the transportation sector. These efforts will contribute to the early realization of dual-carbon goals with a positive impact on global sustainable development. Full article
Show Figures

Figure 1

36 pages, 2949 KiB  
Article
Modeling the Evolutionary Mechanism of Multi-Stakeholder Decision-Making in the Green Renovation of Existing Residential Buildings in China
by Yuan Gao, Jinjian Liu, Jiashu Zhang and Hong Xie
Buildings 2025, 15(15), 2758; https://doi.org/10.3390/buildings15152758 - 5 Aug 2025
Abstract
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and [...] Read more.
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and risk perceptions among governments, energy service companies (ESCOs), and owners, the implementation of green renovation is hindered by numerous obstacles. In this study, we integrated prospect theory and evolutionary game theory by incorporating core prospect-theory parameters such as loss aversion and perceived value sensitivity, and developed a psychologically informed tripartite evolutionary game model. The objective was to provide a theoretical foundation and analytical framework for collaborative governance among stakeholders. Numerical simulations were conducted to validate the model’s effectiveness and explore how government regulation intensity, subsidy policies, market competition, and individual psychological factors influence the system’s evolutionary dynamics. The findings indicate that (1) government regulation and subsidy policies play central guiding roles in the early stages of green renovation, but the effectiveness has clear limitations; (2) ESCOs are most sensitive to policy incentives and market competition, and moderately increasing their risk costs can effectively deter opportunistic behavior associated with low-quality renovation; (3) owners’ willingness to participate is primarily influenced by expected returns and perceived renovation risks, while economic incentives alone have limited impact; and (4) the evolutionary outcomes are highly sensitive to parameters from prospect theory, The system’s evolutionary outcomes are highly sensitive to prospect theory parameters. High levels of loss aversion (λ) and loss sensitivity (β) tend to drive the system into a suboptimal equilibrium characterized by insufficient demand, while high gain sensitivity (α) serves as a key driving force for the system’s evolution toward the ideal equilibrium. This study offers theoretical support for optimizing green renovation policies for existing residential buildings in China and provides practical recommendations for improving market competition mechanisms, thereby promoting the healthy development of the green renovation market. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 1062 KiB  
Article
Sustainability Audit of University Websites in Poland: Analysing Carbon Footprint and Sustainable Design Conformity
by Karol Król
Appl. Sci. 2025, 15(15), 8666; https://doi.org/10.3390/app15158666 - 5 Aug 2025
Abstract
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design [...] Read more.
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design criteria. The sustainability audit employed a methodology encompassing carbon emissions measurement, technical website analysis, and SEO evaluation. The author analysed 63 websites of public universities in Poland using seven independent audit tools, including an original AI Custom GPT agent preconfigured in the ChatGPT ecosystem. The results revealed a substantial differentiation in CO2 emissions and website optimisation, with an average EcoImpact Score of 66.41/100. Nearly every fourth website exhibited a significant carbon footprint and excessive component sizes, which indicates poor asset optimisation and energy-intensive design techniques. The measurements exposed considerable variability in emission intensities and resource intensity among the university websites, suggesting the need for standardised digital sustainability practices. Regulations on the carbon footprint of public institutions’ websites and mobile applications could become vital strategic components for digital climate neutrality. Promoting green hosting, “Green SEO” practices, and sustainability audits could help mitigate the environmental impact of digital technologies and advance sustainable design standards for the public sector. The proposed auditing methodology can effectively support the institutional transition towards sustainable management of digital infrastructure by integrating technical, sustainability, and organisational aspects. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 2243 KiB  
Article
Increasing Access and Availability of Nutrient-Dense Foods at United States Marine Corps Food Venues Is Feasible and Profitable
by Katie M. Kirkpatrick, Zina N. Abourjeily, Melissa A. Rittenhouse, Maureen W. Purcell, Rory G. McCarthy and Jonathan M. Scott
Nutrients 2025, 17(15), 2556; https://doi.org/10.3390/nu17152556 - 5 Aug 2025
Abstract
Background/Objectives: Military Service Members (SMs) require optimal nutrition to support health, readiness, and job performance. However, they often fall short of meeting nutrition guidelines. This study aimed to determine the impact and feasibility of implementing the U.S. Marine Corps (USMC) “Fueled to [...] Read more.
Background/Objectives: Military Service Members (SMs) require optimal nutrition to support health, readiness, and job performance. However, they often fall short of meeting nutrition guidelines. This study aimed to determine the impact and feasibility of implementing the U.S. Marine Corps (USMC) “Fueled to Fight®” (F2F) nutrition program in non-appropriated fund (NAF) food venues. Objectives included evaluating changes in Military Nutrition Environment Assessment Tool (mNEAT) scores, feasibility of implementing and maintaining F2F strategies, and influence on customer purchasing patterns. Methods: Researchers conducted a pre-post interventional study from January to December 2024 at three NAF food venues across two USMC bases. F2F strategies, including identifying items using a stoplight color coding system (Green = healthy, Yellow = less healthy, Red = least healthy), menu revisions, food placement, promotion, and marketing, were implemented. Data included mNEAT assessments, sales reports, and stakeholder focus groups. Generalized Estimating Equations models were used to analyze sales data. Results: mNEAT scores increased across all venues post-intervention. Availability and sales of Green items increased, while sales of Red items decreased in some venues. Profit increased at all three food venues. Focus groups revealed feasibility and provided insights for future interventions. Conclusions: F2F interventions in NAF food venues are feasible and can positively impact the food environment and customer purchasing patterns without negatively affecting profit. This study highlights the importance of integrating nutrition programs into all military food venues, not just government-funded dining facilities, to support the nutritional fitness and readiness of SMs. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop