Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (513)

Search Parameters:
Keywords = grassland biodiversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2618 KiB  
Article
Potential Effects of Grassland Restoration on the Water Resources in Nango-Dani, Aso, Japan
by Hiroki Amano, Kei Nakagawa, Tsutomu Ichikawa and Ronny Berndtsson
Water 2025, 17(16), 2466; https://doi.org/10.3390/w17162466 - 20 Aug 2025
Viewed by 116
Abstract
The semi-natural grasslands of the Aso Caldera, Japan, have historically played a key role in maintaining biodiversity, tourism, and water resources. However, they are now in decline due to a decrease in the number of agricultural workers and an aging workforce, as well [...] Read more.
The semi-natural grasslands of the Aso Caldera, Japan, have historically played a key role in maintaining biodiversity, tourism, and water resources. However, they are now in decline due to a decrease in the number of agricultural workers and an aging workforce, as well as structural changes and stagnation in the agricultural and livestock industries. This study focused on the water resource maintenance function of grasslands by applying a water balance model to quantify the potential impact of grassland restoration on water resources in Nango-Dani, located in the southern part of the Aso Caldera. We simulated groundwater recharge, storage, spring discharge, and baseflow under multiple scenarios involving the conversion of coniferous trees to grasslands. According to the calculation results, replacing 10% of coniferous trees with grassland increased groundwater recharge by approximately 0.86 million m3. This increase is due to grasslands having a higher groundwater recharge capacity, owing to their higher canopy permeability and lower evapotranspiration. The storage volume increased by approximately 0.54 million m3, which is equivalent to the annual water usage of 6700 people. Furthermore, grassland restoration increased spring discharge and baseflow. These results quantitatively demonstrate a significant enhancement of regional water resource sustainability and provide scientific evidence to inform land-use policies. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 3781 KiB  
Article
Environmental Effects on Bacterial Community Assembly in Arid and Semi-Arid Grasslands
by Shenggang Chen, Yaqi Zhang, Jun Ma, Mingyue Bai, Yinglong Chen, Jianbin Guo and Lin Chen
Microorganisms 2025, 13(8), 1934; https://doi.org/10.3390/microorganisms13081934 - 19 Aug 2025
Viewed by 247
Abstract
Studying the effects of environmental factors on microbial community assemblies is crucial for understanding microbial biodiversity and ecosystem processes. Although numerous studies have explored the spatial patterns of microbial communities in surface soils, bacterial community distributions in subsurface layers remain poorly understood. We [...] Read more.
Studying the effects of environmental factors on microbial community assemblies is crucial for understanding microbial biodiversity and ecosystem processes. Although numerous studies have explored the spatial patterns of microbial communities in surface soils, bacterial community distributions in subsurface layers remain poorly understood. We investigated multiple community metrics of soil bacteria in arid and semi-arid grasslands in China, and the V4 region of 16S rDNA was analyzed using soil property measurements, fluorescent PCR, and high-throughput sequencing techniques. Specifically, copiotrophic taxa dominate the topsoil, whereas oligotrophic taxa are prevalent in nutrient-limited subsoil. Bacterial diversity decreases from the topsoil to subsoil, and bacterial distribution and ecological community composition exhibit a strong dependence on environmental factors. Moreover, microbial interaction networks demonstrated a progressive simplification with increasing soil depth: topsoil communities displayed higher modularity and a greater prevalence of positive interactions, whereas subsoil networks were significantly less complex. Null model analyses evidenced assembly mechanisms: deterministic processes (particularly homogeneous selection) dominated the bacterial community assembly, but their influence weakened with depth, whereas stochastic processes (e.g., dispersal limitation) increased progressively from the topsoil to subsoil. The PLS-PM analysis demonstrated that the relative influence of abiotic factors (e.g., climatic conditions and nutrient availability), biotic factors (interspecific interactions), along with drift and dispersal limitations on fungal community assembly exhibited depth-dependent patterns. This study provides novel insights into the vertical stratification of bacterial community in arid and semi-arid grasslands, and advances our understanding of pedogenic process under climate change and microbial adaptive strategies in heterogeneous soil environments. Full article
Show Figures

Figure 1

17 pages, 4999 KiB  
Article
Simulating the Phylogenetic Diversity Metrics of Plant Communities in Alpine Grasslands of Xizang, China
by Mingxue Xiang, Tao Ma, Wei Sun, Shaowei Li and Gang Fu
Diversity 2025, 17(8), 569; https://doi.org/10.3390/d17080569 - 14 Aug 2025
Viewed by 235
Abstract
Phylogenetic diversity serves as a critical complement to traditional species diversity metrics. However, the performance variations among different computational models in simulating phylogenetic diversity within plant communities in the alpine grasslands of the Qinghai-Xizang Plateau remain insufficiently characterized. Here, we evaluated nine modeling [...] Read more.
Phylogenetic diversity serves as a critical complement to traditional species diversity metrics. However, the performance variations among different computational models in simulating phylogenetic diversity within plant communities in the alpine grasslands of the Qinghai-Xizang Plateau remain insufficiently characterized. Here, we evaluated nine modeling approaches—random forest (RF), generalized boosting regression (GBR), multiple linear regression (MLR), artificial neural network (ANN), generalized linear regression (GLR), conditional inference tree (CIT), extreme gradient boosting (eXGB), support vector machine (SVM), and recursive regression tree (RRT)—for predicting three key phylogenetic diversity metrics [Faith’s phylogenetic diversity (PD), mean pairwise distance (MPD), mean nearest taxon distance (MNTD)] using climate variables and NDVImax. Our comprehensive analysis revealed distinct model performance patterns under grazing vs. fencing regimes. The eXGB algorithm demonstrated superior accuracy for fencing conditions, achieving the lowest relative bias (−0.08%) and RMSE (9.54) for MPD, along with optimal performance for MNTD (bias = 2.95%, RMSE = 44.86). Conversely, RF emerged as the most robust model for grazing scenarios, delivering the lowest bias (−1.63%) and RMSE (16.89) for MPD while maintaining strong predictive capability for MNTD (bias = −1.09%, RMSE = 27.59). Notably, scatterplot analysis revealed that only RF, GBR, and eXGB maintained symmetrical distributions along the 1:1 line, while other models showed problematic one-to-many value mappings or asymmetric patterns. These findings show that machine learning (especially RF and eXGB) enhances phylogenetic diversity predictions by integrating climate and NDVI data, though model performance varies by metric and management context. This study offers a framework for ecological forecasting, emphasizing multi-metric validation in biodiversity modeling. Full article
Show Figures

Figure 1

15 pages, 1704 KiB  
Article
Impact of Grazing Intensity on Floristic Diversity and Soil Properties in Semi-Natural Grasslands of Jbel Bouhachem (Northern Morocco)
by Saïd Chakri, Ahmed Taheri, Fatima El Lamti, Susan Canavan, Mohamed Kadiri and Mohammed Mrani Alaoui
Ecologies 2025, 6(3), 56; https://doi.org/10.3390/ecologies6030056 - 11 Aug 2025
Viewed by 329
Abstract
Semi-natural grasslands are key biodiversity reservoirs in Mediterranean mountain ecosystems. Grazing pressure may significantly influence plant communities and soil conditions, with potential effects on ecosystem functioning. This study evaluated the impact of grazing intensity on floristic diversity, community structure, and soil physico-chemical and [...] Read more.
Semi-natural grasslands are key biodiversity reservoirs in Mediterranean mountain ecosystems. Grazing pressure may significantly influence plant communities and soil conditions, with potential effects on ecosystem functioning. This study evaluated the impact of grazing intensity on floristic diversity, community structure, and soil physico-chemical and microbiological properties across eight grasslands in the Jbel Bouhachem massif (northern Morocco). Species richness, Shannon diversity, and floristic composition were assessed using PERMANOVA and NMDS ordination. Soil parameters and microbial groups were analyzed through laboratory measurements, with statistical comparisons based on Wilcoxon and t-tests. No significant differences were found in species richness or alpha diversity between grazing intensities, although floristic dispersion was higher under intensive grazing. Soil texture, potassium, iron, zinc, and electrical conductivity differed significantly between treatments. Among microbial groups, only yeasts and molds showed higher abundance under intensive grazing, while sulfite-reducing clostridia were exclusively detected in these plots. These results suggest that grazing intensity has a selective impact on soil properties and microbial communities, while plant diversity remains relatively stable. Full article
Show Figures

Figure 1

14 pages, 3486 KiB  
Article
Spatiotemporal Activity Patterns of Sympatric Rodents and Their Predators in a Temperate Desert-Steppe Ecosystem
by Caibo Wei, Yijie Ma, Yuquan Fan, Xiaoliang Zhi and Limin Hua
Animals 2025, 15(15), 2290; https://doi.org/10.3390/ani15152290 - 5 Aug 2025
Viewed by 316
Abstract
Understanding how prey and predator species partition activity patterns across time and space is essential for elucidating behavioral adaptation and ecological coexistence. In this study, we examined the diel and seasonal activity rhythms of two sympatric rodent species—Rhombomys opimus (Great gerbil) and [...] Read more.
Understanding how prey and predator species partition activity patterns across time and space is essential for elucidating behavioral adaptation and ecological coexistence. In this study, we examined the diel and seasonal activity rhythms of two sympatric rodent species—Rhombomys opimus (Great gerbil) and Meriones meridianus (Midday gerbil)—and their primary predators, Otocolobus manul (Pallas’s cat) and Vulpes vulpes (Red fox), in a desert-steppe ecosystem on the northern slopes of the Qilian Mountains, China. Using over 8000 camera trap days and kernel density estimation, we quantified their activity intensity and spatiotemporal overlap. The two rodent species showed clear temporal niche differentiation but differed in their synchrony with predators. R. opimus exhibited a unimodal diurnal rhythm with spring activity peaks, while M. meridianus showed stable nocturnal activity with a distinct autumn peak. Notably, O. manul adjusted its activity pattern to partially align with that of R. opimus, whereas V. vulpes maintained a crepuscular–nocturnal rhythm overlapping more closely with that of M. meridianus. Despite distinct temporal rhythms, both rodent species shared high spatial overlap with their predators (overlap index OI = 0.64–0.83). These findings suggest that temporal partitioning may reduce predation risk for R. opimus, while M. meridianus co-occurs more extensively with its predators. Our results highlight the ecological role of native carnivores in rodent population dynamics and support their potential use in biodiversity-friendly rodent management strategies under arid grassland conditions. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

11 pages, 1381 KiB  
Article
Fertilization Promotes the Recovery of Plant Productivity but Decreases Biodiversity in a Khorchin Degraded Grassland
by Lina Zheng, Wei Zhao, Shaobo Gao, Ruizhen Wang, Haoran Yan and Mingjiu Wang
Nitrogen 2025, 6(3), 64; https://doi.org/10.3390/nitrogen6030064 - 4 Aug 2025
Viewed by 172
Abstract
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted [...] Read more.
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted a four-year (2017–2020) N, P, K addition experiment in the Khorchin Grassland, a degraded typical grassland located in Zhalute Banner, Tongliao City, Inner Mongolia, to investigate the effects of fertilization treatment on plant functional groups and microbial communities after grazing exclusion. Our results showed that the addition of P, NP, and NPK compound fertilizers significantly increased aboveground biomass of the plant community, which is mainly related to the improvement of nutrient availability to promote the growth of specific plant functional groups, especially annual and biennial plants and perennial bunchgrasses. However, the addition of N, P, and NP fertilizers significantly reduced the species diversity of the plant community. At the same time, the addition of N, P, and NP fertilizers and the application of N and NP significantly reduced fungal species diversity but had no significant effect on soil bacteria. Our study provides new insights into the relationships between different types of fertilization and plant community productivity and biodiversity in degraded grasslands over four years of fertilization, which is critical for evaluating the effect of fertilization on the restoration of degraded grassland. Full article
Show Figures

Figure 1

14 pages, 11645 KiB  
Article
Changes of Ecosystem Service Value in the Water Source Area of the West Route of the South–North Water Diversion Project
by Zhimin Du, Bo Li, Bingfei Yan, Fei Xing, Shuhu Xiao, Xiaohe Xu, Yakun Yuan and Yongzhi Liu
Water 2025, 17(15), 2305; https://doi.org/10.3390/w17152305 - 3 Aug 2025
Viewed by 456
Abstract
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals [...] Read more.
To ensure water source security and sustainability of the national major strategic project “South-to-North Water Diversion”, this study aims to evaluate the spatio-temporal evolution characteristics of the ecosystem service value (ESV) in its water source area from 2002 to 2022. This study reveals its changing trends and main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Quantitative assessment of the ESV of the region was carried out using the Equivalence Factor Method (EFM), aiming to provide scientific support for ecological protection and resource management decision-making. In the past 20 years, the ESV has shown an upward trend year by year, increasing by 96%. The regions with the highest ESV were Garzê Prefecture and Aba Prefecture, which increased by 130.3% and 60.6%, respectively. The ESV of Xinlong county, Danba county, Rangtang county, and Daofu county increased 4.8 times, 1.5 times, 12.5 times, and 8.9 times, respectively. In the last two decades, arable land has decreased by 91%, while the proportions of bare land and water have decreased by 84% and 91%, respectively. Grassland had the largest proportion. Forests and grasslands, vital for climate regulation, water cycle management, and biodiversity conservation, have expanded by 74% and 43%, respectively. It can be seen from Moran’s I index values that the dataset as a whole showed a slight positive spatial autocorrelation, which increased from −0.041396 to 0.046377. This study reveals the changing trends in ESV and the main influencing factors, and thereby provides scientific support for the ecological protection and management of the water source area. Full article
(This article belongs to the Special Issue Watershed Ecohydrology and Water Quality Modeling)
Show Figures

Figure 1

17 pages, 2404 KiB  
Article
Geographically Weighted Regression Enhances Spectral Diversity–Biodiversity Relationships in Inner Mongolian Grasslands
by Yu Dai, Huawei Wan, Longhui Lu, Fengming Wan, Haowei Duan, Cui Xiao, Yusha Zhang, Zhiru Zhang, Yongcai Wang, Peirong Shi and Xuwei Sun
Diversity 2025, 17(8), 541; https://doi.org/10.3390/d17080541 - 1 Aug 2025
Viewed by 297
Abstract
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked [...] Read more.
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked these differences. We utilized species data from field surveys in Inner Mongolia and drone-derived multispectral imagery to establish a quantitative relationship between SD and biodiversity. A geographically weighted regression (GWR) model was used to describe the SD–biodiversity relationship and map the biodiversity indices in different experimental areas in Inner Mongolia, China. Spatial autocorrelation analysis revealed that both SD and biodiversity indices exhibited strong and statistically significant spatial autocorrelation in their distribution patterns. Among all spectral diversity indices, the convex hull area exhibited the best model fit with the Margalef richness index (Margalef), the coefficient of variation showed the strongest predictive performance for species richness (Richness), and the convex hull volume provided the highest explanatory power for Shannon diversity (Shannon). Predictions for Shannon achieved the lowest relative root mean square error (RRMSE = 0.17), indicating the highest predictive accuracy, whereas Richness exhibited systematic underestimation with a higher RRMSE (0.23). Compared to the commonly used linear regression model in SVH studies, the GWR model exhibited a 4.7- to 26.5-fold improvement in goodness-of-fit. Despite the relatively low R2 value (≤0.59), the model yields biodiversity predictions that are broadly aligned with field observations. Our approach explicitly considers the spatial heterogeneity of the SD–biodiversity relationship. The GWR model had significantly higher fitting accuracy than the linear regression model, indicating its potential for remote sensing-based biodiversity assessments. Full article
(This article belongs to the Special Issue Ecology and Restoration of Grassland—2nd Edition)
Show Figures

Figure 1

12 pages, 1419 KiB  
Article
Spatial Patterns of and Temporal Variations in Carbon Storage in the Forest and Grassland Ecosystem of China’s Nature Reserves
by Beijia Sang and Yuexuan Cao
Sustainability 2025, 17(15), 6945; https://doi.org/10.3390/su17156945 - 31 Jul 2025
Viewed by 451
Abstract
Carbon storage is a critical factor for ensuring the provision of ecosystem services such as biodiversity conservation, particularly in nature reserves. Understanding the spatial and temporal dynamics of carbon storage within China’s nature reserves (NRs) is essential for evaluating their role in ecosystem [...] Read more.
Carbon storage is a critical factor for ensuring the provision of ecosystem services such as biodiversity conservation, particularly in nature reserves. Understanding the spatial and temporal dynamics of carbon storage within China’s nature reserves (NRs) is essential for evaluating their role in ecosystem conservation. Using NDVI values, we assessed vegetation carbon storage in NRs across China from 2000 to 2015. The results revealed a 63.06% increase in carbon storage within NRs over the 15-year period, with forest vegetation and grassland vegetation carbon storage increasing by 60.05% and 86.33%, respectively. Approximately 90% of NRs exhibited positive growth rates, with higher increases observed in northeastern and western China compared to other regions. While the carbon density of forest vegetation in NRs exceeded that of areas outside reserves, grassland vegetation displayed the opposite trend. Overall, vegetation carbon storage in NRs demonstrated a significant upward trajectory over the study period. These findings highlight the importance of nature reserves in safeguarding forest carbon functions; however, their protective effect on grassland vegetation carbon function was less pronounced. Full article
Show Figures

Figure 1

18 pages, 3180 KiB  
Article
Influence of Golden Moles on Nematode Diversity in Kweek Grassland, Sovenga Hills, Limpopo Province, South Africa
by Ebrahim Shokoohi, Jonathan Eisenback and Peter Masoko
Agriculture 2025, 15(15), 1634; https://doi.org/10.3390/agriculture15151634 - 28 Jul 2025
Viewed by 373
Abstract
This study investigates the impact of golden moles (Amblysomus sp.) on the abundance, diversity, and community structure of nematodes in kweek grass (Cynodon dactylon) within the Sovenga Hills of Limpopo Province, South Africa. Eight sites were sampled: four with active [...] Read more.
This study investigates the impact of golden moles (Amblysomus sp.) on the abundance, diversity, and community structure of nematodes in kweek grass (Cynodon dactylon) within the Sovenga Hills of Limpopo Province, South Africa. Eight sites were sampled: four with active moles (sites: M1–M4), and four without (sites: T1–T4). Eighty soil samples were collected, and nematodes were extracted. A total of 23 nematode genera were identified, including 3 plant-parasitic and 20 free-living genera. The frequency of occurrence (FO) data showed that Aphelenchus sp. and Acrobeles sp. were the most prevalent nematodes, each occurring in 87.5% of the samples. In contrast, Eucephalobus sp., Tripylina sp., Discolaimus sp., and Tylenchus sp. had the lowest FO, appearing in only 12.5% of samples. The diversity indices (the Shannon index, the maturity index, and the plant-parasitic index) showed significant differences between the two environments. The Shannon index (H′) and maturity index were the most effective indicators of ecosystem disturbance. The lowest H′ was found at T4 (1.7 ± 0.2), compared with a higher value at M1 (2.4 ± 0.1). The principal component analysis (PCA) results revealed a positive correlation between Ditylenchus and the clay in the soil. In addition, Cervidellus was associated with soil pH. Network analysis revealed increased complexity in the nematode community structure at mole-affected sites. These findings suggest that mole activity alters soil properties and indirectly affects nematode diversity and trophic structure. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 6072 KiB  
Article
Climate Warming-Driven Expansion and Retreat of Alpine Scree in the Third Pole over the Past 45 Years
by Guanshi Zhang, Bingfang Wu, Lingxiao Ying, Yu Zhao, Li Zhang, Mengru Cheng, Liang Zhu, Lu Zhang and Zhiyun Ouyang
Remote Sens. 2025, 17(15), 2611; https://doi.org/10.3390/rs17152611 - 27 Jul 2025
Viewed by 351
Abstract
Alpine scree, a distinctive plateau ecosystem, serves as habitat for numerous rare and endangered species. However, current research does not differentiate it from desert in terms of spatial boundary, hindering biodiversity conservation and ecological monitoring efforts. Using the Tibetan Plateau as a case [...] Read more.
Alpine scree, a distinctive plateau ecosystem, serves as habitat for numerous rare and endangered species. However, current research does not differentiate it from desert in terms of spatial boundary, hindering biodiversity conservation and ecological monitoring efforts. Using the Tibetan Plateau as a case study, we defined the spatial boundary of alpine scree based on its surface formation process and examined its distribution and long-term evolution. The results show that in 2020, alpine scree on the Tibetan Plateau covered 73,735.34 km2, 1.5 times the area of glaciers. Alpine scree is mostly distributed at elevations between 4000 and 6000 m, with a slope of approximately 30–40 degrees. Characterized by low temperature and sparse rainfall, the regions are located in the humid zone. From 1975 to 2020, the area of alpine scree initially increased before declining, with an overall decrease of 560.68 km2. Climate warming was the primary driver of these changes, leading to an increase in scree from 1975 to 1995 and a decrease in scree from 1995 to 2020. Additionally, between 1975 and 2020, the Tibetan Plateau’s grasslands shifted upward by 16.47 km2. This study enhances our understanding of the spatial distribution and dynamics of this unique ecosystem, alpine scree, offering new insights into climate change impacts on alpine ecosystems. Full article
Show Figures

Figure 1

12 pages, 1608 KiB  
Brief Report
Combining Grass-Legume Mixtures with Soil Amendments Boost Aboveground Productivity on Engineering Spoil Through Selection and Compensation Effects
by Zhiquan Zhang, Faming Ye, Hanghang Tuo, Yibo Wang, Wei Li, Yongtai Zeng and Hao Li
Diversity 2025, 17(8), 513; https://doi.org/10.3390/d17080513 - 25 Jul 2025
Viewed by 215
Abstract
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to [...] Read more.
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to facilitate ecological restoration. We have conducted continuous ecological experiments for two years using the following experimental treatments, covering indigenous soil, adding organic fertilizer, and applying compound fertilizer and organic fertilizer, with six types of sowing established under each soil treatment: monoculture and pairwise mixed cropping utilizing Elymus dahuricus (EDA), Dactylis glomerata (DGL), and Medicago sativa (MSA). Through the analysis of variance and the calculation of effect factors, our results indicated that compound fertilizer and organic fertilizer adding significantly improved vegetation cover and increased aboveground biomass, and the highest productivity was observed in the mixed sowing treatment of EDA and MSA. The effect coefficient model analysis further showed that the combination of EDA and MSA resulted in the highest selection and compensation effects on aboveground productivity. Two potential mechanisms drive enhanced productivity in mixed grasslands: the strengthening of the selection effect via increased legume nitrogen fixation, and the enhancement of the compensation effect through niche differentiation among species. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Graphical abstract

19 pages, 2388 KiB  
Article
Impact of Grassland Management System Intensity on Composition of Functional Groups and Soil Chemical Properties in Semi-Natural Grasslands
by Urška Lisec, Maja Prevolnik Povše, Miran Podvršnik and Branko Kramberger
Plants 2025, 14(15), 2274; https://doi.org/10.3390/plants14152274 - 24 Jul 2025
Viewed by 370
Abstract
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil [...] Read more.
Semi-natural grasslands are some of the most species-rich habitats in Europe and provide important ecosystem services such as biodiversity conservation, carbon sequestration and soil fertility maintenance. This study investigates how different intensities of grassland management affect the composition of functional groups and soil chemical properties. Five grassland management systems were analyzed: Cut3—three cuts per year; LGI—low grazing intensity; CG—combined cutting and grazing; Cut4—four cuts per year; and HGI—high grazing intensity. The functional groups assessed were grasses, legumes and forbs, while soil samples from three depths (0–10, 10–20 and 20–30 cm) were analyzed for their chemical properties (soil organic carbon—SOC; soil total nitrogen—STN; inorganic soil carbon—SIC; soil organic matter—SOM; potassium oxide—K2O; phosphorus pentoxide—P2O5; C/N ratio; and pH) and physical properties (volumetric soil water content—VWC; bulk density—BD; and porosity—POR). The results showed that less intensive systems had a higher proportion of legumes, while species diversity, as measured via the Shannon index, was the highest in the Cut4 system. The CG system tended to have the highest SOC and STN at a 0–10 cm depth, with a similar trend observed for SOCstock at a 0–30 cm depth. The Cut4, HGI and CG systems also had an increased STNstock. Both grazing systems had the highest P2O5 content. A tendency towards a higher BD was observed in the top 10 cm of soil in the more intensive systems. Choosing a management strategy that is tailored to local climate and site conditions is crucial for maintaining grassland stability, enhancing carbon sequestration and promoting long-term sustainability in the context of climate change. Full article
Show Figures

Figure 1

19 pages, 2287 KiB  
Article
Bird Community Structure Changes as Araucaria Forest Cover Increases in the Highlands of Southeastern Brazil
by Carla Suertegaray Fontana, Lucilene Inês Jacoboski, Jonas Rafael Rodrigues Rosoni, Juliana Lopes da Silva, Filipe Augusto Pasa Bernardi, Pamela Eliana Malmoria, Christian Beier and Sandra Maria Hartz
Birds 2025, 6(3), 37; https://doi.org/10.3390/birds6030037 - 16 Jul 2025
Viewed by 1202
Abstract
The Brazilian Araucaria Forest (AF) now covers only 1% of its original extent due to significant degradation, making conservation a challenge. The AF occurs in a mosaic alongside grassland and Atlantic Forest ecosystems, influencing bird species’ distribution through ecological processes. We compared the [...] Read more.
The Brazilian Araucaria Forest (AF) now covers only 1% of its original extent due to significant degradation, making conservation a challenge. The AF occurs in a mosaic alongside grassland and Atlantic Forest ecosystems, influencing bird species’ distribution through ecological processes. We compared the composition and functional diversity of the bird community along a gradient of AF cover in a protected area (Pró-Mata Private Natural Heritage Reserve) in southern Brazil. Bird sampling was conducted using MacKinnon lists along five trails with different histories of vegetation suppression, based on forest cover estimates from landscape imagery. Birds were functionally classified based on morphological and ecological traits. We recorded 191 bird species in total. We found higher bird richness in trails with less forest cover, while functional diversity responded inversely to vegetation cover. Bird species composition shifted from more open-habitat specialists to more forest specialists with the increasing forest cover and vegetation structural complexity. These findings highlight the ecological importance of maintaining vegetation heterogeneity, as vegetation mosaics enhance avian species richness and support a broader range of functional traits and ecosystem processes. We recommend the conservation of Araucaria Forest–grassland mosaics as a strategic approach to support multidimensional biodiversity and sustain key ecological functions in southern Brazil. Full article
Show Figures

Figure 1

19 pages, 3821 KiB  
Article
Species Conservation Dependence on a Reliable Taxonomy as Emphasized by the Extinction Risk Assessment of Grindelia atlantica (Asteraceae: Astereae)
by Fernando Fernandes, João Iganci, Tatiana Teixeira de Souza-Chies and Gustavo Heiden
Conservation 2025, 5(3), 36; https://doi.org/10.3390/conservation5030036 - 16 Jul 2025
Viewed by 648
Abstract
Accurate taxonomy is fundamental for assessing extinction risks and implementing conservation strategies. We evaluated the extinction risk of Grindelia atlantica (Asteraceae), endemic to southern Brazil, using the IUCN criteria, and comparing three scenarios of taxonomic accuracy and data availability. Herbaria records and field [...] Read more.
Accurate taxonomy is fundamental for assessing extinction risks and implementing conservation strategies. We evaluated the extinction risk of Grindelia atlantica (Asteraceae), endemic to southern Brazil, using the IUCN criteria, and comparing three scenarios of taxonomic accuracy and data availability. Herbaria records and field surveys confirmed the historical existence of five records and currently only two remaining, isolated populations, totaling 633 individuals (513 in Pelotas and Rio Grande; 120 in Jaguarão). Habitat loss and invasive species are the primary threats. Analyses resulted in an Extent of Occurrence of 475.832 km2 and an Area of Occupancy of 36 km2. These findings, coupled with significant population decline, justify the classification as Critically Endangered. The results emphasize the critical role of reliable taxonomy in conservation biology. They demonstrate the impact of a few errors on extinction risk assessments, which can unfold in the misallocation of resources or insufficient protection. This is critical, particularly for endemic species like G. atlantica in the threatened Pampas, one of Brazil’s most degraded biomes and the least represented in preserves. The creation of a conservation unit is proposed as an urgent measure to ensure the survival of this species and its habitat, benefiting other endemic and rare threatened animal and plant species. Full article
Show Figures

Figure 1

Back to TopTop