Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = graphene (Gr)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3518 KB  
Article
Al/Graphene Co-Doped ZnO Electrodes: Impact on CTS Thin-Film Solar Cell Efficiency
by Done Ozbek, Meryem Cam, Guldone Toplu, Sevde Erkan, Serkan Erkan, Ali Altuntepe, Kasim Ocakoglu, Sakir Aydogan, Yavuz Atasoy, Mehmet Ali Olgar and Recep Zan
Crystals 2026, 16(1), 64; https://doi.org/10.3390/cryst16010064 (registering DOI) - 17 Jan 2026
Abstract
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al [...] Read more.
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al and reduced graphene oxide (rGO), to evaluate the individual and combined effects of these dopants. The optimal pH value for the ZnO structure was initially determined, with the film produced at pH 9 exhibiting the most favorable characteristics. Al doping was then optimized at a ratio of Al/(Al + Zn) = 0.2, followed by optimization of the graphene content at 1.5 wt%. In this context, the structural, optical, and electrical properties of pristine ZnO, Al-doped ZnO (AZO), and Al and graphene co-doped ZnO (Gr:AZO) thin films were systematically investigated. These films were integrated as TCO layers into Cu2SnS3 (CTS)-based thin-film solar cells fabricated via physical vapor deposition (PVD). The cell architecture employed an 80 nm pristine ZnO window layer, while the doped ZnO films (300 nm) served as TCO layers. To assess the influence of the chemically deposited top layers, device performance was compared against a reference cell in which all layers were fabricated entirely using PVD. As expected, the reference cell exhibited superior performance compared to the cell whose AZO layer deposited chemically; however, the incorporation of both Al and graphene significantly enhanced the efficiency of the chemically modified cell, outperforming devices using only pristine or singly doped ZnO films. These results demonstrate the promising potential of co-doped solution-processed ZnO films as an alternative TCO layer in improving the performance of thin-film solar cell technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 4922 KB  
Review
Broadband Flexible Quantum Dots/Graphene Photodetectors
by Judy Z. Wu and Andrew Shultz
Micromachines 2026, 17(1), 121; https://doi.org/10.3390/mi17010121 (registering DOI) - 16 Jan 2026
Abstract
Nanohybrids consisting of quantum dots and graphene (QD/graphene) provides a unique scheme to design quantum sensors. The quantum confinement in QDs enables spectral tunability, while that in graphene provides superior photocarrier mobility. The combination of them allows for broadband light absorption and high [...] Read more.
Nanohybrids consisting of quantum dots and graphene (QD/graphene) provides a unique scheme to design quantum sensors. The quantum confinement in QDs enables spectral tunability, while that in graphene provides superior photocarrier mobility. The combination of them allows for broadband light absorption and high photoconduction gain that in turn leads to high photoresponsivity in QD/Gr nanohybrid photodetectors. Since the first QD/graphene photodetector was reported in 2012, intensive research has been conducted on this topic. In this paper, a review of the recent progress made on QD/Gr nanohybrid photodetectors will be provided. Among many applications, there will be a particular focus on broadband and flexible photodetectors, which make use of the inherent advantages of the QD/Gr nanohybrids. The remaining challenges and future perspectives will be discussed in this emerging topic area. Full article
(This article belongs to the Special Issue Photodetectors and Their Applications)
Show Figures

Figure 1

16 pages, 1219 KB  
Article
Flexible Inkjet-Printed pH Sensors for Application in Organ-on-a-Chip Biomedical Testing
by Željka Boček, Donna Danijela Dragun, Laeticia Offner, Sara Krivačić, Ernest Meštrović and Petar Kassal
Biosensors 2026, 16(1), 38; https://doi.org/10.3390/bios16010038 - 3 Jan 2026
Viewed by 354
Abstract
Reliable models of the lung environment are important for research on inhalation products, drug delivery, and how aerosols interact with tissue. pH fluctuations frequently accompany real physiological processes in pulmonary environments, so monitoring pH changes in lung-on-a-chip devices is of considerable relevance. Presented [...] Read more.
Reliable models of the lung environment are important for research on inhalation products, drug delivery, and how aerosols interact with tissue. pH fluctuations frequently accompany real physiological processes in pulmonary environments, so monitoring pH changes in lung-on-a-chip devices is of considerable relevance. Presented here are flexible, miniaturized, inkjet-printed pH sensors that have been developed with the aim of integration into lung-on-a-chip systems. Different types of functional pH-sensitive materials were tested: hydrogen-selective plasticized PVC membranes and polyaniline (both electrodeposited and dropcast). Their deposition and performance were evaluated on different flexible conducting substrates, including screen-printed carbon electrodes (SPE) and inkjet-printed graphene electrodes (IJP-Gr). Finally, a biocompatible dropcast polyaniline-modified IJP was selected and paired with an inkjet-printed Ag/AgCl quasireference electrode. The printed potentiometric device showed Nernstian sensitivity (58.8 mV/pH) with good reproducibility, reversibility, and potential stability. The optimized system was integrated with a developed lung-on-a-chip model with an electrospun polycaprolactone membrane and alginate, simulating the alveolar barrier and the natural mucosal environment, respectively. The permeability of the system was studied by monitoring the pH changes upon the introduction of a 10 wt.% acetic acid aerosol. Overall, the presented approach shows that electrospun-hydrogel materials together with integrated microsensors can help create improved models for studying aerosol transport, diffusion, and chemically changing environments that are relevant for inhalation therapy and respiratory research. These results show that our system can combine mechanical behavior with chemical sensing in one platform, which may be useful for future development of lung-on-a-chip technologies. Full article
Show Figures

Graphical abstract

12 pages, 2502 KB  
Article
A First-Principles Study of Lithium Adsorption and Diffusion on Graphene and Defective-Graphene as Anodes of Li-Ion Batteries
by Lina Si, Yijian Yang, Yuhao Wang, Qifeng Wu, Rong Huang, Hongjuan Yan, Mulan Mu, Fengbin Liu and Shuting Zhang
Coatings 2026, 16(1), 52; https://doi.org/10.3390/coatings16010052 - 3 Jan 2026
Viewed by 239
Abstract
Defective graphene has emerged as a promising strategy to enhance electrochemical performance of pristine graphene (p-Gr) as anodes in lithium-ion batteries (LIBs). Herein, we perform a comprehensive first-principles study based on density functional theory (DFT) to systematically investigate the Li adsorption, charge transfer, [...] Read more.
Defective graphene has emerged as a promising strategy to enhance electrochemical performance of pristine graphene (p-Gr) as anodes in lithium-ion batteries (LIBs). Herein, we perform a comprehensive first-principles study based on density functional theory (DFT) to systematically investigate the Li adsorption, charge transfer, and diffusion behaviors of p-Gr and defective graphene (d-Gr) with single vacancy (SV Gr) and double vacancy (DV5-8-5 Gr) defects, aiming to clarify the mechanism by which defects modulate Li storage performance. Structural optimization reveals that SV Gr undergoes notable out-of-plane distortion after Li adsorption, while DV5-8-5 Gr retains planar geometry but exhibits more significant C-C bond length variations compared to p-Gr. Binding energy results confirm that defects enhance Li adsorption stability, with DV5-8-5 Gr showing the strongest Li–graphene interaction, followed by SV Gr and p-Gr. Bader charge analysis and charge density difference plots further validate that defects enhance charge transfer from Li ions to graphene. Using the nudged elastic band (NEB) method, we find that defects reduce Li diffusion barriers: DV5-8-5 Gr exhibits a lower barrier than p-Gr. Our findings demonstrate that DV5-8-5 Gr exhibits the most favorable Li storage performance, providing a robust theoretical basis for designing high-performance graphene anodes for next-generation LIBs. Full article
Show Figures

Figure 1

16 pages, 3097 KB  
Article
Enhancing the Photoresponsivity and External Quantum Efficiency of ReSe2 Photodetectors Through the Insertion of a Graphene Auxiliary Layer
by Qiutong Liu, Beiyang Jin, Yutong Li, Peishuo Li, Jingyu Zhang, Yankun Chen, Chenkai Hu and Wei Li
Sensors 2026, 26(1), 115; https://doi.org/10.3390/s26010115 - 24 Dec 2025
Viewed by 400
Abstract
Two-dimensional (2D) materials demonstrate significant potential in photodetector technology. They offer high sensitivity, wide spectral range, flexibility and transparency, especially in infrared detection, promising advancements in wearable and flexible electronics. This study explores the application of 2D materials in high-performance photodetectors. Rhenium diselenide [...] Read more.
Two-dimensional (2D) materials demonstrate significant potential in photodetector technology. They offer high sensitivity, wide spectral range, flexibility and transparency, especially in infrared detection, promising advancements in wearable and flexible electronics. This study explores the application of 2D materials in high-performance photodetectors. Rhenium diselenide (ReSe2) was used as the channel, and graphene (Gr) was inserted between ReSe2 and SiO2 as the gate electrode to enhance device performance. A ReSe2/Gr heterostructure field-effect transistor (FET) was fabricated to investigate the role of Gr in improving the optoelectronic properties of ReSe2 phototransistors. Specifically, the ReSe2 FET without Gr auxiliary layer demonstrates a responsivity (R) of 294 mA/W, an external quantum efficiency (EQE) of 68.75%, and response times as brief as 40/62 ms. Compared with the ReSe2 phototransistor, the ReSe2/Gr phototransistor exhibits significantly improved photoresponsivity and EQE, with the photoresponsivity enhanced by a factor of ap-proximately 3.58 and the EQE enhanced by a factor of approximately 3.59. These enhancements are mainly attributed to optimization of interfacial band alignment and the strengthened photogating effect by Gr auxiliary layer. This research not only underscores the pivotal role of Gr in boosting the capabilities of 2D photodetectors but also offers a viable strategy for developing high-performance photodetectors with 2D materials. Full article
Show Figures

Figure 1

15 pages, 10835 KB  
Article
Comparison Study on the Microstructure, Hardness and Wear Properties of Ti Alloy Composites Reinforced by Carbon Nanomaterials
by Nguyen Binh An, Tran Van Hau, Tran Bao Trung, Pham Van Trinh and Doan Dinh Phuong
Inorganics 2025, 13(12), 405; https://doi.org/10.3390/inorganics13120405 - 12 Dec 2025
Viewed by 413
Abstract
In this study, titanium alloy-based composites reinforced with carbon nanotubes (CNTs) and graphene (Gr) were fabricated via spark plasma sintering (SPS). The effects of CNT and Gr reinforcements on the microstructure, density, hardness, and tribological properties of the composites were systematically investigated. The [...] Read more.
In this study, titanium alloy-based composites reinforced with carbon nanotubes (CNTs) and graphene (Gr) were fabricated via spark plasma sintering (SPS). The effects of CNT and Gr reinforcements on the microstructure, density, hardness, and tribological properties of the composites were systematically investigated. The results revealed that CNTs and Gr were dispersed within the Ti alloy matrix. All composites exhibited high relative densities about 99%, confirming the strong densification capability of the SPS process. The incorporation of CNTs and Gr significantly enhanced the mechanical performance of the composites. The maximum hardness values of 445.8 HV and 430.5 HV were obtained for CNT/Ti and Gr/Ti composites containing 3 vol.% reinforcement, corresponding to improvements of 34% and 30%, respectively, compared with the unreinforced Ti alloy. Tribological tests further revealed notable reductions in the coefficient of friction and wear rate for both CNT/Ti and Gr/Ti composites. These enhancements are attributed to the formation of a lubricating tribo-film composed of carbonaceous species and oxide particles (TiO2, Al2O3) on the worn surfaces. Among the two reinforcements, the obtained results indicated that CNTs are more effective in enhancing hardness, whereas graphene provides superior improvement in wear resistance of Ti alloy-based composites. Overall, this work demonstrated that the combination of Ti alloys with nanocarbon reinforcements is an effective approach to simultaneously enhance their mechanical and tribological performance. Full article
(This article belongs to the Special Issue Novel Metal Matrix Composite Materials)
Show Figures

Figure 1

17 pages, 4787 KB  
Article
Electrodeposition of Copper-Based Nickel–Graphene Coatings: Effect of Current Density on Microstructure and Properties
by Zhongke Zhang, Haonan Wang, Wenhao Ma and Yingbo Ma
Coatings 2025, 15(12), 1360; https://doi.org/10.3390/coatings15121360 - 21 Nov 2025
Viewed by 849
Abstract
Nickel–graphene (Ni–Gr) coatings were synthesized on brass via electrodeposition to enhance the surface properties. The microstructure was characterized using SEM, XRD, EDS and Raman spectra, whilst microhardness, tribological behaviour, corrosion resistance and thermal conductivity were assessed. The results show that the current density [...] Read more.
Nickel–graphene (Ni–Gr) coatings were synthesized on brass via electrodeposition to enhance the surface properties. The microstructure was characterized using SEM, XRD, EDS and Raman spectra, whilst microhardness, tribological behaviour, corrosion resistance and thermal conductivity were assessed. The results show that the current density during electrodeposition significantly influences the coating properties: at 2 A/dm2, the coating showed a dense structure, refined grains, and broad Ni diffraction peaks, with the graphene nanoplatelet uniformly distributed throughout. Under these conditions, the coating achieved optimal comprehensive properties: a Vickers hardness of 284 HV, the lowest average coefficient of friction (0.43) and minimal mass loss rate (2.01%) in friction and wear testing, and the highest corrosion resistance and the lowest self-corrosion current density (1.8135 × 10−6 A/cm2), with the thermal conductivity reaching its peak value (154 W/m·K, 25 °C). When the current density deviates from 2 A/dm2, nickel grain coarsening occurs, and the graphene nanoplatelet dispersion deteriorates, leading to reduced hardness, corrosion resistance, and thermal conductivity, whereas friction and wear intensify. Thus, 2 A/dm2 represents the optimum current density for electrodepositing copper-based Ni–Gr coatings, simultaneously optimizing the microstructure, mechanical properties, tribological performance, corrosion resistance and thermal conductivity. This study employs electrodeposition technology to provide a practical strategy for developing high-performance nickel-based coatings for copper-based heat sinks. Full article
(This article belongs to the Special Issue Advanced Coatings for Alloy Protection and Performance Enhancement)
Show Figures

Figure 1

18 pages, 4882 KB  
Article
Novel Insights into the Structure and Reduction of Graphene Oxide: A Case of Thiourea
by Oksana Oskolkova, Viktoriya Gnatovskaya, Darya Trush, Elena Vylivok, Ekaterina Khomutova, Leonid Fershtat and Alexander Larin
Materials 2025, 18(22), 5135; https://doi.org/10.3390/ma18225135 - 12 Nov 2025
Cited by 1 | Viewed by 786
Abstract
In this work, samples of reduced graphene oxide (rGO) were prepared by treating graphite oxide (GrO) with thiourea (TU) and ascorbic acid (AA). Aerogels rGO-TU and rGO-AA were prepared using the freeze-drying method and were analyzed using X-ray diffraction, FTIR and Raman spectroscopy, [...] Read more.
In this work, samples of reduced graphene oxide (rGO) were prepared by treating graphite oxide (GrO) with thiourea (TU) and ascorbic acid (AA). Aerogels rGO-TU and rGO-AA were prepared using the freeze-drying method and were analyzed using X-ray diffraction, FTIR and Raman spectroscopy, 1H and 13C NMR, TEM, and SEM-EDS. Based on the NMR, FTIR, SEM-EDS, and TEM data, GO with TU is reduced with simultaneous functionalization of its oxygen-containing groups. According to 1H and 13C NMR data, the reduction of GO occurred simultaneously with an interaction of the amino groups of thiourea with carbonyl groups on the graphene sheets, forming an imine bond. This is evidenced by the appearance of additional signals in the 13C spectrum of GO-TU samples in the region of 140–230 ppm. The Boehm titration method showed that the number of oxygen-containing groups in rGO-TU aerogels decreased by about five times compared to GO. However, thiourea interacts with the GO surface, most likely due to electrostatic interaction and hydrogen bonds. The adsorption capacity of rGO-TU aerogel with respect to methylene blue (MB) after 1440 min was 60.2 mg/g, while for rGO-AA it was 71.4 mg/g. This fact indicates the importance of optimizing GO reduction to increase the number of active sites. Full article
Show Figures

Graphical abstract

16 pages, 3917 KB  
Article
The Effect of In-Situ-Grown Graphene from Highland Barley Powder on the Properties of Copper Matrix Materials
by Zhe Wang, Changfei Sun, Xianglongtian Tang, Cheng Du, Denghui Li and Cong Chen
Metals 2025, 15(11), 1217; https://doi.org/10.3390/met15111217 - 2 Nov 2025
Viewed by 423
Abstract
In situ graphene was grown on the surface of copper particles using highland barley powder, which is rich in sucrose and β-glucan, as a carbon source. The graphene content in the graphene-coated copper (Gr@Cu) composite powder was 4.98 wt.%. A characteristic angle of [...] Read more.
In situ graphene was grown on the surface of copper particles using highland barley powder, which is rich in sucrose and β-glucan, as a carbon source. The graphene content in the graphene-coated copper (Gr@Cu) composite powder was 4.98 wt.%. A characteristic angle of approximately 14° was observed between the graphene and copper crystal planes, indicating strong interfacial bonding. Raman spectroscopy revealed an ID/IG ratio of 0.96 for the graphene. Owing to the in situ growth of graphene, the mechanical properties of the copper matrix are effectively strengthened. At a graphene content of 0.7 wt.%, the graphene was uniformly dispersed within the copper matrix, resulting in optimized mechanical properties of the composite. This composite exhibited a conductivity of 70% IACS and a compressive yield strength of 175 MPa. Full article
(This article belongs to the Section Powder Metallurgy)
Show Figures

Figure 1

16 pages, 4229 KB  
Article
In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation
by Mengyao Wang, Yong Li, Rui Li, Yali Zhang, Deyun Yue, Shihao Zhao, Maosong Chen and Haojie Song
Nanomaterials 2025, 15(21), 1641; https://doi.org/10.3390/nano15211641 - 28 Oct 2025
Viewed by 597
Abstract
Insufficient harvesting of visible photons, limited adsorption, and fast recombination of photogenerated electron-hole pairs restrict the application of graphitic carbon nitride (g-C3N4). Here, we propose a straightforward solid-phase synthesis method for fabricating 2D/2D graphitic carbon nitride/reduced graphene oxide (SCN/GR) [...] Read more.
Insufficient harvesting of visible photons, limited adsorption, and fast recombination of photogenerated electron-hole pairs restrict the application of graphitic carbon nitride (g-C3N4). Here, we propose a straightforward solid-phase synthesis method for fabricating 2D/2D graphitic carbon nitride/reduced graphene oxide (SCN/GR) hybrid photocatalysts. The synthesis process involves the thermal condensation of three precursors: dicyandiamide (as the g-C3N4 source), NH4Cl (as a pore-forming agent), and graphene oxide (GO, which is in situ reduced to rGO during thermal treatment). The incorporation of reduced graphene oxide (rGO) into the g-C3N4 matrix not only narrows the bandgap of the material but also expedites the separation of photogenerated carriers. The photocatalytic activity of the SCN/GR hybrid was systematically evaluated by degrading ciprofloxacin in aqueous solution under different light conditions. The results demonstrated remarkable degradation efficiency: 72% removal within 1 h under full-spectrum light, 81% under UV light, and 52% under visible light. Notably, the introduction of rGO significantly improved the visible light absorption capacity of g-C3N4. Additionally, SCN/GR exhibits exceptional cyclic stability, maintaining its structural integrity and photocatalytic properties unchanged across five successive degradation cycles. This study offers a simple yet effective pathway to synthesize 2D/2D composite photocatalysts, which hold significant promise for practical applications in water treatment processes. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

15 pages, 10603 KB  
Article
Atomistic Doping Effects on the Ideal Strength of Graphene/Aluminum Interfaces
by Wei Wang, Can Cui, Fangfang Xia, Weiwei Xu, Tieqiang Gang and Lijie Chen
Materials 2025, 18(20), 4753; https://doi.org/10.3390/ma18204753 - 16 Oct 2025
Viewed by 564
Abstract
Generally, atomic doping is an effective method to address the weak bonding strength of the graphene/aluminum (Gr/Al) composite interface structure caused by physical adsorption, thereby enhancing the mechanical properties of the interface structure. In this paper, the nanoscopic influence mechanisms of atomic (M, [...] Read more.
Generally, atomic doping is an effective method to address the weak bonding strength of the graphene/aluminum (Gr/Al) composite interface structure caused by physical adsorption, thereby enhancing the mechanical properties of the interface structure. In this paper, the nanoscopic influence mechanisms of atomic (M, including 12 types of atoms (elements)) doping in the aluminum matrix (Al) on the ideal strength of the Gr/Al interface structures are investigated based on density functional theory. The analysis of the electronic properties of the typical interface structures reveals that doping with scandium (Sc), copper (Cu) and manganese (Mn) atoms can all improve the interface binding energy of the Gr/Al structures, but their effects on the ideal strength are different. Sc doping disrupts the symmetry of the graphene structure so as to enhance the interface binding energy, but the ideal strength of the Gr/Al structures is decreased. For Cu doping it shows good compatibility with the Al matrix and the interface binding energy is enhanced through Cu alloying with the Al matrix, while the ideal strength of the interface remains basically unchanged. As for Mn doping, it causes the charge to accumulate around the Mn atoms and a resonance peak between the dZ2 orbitals of Mn and the px orbitals of Al to form, thereby improving the ideal strength of the interface structure. This study provides valuable insights for the design of Gr/Al composites by elucidating the underlying mechanisms for enhancing interface mechanical properties. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

9 pages, 1622 KB  
Communication
Scalable Graphene–MoS2 Lateral Contacts for High-Performance 2D Electronics
by Woonggi Hong
Materials 2025, 18(20), 4689; https://doi.org/10.3390/ma18204689 - 13 Oct 2025
Viewed by 940
Abstract
As the scaling of silicon-based CMOS technology approaches its physical limits, two-dimensional (2D) materials have emerged as promising alternatives for future electronic devices. Among them, MoS2 is a leading candidate due to its fascinating semiconducting nature and compatibility with CMOS processes. However, [...] Read more.
As the scaling of silicon-based CMOS technology approaches its physical limits, two-dimensional (2D) materials have emerged as promising alternatives for future electronic devices. Among them, MoS2 is a leading candidate due to its fascinating semiconducting nature and compatibility with CMOS processes. However, high contact resistance at the metal–MoS2 interface remains a major bottleneck, limiting device performance. In this study, we report the fabrication and characterization of graphene–MoS2 (Gr–MoS2) lateral heterostructure FETs, where monolayer graphene, synthesized by inductively coupled plasma chemical vapor deposition (ICP-CVD), is directly used as the source and drain. Bilayer MoS2 is selectively grown along graphene edges via edge-guided CVD, forming a chemically bonded in-plane junction without transfer steps. Electrical measurements reveal that the Gr–MoS2 FETs exhibit a threefold increase in average field-effect mobility (3.9 vs. 1.1 cm2 V−1 s−1) compared to conventional MoS2 FETs. Y-function analysis shows that the contact resistance is significantly reduced from 85.8 kΩ to 20.5 kΩ at VG = 40 V. These improvements are attributed to the replacement of the conventional metal–MoS2 contact with a graphene–metal contact. Our results demonstrate that lateral heterostructure engineering with graphene provides an effective and scalable strategy for high-performance 2D electronics. Full article
(This article belongs to the Special Issue Advances in Flexible Electronics and Electronic Devices)
Show Figures

Figure 1

15 pages, 4143 KB  
Article
Microstructure and Mechanical Performance of Cu and Gr/Cu Composites: Experimental and Ab Initio Insights
by Galiia Korznikova, Gulnara Khalikova, Igor Kosarev, Wei Wei, Alexander Semenov and Elena Korznikova
Solids 2025, 6(4), 57; https://doi.org/10.3390/solids6040057 - 8 Oct 2025
Viewed by 862
Abstract
This study investigates the microstructure and mechanical properties of copper (Cu) and graphene/Cu (Gr/Cu) composites produced via high-pressure torsion (HPT) under 5 GPa at room temperature. Microstructural analysis revealed significant grain refinement, with average grain sizes of 0.39 μm for pure Cu and [...] Read more.
This study investigates the microstructure and mechanical properties of copper (Cu) and graphene/Cu (Gr/Cu) composites produced via high-pressure torsion (HPT) under 5 GPa at room temperature. Microstructural analysis revealed significant grain refinement, with average grain sizes of 0.39 μm for pure Cu and 0.35 μm for Gr/Cu composite. The Gr/Cu composite exhibited slightly higher microstrains and effective stacking fault energy (SFE). Tensile tests showed ultimate tensile strengths of 689 MPa (pure Cu) and 674 MPa (Gr/Cu), with the latter demonstrating improved ductility (~10% elongation). Ab initio calculations confirmed a 27% increase in SFE for Gr/Cu, aligning with experimental results. These findings highlight the potential of Gr/Cu composites for applications requiring high strength and efficient heat dissipation. Full article
Show Figures

Figure 1

14 pages, 2101 KB  
Article
Molecular Design of H2 Storage/Release Devices: A Direct Ab Initio MD Study
by Hiroto Tachikawa
Nanomaterials 2025, 15(19), 1498; https://doi.org/10.3390/nano15191498 - 1 Oct 2025
Viewed by 644
Abstract
To advance a hydrogen-based energy society, the development of efficient hydrogen storage materials is essential. In particular, such materials are expected to be lightweight and chemically stable. Moreover, they must allow for easy storage and release of hydrogen. In this study, we theoretically [...] Read more.
To advance a hydrogen-based energy society, the development of efficient hydrogen storage materials is essential. In particular, such materials are expected to be lightweight and chemically stable. Moreover, they must allow for easy storage and release of hydrogen. In this study, we theoretically designed hydrogen storage and release devices based on graphene (GR)—a lightweight and chemically stable material—using a direct ab initio molecular dynamics (AIMD) approach. The target reaction in this study is the hydrogen abstraction from hydrogenated graphene, H-(GR)-H, by hydrogen atom, resulting in molecular hydrogen formation: H-(GR)-H + H → GR-H + H2. Hydrogen atom (H) can be readily generated through the discharge of H2 gas. The calculated activation energy was −0.3 kcal/mol. The direct AIMD calculations showed that the hydrogen abstraction reaction proceeds without the activation barrier, and H2 is easily formed by the collision of H atom with the H-(GR)-H surface. For comparison, the addition reaction of hydrogen atom to the graphene surface was investigated: GR + H → GR–H. The activation energies were calculated to be 5–7 kcal/mol. These energetic profiles indicate that both hydrogen storage and release proceed with low and negative activation energies, respectively. On the basis of these calculations, H2-storage/release device was theoretically designed. Full article
(This article belongs to the Special Issue 2D Materials for Energy Conversion and Storage)
Show Figures

Figure 1

36 pages, 2691 KB  
Review
Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics
by Janani Sridev, Arif R. Deen, Md Younus Ali, Wei-Ting Ting, M. Jamal Deen and Matiar M. R. Howlader
Biosensors 2025, 15(9), 626; https://doi.org/10.3390/bios15090626 - 19 Sep 2025
Viewed by 1972
Abstract
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a [...] Read more.
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a non-invasive, real-time diagnostic medium—offers transformative potential for early disease identification and personalized health monitoring. This review synthesizes advancements in electrochemical sensor technologies tailored for Trp and Tryp quantification, emphasizing their clinical relevance in diagnosing conditions like oral squamous cell carcinoma (OSCC), Alzheimer’s disease (AD), and breast cancer, where dysregulated Trp metabolism reflects immune dysfunction or tumor progression. Electrochemical platforms have overcome the limitations of conventional techniques (e.g., enzyme-linked immunosorbent assays (ELISA) and mass spectrometry) by integrating innovative nanomaterials and smart engineering strategies. Carbon-based architectures, such as graphene (Gr) and carbon nanotubes (CNTs) functionalized with metal nanoparticles (Ni and Co) or nitrogen dopants, amplify electron transfer kinetics and catalytic activity, achieving sub-nanomolar detection limits. Synergies between doping and advanced functionalization—via aptamers (Apt), molecularly imprinted polymers (MIPs), or metal-oxide hybrids—impart exceptional selectivity, enabling the precise discrimination of Trp and Tryp in complex matrices like saliva. Mechanistically, redox reactions at the indole ring are optimized through tailored electrode interfaces, which enhance reaction kinetics and stability over repeated cycles. Translational strides include 3D-printed microfluidics and wearable sensors for continuous intraoral health surveillance, demonstrating clinical utility in detecting elevated Trp levels in OSCC and breast cancer. These platforms align with point-of-care (POC) needs through rapid response times, minimal fouling, and compatibility with scalable fabrication. However, challenges persist in standardizing saliva collection, mitigating matrix interference, and validating biomarkers across diverse populations. Emerging solutions, such as AI-driven analytics and antifouling coatings, coupled with interdisciplinary efforts to refine device integration and manufacturing, are critical to bridging these gaps. By harmonizing material innovation with clinical insights, electrochemical sensors promise to revolutionize precision medicine, offering cost-effective, real-time diagnostics for both localized oral pathologies and systemic diseases. As the field advances, addressing stability and scalability barriers will unlock the full potential of these technologies, transforming them into indispensable tools for early intervention and tailored therapeutic monitoring in global healthcare. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

Back to TopTop