Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,199)

Search Parameters:
Keywords = green industrial production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 6739 KB  
Review
Advances in Alkaline Water Electrolysis—The Role of In Situ Ionic Activation in Green Hydrogen Production
by Vladimir M. Nikolić, Katarina M. Dimić-Mišić, Slađana Lj. Maslovara, Dejana P. Popović, Mihajlo N. Gigov, Sanja S. Krstić and Milica P. Marčeta Kaninski
Catalysts 2026, 16(1), 98; https://doi.org/10.3390/catal16010098 (registering DOI) - 18 Jan 2026
Abstract
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) [...] Read more.
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) kinetics and energy-efficiency limitations compared with acidic electrolysis systems. This review provides a comprehensive overview of the fundamental principles governing alkaline electrolysis, encompassing electrolyte chemistry, electrode materials, electrochemical mechanisms, and the roles of overpotentials, cell resistances, and surface morphology in determining system performance. Key developments in catalytic materials are discussed, highlighting both noble-metal and non-noble-metal electrocatalysts, as well as advanced approaches to surface modification and nanostructuring designed to enhance catalytic activity and long-term stability. Particular emphasis is placed on the emerging strategy of in situ ionic activation, wherein transition-metal ions and oxyanions are introduced directly into the operating electrolyte. These species dynamically interact with electrode surfaces under polarization, inducing real-time surface reconstruction, improving water dissociation kinetics, tuning hydrogen adsorption energies, and extending electrode durability. Results derived from polarization measurements, electrochemical impedance spectroscopy, and surface morphology analyses consistently demonstrate that ionic activators, such as Ni–Co–Mo systems, significantly increase the HER performance through substantial increase in surface roughness and increased intrinsic electrocatalytic activity through synergy of d-metals. By integrating both historical context and recent research findings, this review underscores the potential of ionic activation as a scalable and cost-effective way toward improving the efficiency of alkaline water electrolysis and accelerating progress toward sustainable, large-scale green hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
24 pages, 651 KB  
Article
Synergistic Enhancement of Low-Carbon City Policies and National Big Data Comprehensive Experimental Zone Policies on Green Total Factor Productivity: Evidence from Pilot Cities in China
by Yan Wang and Zhiqing Xia
Sustainability 2026, 18(2), 936; https://doi.org/10.3390/su18020936 - 16 Jan 2026
Viewed by 38
Abstract
Green total factor productivity (GTFP), as an important indicator considering both economic development and environmental protection, has prompted countries around the world to actively explore ways to improve it in the context of the global transition to a green economy. The Low-Carbon City [...] Read more.
Green total factor productivity (GTFP), as an important indicator considering both economic development and environmental protection, has prompted countries around the world to actively explore ways to improve it in the context of the global transition to a green economy. The Low-Carbon City Policy (LCCP) implemented by the Chinese government, along with the National Big Data Comprehensive Pilot Zone Policy (NBDCPZ), which serve as key carriers of green regulation and digital innovation, respectively, play an important role in improving green total factor productivity (GTFP) and achieving high-quality economic development. This study aims to deeply explore whether there is a collaborative enabling effect of the Low-Carbon City Policy (LCCP) and the National Big Data Comprehensive Pilot Zone Policy (NBDCPZ) on green total factor productivity (GTFP) and to reveal the internal mechanism by which they improve GTFP through green technological innovation and industrial agglomeration. Specifically, based on the panel data of 269 prefecture-level cities in China from 2006 to 2022, a “dual-pilot” policy is constructed through LCCP and NBDCPZ, and a multi-period difference-in-differences model (DID) is used to evaluate the collaborative effect of the “dual-pilot” policy on GTFP. The results show that the “dual-pilot” policy has a significant collaborative effect on green total factor productivity (GTFP), and its enabling effect is more obvious than that of the “single-pilot” policy. These conclusions still hold after a series of endogeneity and robustness tests. Mechanism analysis shows that the “dual-pilot” policy can also improve green total factor productivity (GTFP) through green technological innovation and industrial agglomeration. Heterogeneity analysis reveals that the collaborative enabling effect of the “dual-pilot” policy is influenced by geographical location and population density. Specifically, the “dual-pilot” policy significantly promotes green total factor productivity (GTFP) in coastal cities and those with high population density. These research results provide a scientific basis for formulating green development policies in China and other countries, as well as a direction for subsequent research on the collaborative enabling effect of multiple policies. Full article
16 pages, 6793 KB  
Article
Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel
by Yufei Sun, Qiuwan Shen, Shian Li and He Miao
J. Mar. Sci. Eng. 2026, 14(2), 188; https://doi.org/10.3390/jmse14020188 - 16 Jan 2026
Viewed by 111
Abstract
The green transformation of the shipping industry urgently requires zero-carbon power, and hydrogen-powered ships such as hydrogen fuel cell ships face bottlenecks in in situ hydrogen production and storage and transportation. Methanol steam reforming (MSR) online hydrogen production is suitable for ship scenarios, [...] Read more.
The green transformation of the shipping industry urgently requires zero-carbon power, and hydrogen-powered ships such as hydrogen fuel cell ships face bottlenecks in in situ hydrogen production and storage and transportation. Methanol steam reforming (MSR) online hydrogen production is suitable for ship scenarios, reducing costs and increasing efficiency while helping achieve zero carbon throughout the entire lifecycle, which has important practical significance. The key technology for MSR technology is the performance of the catalyst. A series of Cu1−xMnxAl2O4 catalysts were successfully synthesized and applied for hydrogen production in this study. The catalyst structure was characterized using physicochemical techniques including XRD, SEM, and EDS. Hydrogen production performance was evaluated in a fixed-bed reactor under the following conditions: a liquid hourly space velocity (LHSV) of 20 h−1, a water-to-methanol molar ratio of 3:1, and a reaction temperature range of 275 °C–350 °C. The results demonstrate that A-site Mn substitution significantly enhanced the catalytic performance. In addition, XRD analysis revealed that Mn incorporation effectively suppressed the formation of segregated CuO phases. However, excessive substitution (x is 0.9) led to the generation of an MnAl2O4 impurity phase. Finally, the Cu0.7Mn0.3Al2O4 catalyst achieved a methanol conversion of 68.336% at 325 °C, with a hydrogen production rate of 5.611 mmol/min/gcat, and maintained CO selectivity below 1%. The results demonstrate that the hydrogen production catalyst developed in this study is a promising material for meeting the requirements of online hydrogen sources for ships. Full article
(This article belongs to the Special Issue Alternative Fuels and Emission Control in Maritime Applications)
Show Figures

Figure 1

14 pages, 560 KB  
Proceeding Paper
Campfire: Innovative Cost Modeling and Market Forecasting for Ammonia as a Maritime Fuel
by Mohamed Amin, Edward Antwi, Mirko Post, Romy Sommer, Qahtan Thabit and Johannes Gulden
Eng. Proc. 2026, 121(1), 20; https://doi.org/10.3390/engproc2025121020 - 16 Jan 2026
Viewed by 46
Abstract
In recent years, Ammonia has emerged as a promising carbon-free fuel alternative, offering considerable potential to reduce CO2 emissions and contribute to the decarbonization of the transportation industry. This study focuses on the economic feasibility and market price of ammonia now and [...] Read more.
In recent years, Ammonia has emerged as a promising carbon-free fuel alternative, offering considerable potential to reduce CO2 emissions and contribute to the decarbonization of the transportation industry. This study focuses on the economic feasibility and market price of ammonia now and in the future, highlighting the necessary infrastructure for emission-free transport operation. The project compares various production pathways for alternative fuels including hydrogen, ammonia, methanol, LNG, and diesel, considering both “green” and “gray” production methods. A key output of this research is the development of a flexible cost calculation tool, which allows users to simulate various scenarios by adjusting variables to ensure the continuity of the project. This tool enables dynamic analysis of future fuel prices and operational costs, accounting for the fluctuating electricity prices for green ammonia production and the long-term rise in CO2 prices. Moreover, the study provides detailed cost modeling, infrastructure requirements, and refueling options for ammonia in comparison to other fuels. The findings indicate that ammonia is a promising long-term option for the maritime sector. While the adaptation to ammonia-based engines remains in the research phase, the long-term benefits of lower emissions and operating costs justify the investment in the necessary research and infrastructure, such as storage and refueling facilities. Full article
Show Figures

Figure 1

25 pages, 550 KB  
Article
Assessing the Impact of Digital Economic Development on the Resilience of China’s Agricultural Industry Chain
by Qingxi Zhang, Boyao Song, Siyu Fei and Hongxun Li
Agriculture 2026, 16(2), 230; https://doi.org/10.3390/agriculture16020230 - 15 Jan 2026
Viewed by 92
Abstract
Based on panel data from China’s 31 provinces and municipalities covering 2011–2023, this study constructs a multidimensional evaluation system for digital economic development and agricultural industrial chain resilience within the Technology-Organization-Environment (TOE) framework. It systematically examines the impact of the digital economy on [...] Read more.
Based on panel data from China’s 31 provinces and municipalities covering 2011–2023, this study constructs a multidimensional evaluation system for digital economic development and agricultural industrial chain resilience within the Technology-Organization-Environment (TOE) framework. It systematically examines the impact of the digital economy on agricultural industrial chain resilience and its sub-dimensions, while introducing green finance as a moderating variable. The findings reveal: First, the development of the digital economy significantly enhances the resilience of the agricultural industrial chain. This conclusion withstands multiple robustness tests, and the impact of the digital economy on the three dimensions of agricultural industrial chain resilience (resistance, recovery, and reconstruction) varies, particularly exhibiting a negative effect on reconstruction. Second, the enabling effect of the digital economy on agricultural industrial chain resilience shows a significant spatial gradient. Regionally, resilience is ranked as “Production-Sales Balance Zones > Main Sales Zones > Main Production Zones” within grain functional zones, and “Northeast > West > East > Central” across China’s four major economic regions. Third, green finance development exerts a negative moderating effect on the pathway through which the digital economy enhances agricultural supply chain resilience, higher green finance levels weaken the marginal improvement effect of the digital economy. This study fills research gaps regarding the multidimensional impact of digital economic development on agricultural industrial chain resilience and empirically supplements the lack of evidence on the negative moderating mechanism of green finance and its sub-dimensions, providing policy tools for agricultural modernization and resilience governance. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

21 pages, 1329 KB  
Review
Valorization of Chestnut By-Products: Extraction, Bioactivity, and Applications of Shells, Spiny Burs, and Leaves
by Stefania Lamponi, Roberta Barletta and Annalisa Santucci
Life 2026, 16(1), 140; https://doi.org/10.3390/life16010140 - 15 Jan 2026
Viewed by 129
Abstract
The European chestnut (Castanea sativa Mill.) industry generates substantial amounts of underutilized biomass, including shells, leaves, and spiny burs. Distinguishing itself from existing literature, this review presents a novel, integrated life-science analysis that redefines these by-products as a complementary ‘bioactive triad’, ranging [...] Read more.
The European chestnut (Castanea sativa Mill.) industry generates substantial amounts of underutilized biomass, including shells, leaves, and spiny burs. Distinguishing itself from existing literature, this review presents a novel, integrated life-science analysis that redefines these by-products as a complementary ‘bioactive triad’, ranging from metabolic regulators to anti-virulence agents, rather than interchangeable sources of polyphenols. Although traditionally discarded, these by-products are rich sources of polyphenols, ellagitannins, and flavonoids, with promising potential for nutraceutical, cosmetic, and pharmaceutical applications. This review examines recent advances in the valorization of chestnut by-products, focusing on extraction strategies, chemical profiles, and biological activities. Shell valorization has increasingly shifted toward green extraction technologies, such as subcritical water extraction and deep eutectic solvents, which strongly influence bioactive recovery and composition. Chestnut leaves emerge as a sustainable resource enriched in hydrolysable tannins with anti-inflammatory and quorum sensing-inhibitory properties, particularly relevant for dermatological applications. Spiny burs, often the most phenolic-rich fraction, display marked antioxidant activity and the ability to potentiate conventional antibiotics against pathogens such as Helicobacter pylori. Despite these promising features, major challenges remain, including cultivar-dependent chemical variability, the predominance of in vitro evidence, and safety concerns related to the accumulation of potentially toxic elements. Overall, while chestnut by-products represent valuable resources within circular bioeconomy frameworks, their successful industrial and practical translation will require standardized extraction protocols, robust bioavailability assessments, and well-designed in vivo and clinical studies to ensure safety and efficacy. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

14 pages, 2186 KB  
Article
An LMDI-Based Analysis of Carbon Emission Changes in China’s Fishery and Aquatic Processing Sector: Implications for Sustainable Risk Assessment and Hazard Mitigation
by Tong Li, Sikai Xie, N.A.K. Nandasena, Junming Chen and Cheng Chen
Sustainability 2026, 18(2), 860; https://doi.org/10.3390/su18020860 - 14 Jan 2026
Viewed by 174
Abstract
To align with disaster monitoring and sustainable risk assessment, the low-carbon transition of fisheries necessitates comprehensive carbon emission management throughout the supply chain. As China advances supply-side structural reform, transitioning from traditional to low-carbon fisheries is vital for the green development of the [...] Read more.
To align with disaster monitoring and sustainable risk assessment, the low-carbon transition of fisheries necessitates comprehensive carbon emission management throughout the supply chain. As China advances supply-side structural reform, transitioning from traditional to low-carbon fisheries is vital for the green development of the industry and its associated sectors. This study employs input–output models and LMDI decomposition to examine the trends and drivers of embodied carbon emissions within China’s fishery production system from 2010 to 2019. By constructing a cross-sectoral full-emission accounting system, the research calculates total direct and indirect emissions, exploring how accounting scopes influence regional responsibility and reduction strategies. Empirical results indicate that while China’s aquatic trade and processing have steadily developed, the sector remains dominated by low-value-added primary products. This structure highlights vast potential for deep processing development amidst shifting global dietary habits. Factor decomposition reveals that economic and technological development are the primary drivers of carbon emissions. Notably, technological progress within fisheries emerges as the most significant factor, playing a pivotal role in both driving and potentially mitigating emissions. Consequently, to effectively lower carbon intensity, the study concludes that restructuring the fishery industry is crucial. Promoting low-carbon development and enhancing the R&D of green technologies are essential strategies to navigate the dual challenges of industrial upgrading and environmental protection. Full article
Show Figures

Figure 1

67 pages, 4924 KB  
Review
Current Trends and Innovations in CO2 Hydrogenation Processes
by Egydio Terziotti Neto, Lucas Alves da Silva, Heloisa Ruschel Bortolini, Rita Maria Brito Alves and Reinaldo Giudici
Processes 2026, 14(2), 293; https://doi.org/10.3390/pr14020293 - 14 Jan 2026
Viewed by 141
Abstract
In recent years, interest in carbon dioxide (CO2) hydrogenation technologies has intensified. Driven by the continuous rise in greenhouse gas emissions and the unprecedented negative impacts of global warming, these technologies offer a viable pathway toward sustainability and support the development [...] Read more.
In recent years, interest in carbon dioxide (CO2) hydrogenation technologies has intensified. Driven by the continuous rise in greenhouse gas emissions and the unprecedented negative impacts of global warming, these technologies offer a viable pathway toward sustainability and support the development of low-carbon industrial processes. In addition to methanol and methane, other possible hydrogenation products (i.e., hydrocarbons, formic acid, acetic acid, dimethyl ether, and dimethyl carbonate) are of industrial relevance due to their wide range of applications. Therefore, this review aims to provide a comprehensive overview of the various aspects associated with thermocatalytic CO2 hydrogenation processes, from thermodynamic and kinetic studies to upscaled reactor modeling and process synthesis and optimization. The review proceeds to examine different integration strategies and optimization approaches for multi-product systems, with the objective of evaluating how distinct technologies may be combined in an integrated flowsheet. It then concludes by outlining future research opportunities in this field, particularly those related to developing comprehensive kinetic rate expressions and reactor modeling studies for routes with low technology readiness levels, the exploration of prospective reaction pathways, strategies to mitigate the dependence on green hydrogen (which, today, exhibits high costs), and the consideration of market price or product demand fluctuations in optimization studies. Overall, this review provides a solid base to support other decarbonization studies focused on hydrogenation technologies. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Chemical Processes and Systems")
Show Figures

Figure 1

18 pages, 2137 KB  
Article
Fatigue Analysis of Sustainable Bituminous Pavements with Artificial and Recycled Aggregates
by Evelio Teijón-López-Zuazo, Ángel Vega-Zamanillo, Cristina Calmeiro dos Santos and David Gómez-Carrascal
Sustainability 2026, 18(2), 845; https://doi.org/10.3390/su18020845 - 14 Jan 2026
Viewed by 84
Abstract
The circular economy represents a significant opportunity to enhance the mechanical properties of bituminous mixtures, thereby contributing to sustainable development. This research compares the behaviour of traditional bituminous mixtures with sustainable ones that reuse recycled materials, industrial waste products, or additives that improve [...] Read more.
The circular economy represents a significant opportunity to enhance the mechanical properties of bituminous mixtures, thereby contributing to sustainable development. This research compares the behaviour of traditional bituminous mixtures with sustainable ones that reuse recycled materials, industrial waste products, or additives that improve mechanical or rheological properties. The methodology employed comprised the acquisition of fatigue resistance laws from 4-point bending tests on prismatic specimens. This facilitated the analytical determination of the number of axles of 13 tons that the section of pavement with sustainable material can support for comparison with the axles supported in the conventional mix. The findings corroborate the utilization of sustainable bituminous mixtures in pavement sections, employing the maximum circularity criterion. The fatigue laws calculated must permit the use of different calculation methods or other applications in green infrastructures, such as cycling lanes or pedestrian areas. On sections with an AADT of between 800 and 25 HV/day, all of the analyzed bituminous mixtures with sustainable materials prolong the service life of the road. There were increases in service life of between 25.5% and 6.6%, respectively, which satisfactorily achieved an increase in pavement service life based on the criterion of maximum circularity. Full article
(This article belongs to the Special Issue Innovative and Sustainable Pavement Materials and Technologies)
Show Figures

Figure 1

17 pages, 3964 KB  
Review
Green Hydrogen and Its Contribution to Environmental Sustainability: A Review
by Pablo Fernández-Arias, Antonio del Bosque, Georgios Lampropoulos and Diego Vergara
Resources 2026, 15(1), 15; https://doi.org/10.3390/resources15010015 - 14 Jan 2026
Viewed by 249
Abstract
Green hydrogen has become a fundamental pillar in the transition towards a low-carbon economy, due to its ability to produce energy without polluting emissions and from renewable sources such as solar and wind. Unlike other hydrogen production technologies, green hydrogen is obtained through [...] Read more.
Green hydrogen has become a fundamental pillar in the transition towards a low-carbon economy, due to its ability to produce energy without polluting emissions and from renewable sources such as solar and wind. Unlike other hydrogen production technologies, green hydrogen is obtained through water electrolysis using renewable electricity, which makes it a clean and sustainable fuel, ideal for hard-to-decarbonized sectors such as heavy industry and long-distance transportation. The main objective of this review is to analyze the evolution, trends, and knowledge gaps related to the sustainability of green hydrogen, identifying the main research focus areas, scientific actors, and emerging opportunities. To do this, 1935 scientific articles indexed in Scopus and WOS were examined under PRISMA 2020. Among the most relevant results, an exponential growth in scientific production on hydrogen and sustainability is observed, with Asian authors leading due to strong national commitments. The main challenges identified by the scientific community are related to efficiency, profitability, optimization, integration into sustainable energy systems, and emission reduction. Green hydrogen technologies are central to future energy, and success depends on international collaboration, innovation, and stable policies that support large-scale, sustainable clean energy adoption. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

40 pages, 69535 KB  
Review
Recent Insights into Protein-Polyphenol Complexes: Molecular Mechanisms, Processing Technologies, Synergistic Bioactivities, and Food Applications
by Hoang Duy Huynh, Thanh Huong Tran Thi, Thanh Xuan Tran Thi, Parushi Nargotra, Hui-Min David Wang, Yung-Chuan Liu and Chia-Hung Kuo
Molecules 2026, 31(2), 287; https://doi.org/10.3390/molecules31020287 - 13 Jan 2026
Viewed by 130
Abstract
Modifying proteins through grafting with polyphenols has received much attention recently due to its immense application potential. This stems from the formation of protein-polyphenol complexes, altering the structural and functional properties of the constituent molecules. In food systems, the interaction between proteins and [...] Read more.
Modifying proteins through grafting with polyphenols has received much attention recently due to its immense application potential. This stems from the formation of protein-polyphenol complexes, altering the structural and functional properties of the constituent molecules. In food systems, the interaction between proteins and polyphenols, including covalent and non-covalent binding, represents a green, simple, and effective strategy to transform difficult-to-process protein sources into high-value functional ingredients. In addition, the complexes formed can increase stability, biological activity, and bioavailability of polyphenols, thereby expanding their applications. Gaining insight into protein-polyphenol complexes is essential for developing novel complexes, formulations, and other applications utilizing protein and natural polyphenols. Thus, this review outlines the binding affinities and interaction mechanisms, explains factors affecting complex formation, revisits structural modulation of protein, modern processing technologies, and systematically discusses the synergistic bioactivities of the resulting complexes. We also discuss strategies to address the applications of protein–polyphenol complexes for developing functional food products with prolonged shelf life. These applications can be expanded to other industrial areas, such as pharmaceuticals and material engineering, contributing towards better nutritional quality, beneficial healthy aspects, and sustainability. Full article
Show Figures

Figure 1

20 pages, 2128 KB  
Article
Valorization of Carrot Processing Waste Through Lycopene Recovery and Development of Functional Oil-Enriching Agents
by María Celia Román, Mathias Riveros-Gómez, Daniela Zalazar-García, Inés María Ranea-Vera, Celina Podetti, María Paula Fabani, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 789; https://doi.org/10.3390/su18020789 - 13 Jan 2026
Viewed by 104
Abstract
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit [...] Read more.
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit (R2 > 0.99), enabling accurate prediction of moisture content removal while preserving bioactive compounds. Optimization via Box–Behnken design identified efficient extraction conditions (49.7–60 °C, 10 mL/g, 60 min), achieving lycopene equivalent (LE) yields of 3.07 to 5.00 mg/kg oil. Sunflower and blended oils showed comparable performance under maximum sonication power (240 W), with strong agreement between predicted and experimental yields. The process generated two valuable outputs: a functional lycopene-enriched oil and an exhausted carrot powder co-product, the latter retaining its crude fiber content despite other compositional changes. This research presents a scalable, green methodology that aligns with circular economy principles, transforming agro-industrial waste into functional food ingredients without organic solvents. Thus, the developed approach establishes a transferable model for the sustainable valorization of carotenoid-rich residues, contributing directly to greener food production systems. By providing a practical technological framework to convert waste into wealth, this work supports the fundamental transition toward a circular bioeconomy. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

21 pages, 459 KB  
Article
The Impact of Green Shipping Practices on Customer Satisfaction and Customer Retention in the Container Shipping Industry: Evidence from Maritime Freight Forwarders
by Chun-Hsiang Chang and Rong-Her Chiu
Sustainability 2026, 18(2), 775; https://doi.org/10.3390/su18020775 - 12 Jan 2026
Viewed by 121
Abstract
This study established an empirical structural equation model to examine whether the adoption of green shipping practices (GSPs) will influence customer satisfaction and customer retention in the container shipping industry from the perspective of freight forwarders, while accounting for the effectiveness of marketing [...] Read more.
This study established an empirical structural equation model to examine whether the adoption of green shipping practices (GSPs) will influence customer satisfaction and customer retention in the container shipping industry from the perspective of freight forwarders, while accounting for the effectiveness of marketing activities. Through questionnaire survey, 114 responding data were collected from freight forwarders in the Taiwan area. The main results discovered are as follows: (1) adoption of GSPs was found to positively influence companies’ environmental performance in terms of perceived green capability (PGC); (2) the most significant finding in this study is the irrelevance of PGC to both CS and CR from the perspective of freight forwarders. In addition, after discussing the managerial implications, this study examined whether adopting GSPs to improve the environmental and productivity performance of liner carriers remains an ongoing debate and if it warrants a further investigation. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

12 pages, 2275 KB  
Article
Penicillium bialowiezense Causing Blue Mold on Bag-Cultivated Shiitake (Lentinula edodes) in China: Morphological, Molecular and Pathogenic Characterization
by Tan Wang, Enping Zhou, Caixia Wang, Zhifeng Zhang, Yingjun Zhang, Siliang Huang and Qiuhong Niu
Horticulturae 2026, 12(1), 86; https://doi.org/10.3390/horticulturae12010086 - 12 Jan 2026
Viewed by 170
Abstract
Lentinula edodes (shiitake) is a major edible and medicinal mushroom and a key component of the horticultural mushroom industry in East Asia. During April–June 2024 cropping season, a widespread blue mold outbreak was observed on bag-cultivated shiitake in Xixia County, Henan Province, China. [...] Read more.
Lentinula edodes (shiitake) is a major edible and medicinal mushroom and a key component of the horticultural mushroom industry in East Asia. During April–June 2024 cropping season, a widespread blue mold outbreak was observed on bag-cultivated shiitake in Xixia County, Henan Province, China. Affected cultivation rooms showed extensive blue-green sporulation on the exposed surfaces of substrate blocks and on developing and mature fruiting bodies, leading to rapid loss of marketability. To clarify the etiology of this disease, we coupled field surveys with morphological, molecular, and pathogenicity analyses. Fifty-five Penicillium isolates were obtained from symptomatic cultivation bags. Three representative isolates (LE06, LE15, and LE26) were characterized in detail. Colonies on PDA produced velutinous to floccose mycelia with blue-green conidial masses and terverticillate penicilli bearing smooth-walled, globose conidia. Sequencing of four loci—the internal transcribed spacer (ITS1-5.8S-ITS2), β-tubulin (benA), calmodulin gene (CaM), and RNA polymerase II second largest subunit (rpb2)—followed by multilocus phylogenetic analysis placed all three isolates in a well-supported clade with the ex-type CBS 227.28 of Penicillium bialowiezense. Inoculation of healthy shiitake cultivation bags with conidial suspensions (1 × 106 conidia mL−1) reproduced typical blue mold symptoms on substrate surfaces and fruiting bodies within 40 days post inoculation, whereas mock-inoculated controls remained symptomless. The pathogen was consistently reisolated from diseased tissues and showed identical ITS and benA sequences to the inoculated strains, thereby fulfilling Koch’s postulates. This is the first confirmed report of P. bialowiezense causing blue mold on shiitake, and it expands the known host range of this species. Our findings highlight the vulnerability of bag cultivation systems to airborne Penicillium contaminants and underscore the need for improved hygiene, environmental management, and targeted diagnostics in commercial shiitake production. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Figure 1

17 pages, 4129 KB  
Article
Development and Comparison of Visual Colorimetric Endpoint LAMP and Real-Time LAMP-SYBR Green I Assays for Alternaria alternata (Fr.) Keissl in European Plum
by Hongyue Li, Canpeng Fu, Pan Xie, Wenwen Gao, Zhiqiang Mu, Lingkai Xu, Qiuyan Han and Shuaishuai Sha
J. Fungi 2026, 12(1), 56; https://doi.org/10.3390/jof12010056 - 12 Jan 2026
Viewed by 259
Abstract
European plum (Prunus domestica L.) is widely cultivated worldwide, with China producing 6.8 million t annually (55% of the global total output). However, the Kashgar region of Xinjiang, China’s primary production area, has experienced outbreaks of brown spot disease caused by Alternaria [...] Read more.
European plum (Prunus domestica L.) is widely cultivated worldwide, with China producing 6.8 million t annually (55% of the global total output). However, the Kashgar region of Xinjiang, China’s primary production area, has experienced outbreaks of brown spot disease caused by Alternaria alternata (Fr.) Keissl. Outbreaks of this disease severely hinder both domestic and global development of the European plum industry. Because this pathogen has a strong latent infection capability during the early stages of disease development, its early detection is important. We develop two detection methods targeting the ITS sequence of A. alternata: LAMP-Cresol Red chromogenic visible endpoint detection and LAMP-SYBR Green I real-time fluorescent detection. Both methods demonstrate high specificity for A. alternata, enabling stable detection of the pathogen in various plant samples; detection limits reach the femtogram (fg) level, significantly surpassing conventional PCR detection capabilities. Development of these highly efficient and precise early detection methods provides a solid foundation for sustainable development of China as a global hub of the European plum industry, and contributes significantly to global disease prevention, control, and industrial stability for this crop. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

Back to TopTop