Spatial Patterns of and Temporal Variations in Carbon Storage in the Forest and Grassland Ecosystem of China’s Nature Reserves
Abstract
1. Introduction
2. Methods
3. Results
3.1. Temporal Trends in Carbon Storage
3.2. Spatial Distribution of Carbon Growth Rates in Various NRs
3.3. Differences in Carbon Density Between Inside and Outside of Nature Reserves
4. Discussion
4.1. Heterogeneity in Vegetation-Specific Carbon Storage Trends
4.2. Spatial Patterns of Carbon Storage Growth in Nature Reserves
4.3. Effectiveness of Nature Reserves in Forest C Conservation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Vegetation Type | Year | Stepwise Linear Regression Model |
---|---|---|
Temperate needleleaf–deciduous broad-leaved mixed forest | 2000 | y = 96.59 + 222.63x3 − 287.34x4 + 404.88x5 − 334.14x6 − 217.22x10 + 257.08x11 |
2015 | y = 66.31 + 73.33x2 + 98.38x6 − 145.78x8 − 84.48x10 − 65.43x11 | |
Subtropical evergreen broad-leaved forest | 2000 | y = 10.049 − 71.307x2 + 75.923x3 − 59.199x4 + 128.159x5 − 88.66x6 + 74.742x7 − 150.962x8 + 161.085x9 |
2015 | y = 13.748 + 44.422x5 − 55.584x8 + 26.475x10 + 13.440x11 + 42.723x12 | |
Cold-temperate coniferous forest | 2000 | y = 120.83 + 718.92x3 − 592.93x4 + 857.76x5 − 1277.34x7 + 678.67x8 − 324.84x9 + 143.85x11 |
2015 | y = 551.82 + 392.79x1 − 459.45x3 − 180.40x5 − 524.87x8 + 258.99x10 | |
Tropical rainforest | 2000 | y = −1050.6 − 4307.7x2 + 6206.4x3 − 2296.7x4 + 2915.6x5 − 2783.3x6 + 1340.7x7 + 1433.9x10 − 1146.5x1 |
2015 | y = 4109.3 − 804.5x1 − 572.0x2 − 1321.2x3 + 9068.9x4 + 1982.9x6 − 6828.0x7 + 475.7x8 + 1291.4x10 + 3422.7x11 – 11,218.2x12 | |
Warm-temperate deciduous broad-leaved forest | 2000 | y = 65.711 − 94.681x2 + 168.834x3 − 101.352x8 |
2015 | y = 40.05 + 32.01x + 38.31x2 + 32.17x4 − 86.79x5 + 73.47x6 + 56.24x7 − 117.51x8 + 61.02x9 − 49.29x10 |
Grassland Type | Steppe Regionalization | Distribution Reginon | Unitary Linear Model |
---|---|---|---|
Meadow steppe | Northeast grassland | Central part of northeast | y = 8708.54 NDVI − 2218.58 |
Desert steppe | Inner Mongolia grassland | Xilin Gol League, Inner Mongolia Autonomous Region | y = 6874.37 NDVI − 2154.14 |
Typical steppe | y = 4830.21 NDVI − 1837.76 | ||
Meadow steppe | y = 7963.35 NDVI − 3393.17 | ||
Desert steppe | Loess Plateau grassland | Inner Mongolia, Gansu, and Ningxia | y = 5673.47 NDVI − 463.63 |
Semi-arid warm shrub | Warm-temperate grassland in North China | Hebei, Shanxi, and Shaanxi | y = 10,305.05 NDVI − 2255.59 |
Desert steppe and montane steppe | Xinjiang grassland | Xinjiang | y = 6916.80 NDVI − 553.00 |
Meadow steppe | Xinjiang grassland | Southern mountain area of Urumqi in middle section of northern slope of Tianshan Mountains | y = 10,490.51 NDVI − 1881.69 |
Alpine meadow | Qinghai–Tibet Plateau grassland | y = 7485.98 NDVI − 2301.23 | |
Humid tropical shrub–grassland | Southern meadow | y = 12,418.85 NDVI − 4353.07 | |
Yew grass meadow | Qinghai–Tibet Plateau grassland | Mountainous area in southern suburbs of Urumqi, northern slope of Tianshan Mountains | y = 66.72 NDVI − 1142.19 |
Alpine wormwood meadow | y = 65.31 NDVI − 780.70 | ||
Moss meadow | y = 70.54 NDVI − 1374.84 | ||
Alpine meadow | y = 1030.06 NDVI |
References
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Junqueira, A.B.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef]
- Jenkins, C.N.; Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 2009, 142, 2166–2174. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Z.; Fang, J. Distribution of nature reserves and status of biodiversity protection in China. Biodivers. Sci. 2009, 17, 664–674. [Google Scholar] [CrossRef]
- Zhu, P.; Huang, L.; Xiao, T.; Wang, J. Dynamic changes of habitats in China’s typical national nature reserves on spatial and temporal scales. J. Geogr. Sci. 2018, 28, 778–790. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Isbell, F.; Arce-Plata, M.I.; Di Marco, M.; Harfoot, M.; Johnson, J.; Lerman, S.B.; Miller, B.W.; Morelli, T.L.; Mori, A.S.; et al. Biodiversity loss reduces global terrestrial carbon storage. Nat. Commun. 2024, 15, 4354. [Google Scholar] [CrossRef] [PubMed]
- Bruner, A.G.; Gullison, R.E.; Rice, R.E.; da Fonseca, G.A.B. Effectiveness of parks in protecting tropical biodiversity. Science 2001, 291, 125–128. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietzsch, L.; Merry, F.; Bowman, M.; Hissa, L.; et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl. Acad. Sci. USA 2010, 107, 10821–10826. [Google Scholar] [CrossRef]
- Sang, W.; Ma, K.; Axmacher, J.C. Securing a Future for China’s Wild Plant Resources. BioScience 2011, 61, 720–725. [Google Scholar] [CrossRef]
- Game, E.T.; Bode, M.; McDonald-Madden, E.; Grantham, H.S.; Possingham, H.P. Dynamic marine protected areas can improve the resilience of coral reef systems. Ecol. Lett. 2009, 12, 1336–1346. [Google Scholar] [CrossRef]
- Sun, S.; Sang, W.; Jan Christoph, A. China’s national nature reserve network shows great imbalances in conserving the country’s mega-diverse vegetation. Sci. Total Environ. 2020, 137159. [Google Scholar] [CrossRef]
- Thomas, C.D.; Anderson, B.J.; Moilanen, A.; Eigenbrod, F.; Heinemeyer, A.; Quaife, T.; Roy, D.B.; Gillings, S.; Armsworth, P.R.; Gaston, K.J.; et al. Reconciling biodiversity and carbon conservation. Ecol. Lett. 2013, 16, 39–47. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J. Prioritizing biodiversity and carbon. Nat. Clim. Change 2018, 8, 667–668. [Google Scholar] [CrossRef]
- Hisano, M.; Searle, E.B.; Chen, H.Y.H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 2018, 93, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Tilman, D.; Polasky, S.; Loreau, M.; Bardgett, R. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 2015, 18, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; An, H.; Deng, L.; Wang, Y.; Zhu, G.; Shangguan, Z. Effect of desertification on productivity in a desert steppe. Sci. Rep. 2016, 6, 27839. [Google Scholar] [CrossRef]
- Thompson, I.D.; Okabe, K.; Parrotta, J.A.; Brockerhoff, E.; Jactel, H.; Forrester, D.I.; Taki, H. Biodiversity and ecosystem services: Lessons from nature to improve management of planted forests for REDD-plus. Biodivers. Conserv. 2014, 23, 2613–2635. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; de Miguel, S.; Nabuurs, G.-J.; Renner, S.S.; Hoogen, J.v.D.; Araza, A.; Herold, M.; et al. Integrated global assessment of the natural forest carbon potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef]
- Juan, C.Á.-Y.; Martin, D. Enhancing ecosystem function through conservation threatened plants increase local carbon storage in tropical dry forests. Trop. Conserv. Sci. 2015, 8, 10. [Google Scholar] [CrossRef]
- Li, A.J.; Zhang, A.Z.; Zhou, Y.X.; Yao, X. Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China. J. Clean. Prod. 2017, 141, 1428–1444. [Google Scholar] [CrossRef]
- Xu, J.; Melick, D.R. Rethinking the effectiveness of public protected areas in southwestern China. Conserv. Biol. 2007, 21, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.-H.; Tan, Z.-H.; Zhang, Y.-P.; Sha, L.-Q.; Deng, X.-B.; Deng, Y.; Zhou, W.-J.; Zhao, J.-F.; Zhao, J.-B.; Zhang, X.; et al. Do the rubber plantations in tropical China act as large carbon sinks? Iforest-Biogeosci. For. 2014, 7, 42–47. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Innes, J.L.; Lei, J.; Dai, S.; Wu, S.W. China’s Forestry Reforms; American Association for the Advancement of Science: Washington, DC, USA, 2007; pp. 230–236. [Google Scholar]
- Ruiz-Jaen, M.C.; Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 2011, 189, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.-L.; Xu, J.-C.; Dai, Z.-C.; Cannon, C.H.; Grumbine, R.E. Increasing tree cover while losing diverse natural forests in tropical Hainan, China. Reg. Environ. Change 2013, 14, 611–621. [Google Scholar] [CrossRef]
- Zhai, D.-L.; Cannon, C.H.; Slik, J.F.; Zhang, C.-P.; Dai, Z.-C. Rubber and pulp plantations represent a double threat to Hainan’s natural tropical forests. J. Environ. Manag. 2012, 96, 64–73. [Google Scholar] [CrossRef]
- Axmacher, J.C.; Sang, W.; van Kleunen, M. Plant invasions in China—Challenges and chances. PLoS ONE 2013, 8, e64173. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Xing, F. The Composition and Origin of Alien Plants in Ganshiling Nature Reserve in Hainan, China. Guizhou Agric. Sci. 2011, 39, 31–33. [Google Scholar]
- Hu, X.H.; Xiao, Y.A.; Zen, J.J. Investigation and analysis on alien plants in Bawangling national nature reserves. J. Jinggangshan Univ. (Nat. Sci. Ed.) 2011, 32, 131–136. [Google Scholar]
- Liu, S.; Yin, Y.; Cheng, F.; Hou, X.; Dong, S.; Wu, X.; Bond-Lamberty, B. Spatio-temporal variations of conservation hotspots based on ecosystem services in Xishuangbanna, Southwest China. PLoS ONE 2017, 12, e0189368. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Fu, B. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: A meta-analysis. Ecol. Eng. 2016, 95, 542–550. [Google Scholar] [CrossRef]
- Cong, D.; Zhao, S.; Chen, C.; Duan, Z. Characterization of droughts during 2001–2014 based on remote sensing: A case study of Northeast China. Ecol. Inform. 2017, 39, 56–67. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, J.; Mo, X.; Zhou, H.; Diao, C.; Wang, Q.; Chen, Y.; Zhang, F. Quantitative and detailed spatiotemporal patterns of drought in China during 2001–2013. Sci. Total Environ. 2017, 589, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.A.; Bao, X.; Chen, H.; Liu, Y. Huang;Study of the vegetation cover change and its driving factors over Xinjiang during 1998–2007. J. Glaciol. Geocryol. 2009, 3, 436–445. [Google Scholar]
- Mao, D.; Wang, Z.; Luo, L.; Ren, C. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 528–536. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Zhang, M.; Yang, J.; Cao, R.; Malhi, S.S. Changes of vegetation carbon sequestration in the tableland of Loess Plateau and its influencing factors. Environ. Sci. Pollut. Res. Int. 2019, 26, 22160–22172. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, J.; Yan, Q.; Hu, Z.; Zheng, X. Changes in vegetation carbon stocks between 1978 and 2007 in central Loess Plateau, China. Environ. Earth Sci. 2016, 75, 312–328. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, D.; Wang, Q.; Liu, H.; Li, J.; Fu, Z. Evaluating the Sustainability of Nature Reserves Using an Ecological Footprint Method: A Case Study in China. Sustainability 2016, 8, 1272. [Google Scholar] [CrossRef]
- Guo, Z.; Cui, G.; Yang, J. Establishment of Nature Reserves in Administrative Regions of Mainland China. PLoS ONE 2015, 10, 13. [Google Scholar] [CrossRef]
- Wu, J.; Gong, Y.; Wu, J. Spatial distribution of nature reserves in China: Driving forces in the past and conservation challenges in the future. Land Use Policy 2018, 77, 31–42. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, S.; Zhao, L.; Li, Y.; Zhang, P.; Zhang, L. What are the benefits of strictly protected nature reserves? Rapid assessment of ecosystem service values in Wanglang Nature Reserve, China. Ecosyst. Serv. 2017, 26, 70–78. [Google Scholar] [CrossRef]
Forest C Density (Ton C/ha) | Grassland C Density (Ton C/ha) | ||||
---|---|---|---|---|---|
Inside NRs | Outside NRs | Inside NRs | Outside NRs | ||
Total | 80.00 * | 68.00 * | Total | 3.00 * | 8.00 * |
Temperate needleleaf–deciduous broad-leaved mixed forest | 57.00 * | 49 * | Meadows | 3.00 * | 5.00 * |
Tropical monsoon forest | 541.00 * | 231.00 * | Desert steppe | 6.00 * | 7.00 * |
Warm-temperate deciduous broad-leaved forest | 50.00 * | 47.00 * | Alpine grasslands | 0.60 * | 2.00 * |
Cold-temperate coniferous forest | 129.00 * | 112.00 * | Tropical shrub–grassland | 34.00 * | 33.00 * |
Subtropical evergreen broad-leaved forests | 63.00 * | 60.00 * | Typical grasslands | 5.00 * | 8.00 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, B.; Cao, Y. Spatial Patterns of and Temporal Variations in Carbon Storage in the Forest and Grassland Ecosystem of China’s Nature Reserves. Sustainability 2025, 17, 6945. https://doi.org/10.3390/su17156945
Sang B, Cao Y. Spatial Patterns of and Temporal Variations in Carbon Storage in the Forest and Grassland Ecosystem of China’s Nature Reserves. Sustainability. 2025; 17(15):6945. https://doi.org/10.3390/su17156945
Chicago/Turabian StyleSang, Beijia, and Yuexuan Cao. 2025. "Spatial Patterns of and Temporal Variations in Carbon Storage in the Forest and Grassland Ecosystem of China’s Nature Reserves" Sustainability 17, no. 15: 6945. https://doi.org/10.3390/su17156945
APA StyleSang, B., & Cao, Y. (2025). Spatial Patterns of and Temporal Variations in Carbon Storage in the Forest and Grassland Ecosystem of China’s Nature Reserves. Sustainability, 17(15), 6945. https://doi.org/10.3390/su17156945