Influence of Golden Moles on Nematode Diversity in Kweek Grassland, Sovenga Hills, Limpopo Province, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Nematode Identification
2.3. Soil Property Analysis
2.4. Statistical Analysis
2.5. Visual Analytics
3. Results
3.1. Analysis of Nematode Communities
3.2. Indices of Nematode Communities
3.3. Principal Component Analysis (PCA)
3.4. Data Visualization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Neher, D.A. Role of nematodes in soil health and their use as indicators. J. Nematol. 2001, 33, 161–168. [Google Scholar]
- Erktan, A.; Or, D.; Scheu, S. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol. Biochem. 2020, 148, 107876. [Google Scholar] [CrossRef]
- Wilson, M.J.; Kakouli-Duarte, T. Nematodes as Environmental Indicators; CABI: Wallingford, UK, 2009. [Google Scholar]
- Hailu, F.A.; Hailu, Y.A. Agro-ecological importance of nematodes (round worms). Acta Sci. Agric. 2020, 4, 156–162. [Google Scholar] [CrossRef]
- Shokoohi, E.; Masoko, P. Association of Plant-Parasitic Nematodes and Soil Physicochemical Properties in Tomatoes in Turfloop, Limpopo Province, South Africa. Horticulturae 2024, 10, 328. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Whitford, W.G. Soil disturbance by native animals plays a critical role in maintaining healthy Australian landscapes. Ecol. Manag. Restor. 2009, 10, S27–S34. [Google Scholar] [CrossRef]
- Ginzburg, O.; Zilberman, D.; Haim, A. Burrowing mammals alter plant composition and soil properties in Mediterranean shrublands. J. Arid Environ. 2017, 142, 37–43. [Google Scholar] [CrossRef]
- Dreyer, T.F. South African moles. Agric. J. 1911, 695–698. [Google Scholar]
- Brittingham, M.C. Moles; Penn State Extension, University of Penn State: University Park, PA, USA, 2017; Available online: https://extension.psu.edu/moles (accessed on 15 July 2025).
- Meester, L. A new golden mole from the Transvaal (Mammalia: Chrysochloridae). Ann. Transvaal Mus. 1972, 28, 35–46. [Google Scholar]
- Skinner, J.D.; Smithers, R.H.N. The Mammals of the Southern African Subregion, 2nd ed.; University of Pretoria: Pretoria, South Africa, 1990. [Google Scholar]
- Edwards, G.R.; Crawley, M.J.; Heard, M.S. Factors influencing molehill distribution in grassland: Implications for controlling the damage caused by molehills. J. Appl. Ecol. 1999, 36, 434–442. [Google Scholar] [CrossRef]
- Atkinson, R.P.D.; Macdonald, D.W. Can repellents function as a non-lethal means of controlling moles (Talpa europaea)? J. Appl. Ecol. 1994, 31, 731–736. [Google Scholar] [CrossRef]
- Atkinson, R.P.D.; Macdonald, D.W.; Johnson, P.J. The status of the European mole Talpa europaea L. as an agricultural pest and its management. Mammal Rev. 1994, 24, 73–90. [Google Scholar] [CrossRef]
- Seifan, M.; Tielbörger, K.; Schloz-Murer, D.; Seifan, T. Contribution of molehill disturbances to grassland community composition along a productivity gradient. Acta Oecol. 2010, 36, 569–577. [Google Scholar] [CrossRef]
- Canals, R.M.; Sebastià, M.T. Soil nutrient fluxes and vegetation changes on molehills. J. Veg. Sci. 2000, 11, 23–30. [Google Scholar] [CrossRef]
- Whitehead, A.G.; Hemming, J.R. A comparison of some quantitative methods extracting small vermiform nematodes from the soil. Ann. Appl. Biol. 1965, 55, 25–38. [Google Scholar] [CrossRef]
- Shokoohi, E. Methods and Techniques in Nematology; Bentham Science Publishers: Singapore, 2025; 133p. [Google Scholar] [CrossRef]
- Eisenback, J.D. CAB Abstracts. In Identification Guides for the Most Common Genera of Plant-Parasitic Nematodes; Mactode Publications: Blacksburg, VA, USA, 2002; 34p. [Google Scholar]
- De Grisse, A. Redescription ou modifications de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Meded. Van Rijksfac. Landbouwwet. Gent 1969, 34, 351–369. [Google Scholar]
- Andrássy, I. Free-Living Nematodes of Hungary (Nematoda errantia); Hungarian Natural History Museum: Budapest, Hungary, 2005; Volume I. [Google Scholar]
- Siddiqi, M.R. Tylenchida: Parasites of Plants and Insects, 2nd ed.; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Geraert, E. The Tylenchidae of the World: Identification of the Family Tylenchidae (Nematoda); Academia Press: Ghent, Belgium, 2008. [Google Scholar]
- Shokoohi, E.; Abolafia, J. Soil and Freshwater Rhabditid Nematodes (Nematoda, Rhabditida) from Iran: A Compendium; University of Jaén Publishing: Jaén, Spain, 2019; 226p. [Google Scholar]
- van Capelle, C.; Schrader, S.; Brunotte, J. Tillage-induced changes in the functional diversity of soil biota—A review with a focus on German data. Eur. J. Soil Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- Norton, D.C.; Schmitt, D.P. Community analyses of plant-parasitic nematodes in the Kalsow Prairie, Iowa. J. Nematol. 1978, 10, 171–176. [Google Scholar]
- Shokoohi, E. Impact of agricultural land use on nematode diversity and soil quality in Dalmada, South Africa. Horticulturae 2023, 9, 749. [Google Scholar] [CrossRef]
- Colwell, R.K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples; Version 8.2.0. User’s Guide and Application. Available online: http://viceroy.eeb.uconn.edu/EstimateS (accessed on 25 May 2025).
- Addinsoft. XLSTAT, Analyse de Données et Statistique Avec MS Excel; Addinsoft: New York, NY, USA, 2007. [Google Scholar]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G.M. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009; Available online: https://gephi.org (accessed on 25 May 2025).
- Ings, T.C.; Montoya, J.M.; Bascompte, J.; Blüthgen, N.; Brown, L.; Dormann, C.F.; Edwards, F.; Figueroa, D.; Jacob, U.; Jones, J.I.; et al. Ecological networks–beyond food webs. J. Anim. Ecol. 2009, 78, 253–269. [Google Scholar] [CrossRef]
- Oliveros, J.C. VENNY: An Interactive Tool for Comparing Lists with Venn’s Diagrams, 2007–2015. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 25 May 2025).
- Smit, I.P.J.; Baard, J.A.; van Wilgen, B.W. Fire regimes and management options in mixed grassland–fynbos vegetation, South Africa. Fire Ecol. 2024, 20, 29. [Google Scholar] [CrossRef]
- Reyers, B.; Nel, J.; Egoh, B.; Jonas, Z.; Rouget, M. Background Information Report No. 1: Grassland Biodiversity Profile and Spatial Biodiversity Priority Assessment. In SANBI National Grassland Biodiversity Programme; CSIR Report Number: ENV-S-C 2005–102; SANBI: Pretoria, South Africa, 2005. [Google Scholar]
- Matsik, R. Land-cover Change: Threats to the Grassland Biome of South Africa. Master’s Thesis, Wits University, Johannesburg, South Africa, 2007. 131p. [Google Scholar]
- Reyers, B.; Tosh, C.A. National Grasslands Initiative: Concept Document; Gauteng Department of Agriculture, Conservation and Land Affairs: Johannesburg, South Africa, 2003. [Google Scholar]
- Dzerefos, C.M.; Witkowski, E.T.F.; Kremer-Köhne, S. Aiming for the biodiversity target with the social welfare arrow: Medicinal and other useful plants from a critically endangered grassland ecosystem in Limpopo Province, South Africa. Int. J. Sustain. Dev. World Ecol. 2016, 24, 52–64. [Google Scholar] [CrossRef]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- Shokoohi, E.; Masoko, P. Plant-Parasitic and Free-Living Nematode Community Associated with Oak Tree of Magoebaskloof Mountains, Limpopo Province, South Africa. Diversity 2024, 16, 673. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Swart, A.; Marais, M.; Schoeman, A. Plant nematodes in South Africa. 2: Golf-course putting greens. Afr. Plant Prot. 2000, 6, 35–39. [Google Scholar]
- Warner, F.W.; Davenport, J.F.; Bird, G.W. Plant-parasitic nematodes on creeping bentgrass in Michigan. In Proceedings of the 66th Annual Michigan Turfgrass Conference, East Lansing, MI, USA, 15–18 January 1996; Volume 25, pp. 11–16. [Google Scholar]
- Scantlebury, M.; Oosthuizen, M.; Speakman, J.; Jackson, C.; Bennett, N. Seasonal energetics of the Hottentot golden mole at 1500 m altitude. Physiol. Behav. 2005, 84, 739–745. [Google Scholar] [CrossRef]
- Lovegrove, B.G. The cost of burrowing by the social mole-rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: The role of soil moisture. Physiol. Zool. 1989, 62, 449–469. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Griffiths, B.S.; de Groot, G.A.; Laros, I.; Stone, D.; Geisen, S. The need for standardisation: Exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecol. Indic. 2018, 87, 43–46. [Google Scholar] [CrossRef]
- Shokoohi, E.; Moyo, N.; Gouveia, F. Relationship of nematodes in natural and disturbed land with physicochemical properties in Magoebaskloof, Limpopo Province, South Africa. Biologia 2023, 78, 3223–3233. [Google Scholar] [CrossRef]
- Ekschmitt, K.; Bakonyi, G.; Bongers, M.; Bongers, T.; Boström, S.; Dogan, H.; Harrison, A.; Nagy, P.; O’Donnell, A.G.; Papatheodorou, E.M.; et al. Nematode community structure as indicator of soil functioning in European grassland soils. Eur. J. Soil Biol. 2001, 37, 263–268. [Google Scholar] [CrossRef]
- Piper, R. Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals; Bloomsbury Publishing: New York, NY, USA, 2007. [Google Scholar]
- McSorley, R.; Frederick, J.J. Effect of subsurface clay on nematode communities in a sandy soil. Appl. Soil Ecol. 2002, 19, 57–64. [Google Scholar] [CrossRef]
- Escalante, O.L.; Brye, K. Relationships among soil properties, nematode densities, and soybean yield in a long-term, double-crop system in eastern Arkansas. Agric. Sci. 2023, 14, 1605–1623. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Ferris, H. Nematode ecology and soil health. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 3rd ed.; Sikora, R., Coyne, D., Hallmann, J., Timper, P., Eds.; CABI: Wallingford, UK, 2018; pp. 62–86. [Google Scholar]
- Brussaard, L.; De Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Ikoyi, I.; Grange, G.; Finn, J.A.; Brennan, F.P. Plant diversity enhanced nematode-based soil quality indices and changed soil nematode community structure in intensively-managed agricultural grasslands. Eur. J. Soil Biol. 2023, 118, 103542. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, W.; Xue, J.; Zhang, J.; Qiu, L.; Chen, X.; Liu, M. Leveraging functional traits of cover crops to coordinate crop productivity and soil health. J. Appl. Ecol. 2022, 59, 2627–2641. [Google Scholar] [CrossRef]
- Murguía-Reyes, C.A.; Córdova-López, M.; Pacheco-Miñán, E.F.; Murguía-Obando, A.D.; Palma-More, K.L. Presence and potential of Pasteuria penetrans (Firmicutes: Pasteuriaceae) to suppress root-knot nematodes in naturally infested vineyards of Northern Peru. BioControl 2025, 70, 369–377. [Google Scholar] [CrossRef]
- Groves, K.; Li, Y.; Peiris, P.U.S.; Brown, P.H. Efficacy of nematophagous fungi (Arthrobotrys dactyloides and A. oligospora) as biocontrol agents against root-knot nematode (Meloidogyne javanica) in sweetpotato. BioControl 2025, 70, 95–106. [Google Scholar] [CrossRef]
- Ruiz, S.A.; Bickel, S.; Or, D. Global earthworm distribution and activity windows based on soil hydromechanical constraints. Commun. Biol. 2021, 4, 612. [Google Scholar] [CrossRef]
- Haraguchi, S.; Yoshiga, T. Potential of the fungal feeding nematode Aphelenchus avenae to control fungi and the plant parasitic nematode Ditylenchus destructor associated with garlic. Biol. Control 2020, 143, 104203. [Google Scholar] [CrossRef]
Genus | C-p Class | P-p Class | Feeding Type | Mass, μg | M | T |
---|---|---|---|---|---|---|
Rotylenchulus | 0 | 3 | Herbivorous sedentary parasites | 1.77 | 4.1 | 0 |
Rotylenchus | 0 | 3 | Herbivorous semi-endoparasites | 0.859 | 4.9 | 0 |
Tylenchorhynchus | 0 | 3 | Herbivorous ectoparasites | 0.231 | 0 | 2.7 |
Tylenchus | 0 | 2 | Fungivorous | 0.36 | 2.7 | 0 |
Aphelenchoides | 2 | 0 | Fungivorous | 0.151 | 10 | 13.3 |
Aphelenchus | 2 | 0 | Fungivorous | 0.218 | 14.9 | 10.8 |
Ditylenchus | 2 | 0 | Fungivorous | 0.451 | 21 | 9.6 |
Acrobeles | 2 | 0 | Bacterivorous | 0.64 | 13.1 | 6.8 |
Acrobeloides | 2 | 0 | Bacterivorous | 1.263 | 8.8 | 3.6 |
Cervidellus | 2 | 0 | Bacterivorous | 0.174 | 2.7 | 4 |
Eucephalobus | 2 | 0 | Bacterivorous | 0.236 | 0 | 1.3 |
Geomonhystera | 2 | 0 | Bacterivorous | 0.283 | 1.3 | 2.6 |
Panagrolaimus | 1 | 0 | Bacterivorous | 0.66 | 2.6 | 12.8 |
Plectus | 2 | 0 | Bacterivorous | 0.858 | 2.9 | 4.4 |
Prismatolaimus | 3 | 0 | Bacterivorous | 0.357 | 3.7 | 6.2 |
Pseudacrobeles | 2 | 0 | Bacterivorous | 0.217 | 2.9 | 3.5 |
Wilsonema | 2 | 0 | Bacterivorous | 0.061 | 1.3 | 4.8 |
Zeldia | 2 | 0 | Bacterivorous | 0.717 | 19.7 | 1.4 |
Tripylina | 3 | 0 | Predators | 1.422 | 0 | 1.3 |
Mylonchulus | 4 | 0 | Predators | 1.723 | 2.6 | 0 |
Discolaimus | 5 | 0 | Omnivorous | 2.652 | 0 | 1.3 |
Aporcelaimellus | 5 | 0 | Omnivorous | 9.54 | 9.5 | 6.2 |
Aporcella | 5 | 0 | Omnivorous | 6.546 | 0 | 2.6 |
Species | Average | Positive Samples% | FO% | RA | PV |
---|---|---|---|---|---|
Aporcelaimellus | 7.8125 | 63 | 50 | 0.78 | 1.38 |
Aphelenchus | 12.825 | 88 | 87.5 | 1.28 | 1.71 |
Plectus | 3.7 | 50 | 50 | 0.37 | 0.65 |
Acrobeles | 9.95 | 88 | 87.5 | 1.00 | 1.33 |
Acrobeloides | 6.1625 | 38 | 37.5 | 0.62 | 1.26 |
Geomonhystera | 1.9375 | 38 | 37.5 | 0.19 | 0.40 |
Zeldia | 10.525 | 50 | 50 | 1.05 | 1.86 |
Rotylenchulus | 2.0625 | 25 | 25 | 0.21 | 0.52 |
Cervidellus | 3.325 | 50 | 50 | 0.33 | 0.59 |
Tylenchorhynchus | 1.325 | 25 | 25 | 0.13 | 0.33 |
Mylonchulus | 1.3 | 25 | 25 | 0.13 | 0.33 |
Aporcella | 1.275 | 25 | 25 | 0.13 | 0.32 |
Ditylenchus | 15.3 | 75 | 75 | 1.53 | 2.21 |
Tylenchus | 1.3375 | 13 | 12.5 | 0.13 | 0.47 |
Rotylenchus | 2.425 | 25 | 25 | 0.24 | 0.61 |
Pseudacrobeles | 3.2 | 38 | 37.5 | 0.32 | 0.65 |
Prismatolaimus | 4.925 | 63 | 62.5 | 0.49 | 0.78 |
Aphelenchoides | 11.6375 | 75 | 75 | 1.16 | 1.68 |
Discolaimus | 0.6625 | 13 | 12.5 | 0.07 | 0.23 |
Wilsonema | 3.075 | 38 | 37.5 | 0.31 | 0.63 |
Panagrolaimus | 7.7 | 38 | 37.5 | 0.77 | 1.57 |
Eucephalobus | 0.6375 | 13 | 12.5 | 0.06 | 0.23 |
Tripylina | 0.65 | 13 | 12.5 | 0.07 | 0.23 |
Index Name | M1 | M2 | M3 | M4 | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|---|---|
Maturity index * | 2.2 ± 0.04 | 2.2 ± 0.06 | 2.6 ± 0.07 | 2.2 ± 0.08 | 2.4 ± 0.04 | 2.9 ± 0.05 | 1.9 ± 0.04 | 2.2 ± 0.02 |
Maturity index 2–5 * | 2.3 ± 0.04 | 2.2 ± 0.06 | 2.6 ± 0.07 | 2.2 ± 0.08 | 2.4 ± 0.04 | 3.3 ± 0.07 | 2.2 ± 0.05 | 2.2 ± 0.02 |
Sigma maturity index * | 2.3 ± 0.04 | 2.3 ± 0.06 | 2.7 ± 0.06 | 2.2 ± 0.07 | 2.4 ± 0.04 | 2.9 ± 0.05 | 1.9 ± 0.04 | 2.2 ± 0.02 |
Plant-parasitic index * | 3.0 ± 0.0 | 3.0 ± 0.0 | 3.0 ± 0.0 | 2.0 ± 0.0 | 3.0 ± 0.0 | 3.0 ± 0.0 | NA | NA |
Shannon index (H′) * | 2.4 ± 0.1 | 2.1 ± 0.2 | 2.2 ± 0.1 | 2.0 ± 0.1 | 2.2 ± 0.2 | 1.9 ± 0.1 | 2.1 ± 0.2 | 1.7 ± 0.2 |
Channel index * | 61.2 ± 2.58 | 100 ± 0.0 | 100 ± 0.0 | 100 ± 0.0 | 100 ± 0.0 | 11.8 ± 3.63 | 33.2 ± 1.93 | 100 ± 0.0 |
Enrichment index * | 44.7 ± 1.1 | 26.1 ± 2.0 | 38.5 ± 1.59 | 31.2 ± 1.1 | 24.5 ± 1.83 | 61.2 ± 4.51 | 67.3 ± 1.27 | 34.1 ± 2.18 |
Structure index * | 43 ± 3.8 | 34.6 ± 5.89 | 63.1 ± 3.38 | 28.6 ± 9.6 | 46.5 ± 3.56 | 86.0 ± 1.36 | 26.6 ± 6.54 | 30.1 ± 3.59 |
Total biomass, mg * | 0.2 ± 0.02 | 0.2 ± 0.02 | 0.2 ± 0.02 | 0.1 ± 0.02 | 0.1 ± 0.01 | 0.3 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 |
Abundance | 1783 | 1373 | 1091 | 892 | 762 | 849 | 1686 | 664 |
Richness | 14 | 9 | 10 | 9 | 10 | 7 | 10 | 6 |
Evenness | 0.81 | 0.88 | 0.88 | 0.83 | 0.90 | 0.85 | 0.74 | 0.93 |
Herbivorous, % of total | 4.5 | 5.8 | 13.2 | 0 | 5.2 | 5.4 | 0 | 0 |
Fungivorous, % of total | 55.5 | 36.6 | 41.3 | 36.7 | 17.0 | 5.6 | 58.7 | 22.0 |
Bacterivorous, % of total | 75.7 | 78.2 | 35 | 34.6 | 40.9 | 49.3 | 78 | 22.6 |
Predators, % of total | 1.7 | 0 | 2.3 | 0 | 0 | 0 | 0 | 0 |
Omnivorous, % of total | 11.4 | 10.4 | 11.1 | 5.0 | 7.8 | 24.6 | 1.8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokoohi, E.; Eisenback, J.; Masoko, P. Influence of Golden Moles on Nematode Diversity in Kweek Grassland, Sovenga Hills, Limpopo Province, South Africa. Agriculture 2025, 15, 1634. https://doi.org/10.3390/agriculture15151634
Shokoohi E, Eisenback J, Masoko P. Influence of Golden Moles on Nematode Diversity in Kweek Grassland, Sovenga Hills, Limpopo Province, South Africa. Agriculture. 2025; 15(15):1634. https://doi.org/10.3390/agriculture15151634
Chicago/Turabian StyleShokoohi, Ebrahim, Jonathan Eisenback, and Peter Masoko. 2025. "Influence of Golden Moles on Nematode Diversity in Kweek Grassland, Sovenga Hills, Limpopo Province, South Africa" Agriculture 15, no. 15: 1634. https://doi.org/10.3390/agriculture15151634
APA StyleShokoohi, E., Eisenback, J., & Masoko, P. (2025). Influence of Golden Moles on Nematode Diversity in Kweek Grassland, Sovenga Hills, Limpopo Province, South Africa. Agriculture, 15(15), 1634. https://doi.org/10.3390/agriculture15151634