Broadband Flexible Quantum Dots/Graphene Photodetectors
Abstract
1. Introduction
2. Quantum Physics in QD/Graphene Nanohybrids PDs
2.1. Photoconductive Gain
2.2. Geometry and Noise Considerations
2.3. Balance Light Absorption and Carrier Transfer
3. Recent Progress in QD/Graphene Nanohybrids PDs
3.1. Device Designs for Broadband Flexible Photodetection
3.2. Performance of Broadband Photodetection (R, D*, Speed)
4. Applications of QD/Gr PDs
4.1. Broadband Imaging
4.2. Flexible PDs/Array for Imaging
4.3. Curved PDs and Imagers
5. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Yu, W.J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2012, 12, 246–252. [Google Scholar] [CrossRef]
- Xia, F.N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Nabet, B. Photodetectors, 2nd ed.; Nabet, B., Ed.; Woodhead Publishing: Cambridge, UK, 2023. [Google Scholar]
- Wu, J.Z.; Gong, M.G.; Schmitz, R.C.; Liu, B. Quantum Dot/Graphene Heterostructure Nanohybrid Photodetectors; Springer: Berlin/Heidelberg, Germany, 2021; Volume 30, pp. 215–248. [Google Scholar]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Yang, G.; Li, J.; Wu, M.; Yu, X.; Yu, J. Recent Advances in Materials, Structures, and Applications of Flexible Photodetectors. Adv. Electron. Mater. 2023, 9, 2300340. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F.P.G.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Z. Graphene. In Transparent Conductive Materials. Materials, Synthesis and Characterization; David, L., Erick, C., Eds.; Wiley-VCH: Weinheim, Germany, 2018; Volume 1 & 2, pp. 165–192. [Google Scholar] [CrossRef]
- Lu, H.; Carroll, G.M.; Neale, N.R.; Beard, M.C. Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano 2019, 13, 939–953. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Xia, F.N.; Mueller, T.; Lin, Y.M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Chen, J.H.; Jang, C.; Xiao, S.D.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Liu, Q.F.; Gong, Y.P.; Wang, T.; Chan, W.L.; Wu, J.Z. Metal-catalyst-free and controllable synthesis of monolayer, bilayer and few-layer graphene on silicon dioxide by chemical vapor deposition. Carbon 2015, 96, 203. [Google Scholar] [CrossRef]
- Liu, Q.F.; Gong, Y.P.; Wilt, J.S.; Sakidja, R.; Wu, J. Synchronous growth of AB-stacked bilayer graphene on Cu by simply controlling hydrogen pressure in CVD process. Carbon 2015, 93, 199–206. [Google Scholar] [CrossRef]
- Li, X.S.; Cai, W.W.; An, J.H.; Kim, S.; Nah, J.; Yang, D.X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.J.; Pang, J.B.; Cheng, Q.L.; Zhang, S.; Li, Y.F.; Zhang, C.C.; Sun, D.H.; Ibarlucea, B.; Li, Y.; Chen, D.; et al. Synthesis of Wafer-Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Adv. Mater. Technol. 2021, 6, 2000744. [Google Scholar] [CrossRef]
- Wei, T.; Bao, L.P.; Hauke, F.; Hirsch, A. Recent Advances in Graphene Patterning. ChemPlusChem 2020, 85, 1655–1668. [Google Scholar] [CrossRef]
- Mandal, P.; Debbarma, J.; Saha, M. A Review on the Emergence of Graphene in Photovoltaics Industry. Biointerface Res. Appl. Chem. 2021, 11, 15009–15036. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, Y.Y.; Yang, Z.; Hu, N.T. Review of recent progress on graphene-based composite gas sensors. Ceram. Int. 2021, 47, 18. [Google Scholar] [CrossRef]
- Chung, S.; Revia, R.A.; Zhang, M.Q. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021, 33, 26. [Google Scholar] [CrossRef]
- Li, Z.L.; Chen, Y.P.; Ma, T.Y.; Jiang, Y.Z.; Chen, J.; Pan, H.G.; Sun, W.P. 2D Metal-Free Nanomaterials Beyond Graphene and Its Analogues toward Electrocatalysis Applications. Adv. Energy Mater. 2021, 11, 2101202. [Google Scholar] [CrossRef]
- Li, X.M.; Chai, Y. Design and applications of graphene-based flexible and wearable physical sensing devices. 2D Mater. 2021, 8, 14. [Google Scholar] [CrossRef]
- Doscher, H.; Reiss, T. Graphene Roadmap Briefs (No. 1): Innovation interfaces of the Graphene Flagship. 2D Mater. 2021, 8, 022004. [Google Scholar] [CrossRef]
- Doscher, H.; Schmaltz, T.; Neef, C.; Thielmann, A.; Reiss, T. Graphene Roadmap Briefs (No. 2): Industrialization status and prospects 2020. 2D Mater. 2021, 8, 022005. [Google Scholar] [CrossRef]
- Junaid, M.; Khir, M.H.M.; Witjaksono, G.; Ullah, Z.; Tansu, N.; Saheed, M.S.M.; Kumar, P.; Wah, L.H.; Magsi, S.A.; Siddiqui, M.A. A Review on Graphene-Based Light Emitting Functional Devices. Molecules 2020, 25, 4217. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, H.; Li, J.; Liu, B.; Liu, F. Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials. Nanomaterials 2025, 15, 431. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Wu, J.; Ma, H.; Yin, P.; Ge, Y.; Zhang, Y.; Li, L.; Zhang, H.; Lin, H. Two-Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. Small Sci. 2021, 1, 2000053. [Google Scholar] [CrossRef]
- Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J.H.; von Klitzing, K.; Yacoby, A. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148. [Google Scholar] [CrossRef]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 2017, 11, 366–371. [Google Scholar] [CrossRef]
- Gong, M.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. Controllable Synthesis of Monodispersed Fe1- xS2 Nanocrystals for High-Performance Optoelectronic Devices. ACS Appl. Mater. Interfaces 2019, 11, 19286–19293. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Liu, Q.; Cook, B.; Kattel, B.; Wang, T.; Chan, W.L.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J.Z. All-Printable ZnO Quantum Dots/Graphene van der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light. ACS Nano 2017, 11, 4114–4123. [Google Scholar] [CrossRef]
- Gong, M.; Liu, Q.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. Printable Nanocomposite FeS2-PbS Nanocrystals/Graphene Heterojunction Photodetectors for Broadband Photodetection. ACS Appl. Mater. Interfaces 2017, 9, 27801–27808. [Google Scholar] [CrossRef]
- Gong, M.; Sakidja, R.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. High-Performance All-Inorganic CsPbCl3 Perovskite Nanocrystal Photodetectors with Superior Stability. ACS Nano 2019, 13, 1772–1783. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Sakidja, R.; Liu, Q.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. Broadband photodetectors enabled by localized surface plasmonic resonance in doped iron pyrite nanocrystals. Adv. Opt. Mater. 2018, 6, 1701241. [Google Scholar] [CrossRef]
- Gong, M.; Liu, B.; Shultz, A.; Schmitz, R.C.; Vargas, H.B.; Alzahrani, S.; Robles Hernandez, F.C.; Olson, A.; Wu, J.Z. Decoupling of Photocurrent and Dark Current for Extraordinary Detectivity in Uncooled Middle-Wavelength Infrared Nanohybrid Photodetectors. ACS Nano 2025, 19, 8520–8538. [Google Scholar] [CrossRef]
- Shultz, A.; Liu, B.; Gong, M.; Hernandez, F.C.R.; Wu, J. Pixel Geometry Effect on PbS Quantum Dot/Graphene Nanohybrid Broadband Photodetectors. Adv. Opt. Mater. 2024, 12, 2302675. [Google Scholar] [CrossRef]
- Martyniuk, P.; Kopytko, M.; Rogalski, A. Infrared Detector Characterization. In Antimonide-Based Infrared Detectors: A New Perspective; SPIE Press: Bellingham, WA, USA, 2018. [Google Scholar]
- Yin, J.; Liu, L.; Zang, Y.; Ying, A.; Hui, W.; Jiang, S.; Zhang, C.; Yang, T.; Chueh, Y.-L.; Li, J.; et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light Sci. Appl. 2021, 10, 113. [Google Scholar] [CrossRef]
- Li, Y.; Pan, J.; Yan, C.; Li, J.; Xin, W.; Zhang, Y.; Liu, W.; Liu, X.; Xu, H.; Liu, Y. Efficient Carrier Multiplication in Self-Powered Near-Ultraviolet γ-InSe/Graphene Heterostructure Photodetector with External Quantum Efficiency Exceeding 161%. Nano Lett. 2024, 24, 7252–7260. [Google Scholar] [CrossRef]
- Vashishtha, P.; Dash, A.; Walia, S.; Gupta, G. Self-bias Mo–Sb–Ga multilayer photodetector encompassing ultra-broad spectral response from UV–C to IR–B. Opt. Laser Technol. 2025, 181, 111705. [Google Scholar] [CrossRef]
- Wu, J.Z.; Gong, M.; Schmitz, R.C.; Liu, B. Development of high-speed quantum dots/graphene infrared detectors for uncooled infrared imaging. In Infrared Technology and Applications XLVII; SPIE: Bellingham, WA, USA, 2021; pp. 32–43. [Google Scholar]
- Lu, R.; Christianson, C.; Kirkeminde, A.; Ren, S.; Wu, J. Extraordinary Photocurrent Harvesting at Type-II Heterojunction Interfaces: Toward High Detectivity Carbon Nanotube Infrared Detectors. Nano Lett. 2012, 12, 6244–6249. [Google Scholar] [CrossRef]
- Gong, Y.P.; Liu, Q.F.; Wilt, J.S.; Wu, J.Z. Wrapping cytochrome c around single-wall carbon nanotube: Engineered nanohybrid building blocks for infrared detection at high quantum efficiency. Sci. Rep. 2015, 5, 11325. [Google Scholar] [CrossRef]
- Shultz, A.; Liu, B.; Gong, M.; Vargas, H.B.; Robles Hernandez, F.C.; Wu, J.Z. Probing the Critical Role of Interfaces for Superior Performance in PbS Quantum Dot/Graphene Nanohybrid Broadband Photodetectors. ACS Appl. Mater. Interfaces 2024, 16, 21302–21310. [Google Scholar] [CrossRef] [PubMed]
- Luther, J.M.; Jain, P.K.; Ewers, T.; Alivisatos, A.P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366. [Google Scholar] [CrossRef]
- Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef]
- Kippeny, T.; Swafford, L.A.; Rosenthal, S.J. Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box. J. Chem. Educ. 2002, 79, 1094. [Google Scholar] [CrossRef]
- Linke, H. Quantum Dots–Seeds of Nanoscience; The Royal Swedish Academy of Sciences: Stockholm, Sweden, 2023. [Google Scholar]
- Jasieniak, J.; Califano, M.; Watkins, S.E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 2011, 5, 5888–5902. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.L.; Bai, J.W.; Liu, G.; Liu, L.X.; Huang, Y.; Duan, X.F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579. [Google Scholar] [CrossRef]
- Xu, G.W.; Liu, J.W.; Wang, Q.; Hui, R.Q.; Chen, Z.J.; Maroni, V.A.; Wu, J. Plasmonic Graphene Transparent Conductors. Adv. Mater. 2012, 24, OP71–OP76. [Google Scholar] [CrossRef]
- Xu, G.W.; Lu, R.T.; Liu, J.W.; Chiu, H.Y.; Hui, R.Q.; Wu, J.Z. Photodetection Based on Ionic Liquid Gated Plasmonic Ag Nanoparticle/Graphene Nanohybrid Field Effect Transistors. Adv. Opt. Mater. 2014, 2, 729–736. [Google Scholar] [CrossRef]
- Gong, M.; Alamri, M.; Ewing, D.; Sadeghi, S.M.; Wu, J.Z. Localized surface plasmon resonance enhanced light absorption in AuCu/CsPbCl3 core/shell nanocrystals. Adv. Mater. 2020, 32, 2002163. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Gutha, R.R.; Kattel, B.; Alamri, M.; Gong, M.; Sadeghi, S.M.; Chan, W.-L.; Wu, J.Z. Using silver nanoparticles-embedded silica metafilms as substrates to enhance the performance of perovskite photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 32301–32309. [Google Scholar] [CrossRef] [PubMed]
- Alamri, M.; Liu, B.; Sadeghi, S.M.; Ewing, D.; Wilson, A.; Doolin, J.L.; Berrie, C.L.; Wu, J. Graphene/WS2 nanodisk Van der Waals heterostructures on plasmonic Ag nanoparticle-embedded silica metafilms for high-performance photodetectors. ACS Appl. Nano Mater. 2020, 3, 7858–7868. [Google Scholar] [CrossRef]
- Olson, A.; Chambers, D.; Gotfredson, S.; Shultz, A.; Liu, B.; Gong, M.; Wu, J.Z. A comparative study of broadband PbS quantum dots/graphene photodetectors with monolayer and bilayer graphene. Nano Express 2024, 5, 035019. [Google Scholar] [CrossRef]
- Alamri, M.; Gong, M.; Cook, B.; Goul, R.; Wu, J.Z. Plasmonic WS2 Nanodiscs/Graphene van der Waals Heterostructure Photodetectors. Acs Appl. Mater. Interfaces 2019, 11, 33390–33398. [Google Scholar] [CrossRef]
- Cook, B.; Gong, M.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J. Inkjet Printing Multicolor Pixelated Quantum Dots on Graphene for Broadband Photodetection. ACS Appl. Nano Mater. 2019, 2, 3246–3252. [Google Scholar] [CrossRef]
- Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Hossain, R.F.; Deaguero, I.G.; Boland, T.; Kaul, A.B. Biocompatible, large-format, inkjet printed heterostructure MoS2-graphene photodetectors on conformable substrates. Npj 2D Mater. Appl. 2017, 1, 28. [Google Scholar] [CrossRef]
- Cook, B.; Liu, Q.; Gong, M.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Quantum dots-facilitated printing of ZnO nanostructure photodetectors with improved performance. ACS Appl. Mater. Interfaces 2017, 9, 23189–23194. [Google Scholar] [CrossRef]
- Cook, B.; Gong, M.; Corbin, A.; Ewing, D.; Tramble, A.; Wu, J. Inkjet-Printed Imbedded Graphene Nanoplatelet/Zinc Oxide Bulk Heterojunctions Nanocomposite Films for Ultraviolet Photodetection. ACS Omega 2019, 4, 22497–22503. [Google Scholar] [CrossRef]
- Wang, H.; Lim, J.W.; Quan, L.N.; Chung, K.; Jang, Y.J.; Ma, Y.; Kim, D.H. Perovskite–gold nanorod hybrid photodetector with high responsivity and low driving voltage. Adv. Opt. Mater. 2018, 6, 1701397. [Google Scholar] [CrossRef]
- Cook, B.; Liu, Q.F.; Butler, J.; Smith, K.; Shi, K.R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J. Heat-Assisted Inkjet Printing of Tungsten Oxide for High-Performance Ultraviolet Photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 873–879. [Google Scholar] [CrossRef]
- Cook, B.; Liu, Q.F.; Liu, J.W.; Gong, M.G.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J.D. Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: Towards Debye length radius nanowires for ultraviolet photodetection. J. Mater. Chem. C 2017, 5, 10087–10093. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Guyot-Sionnest, P. Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices. ACS Nano 2018, 12, 7362–7370. [Google Scholar] [CrossRef]
- Sun, Y.L.; Xie, D.; Sun, M.X.; Teng, C.J.; Qian, L.; Chen, R.S.; Xiang, L.; Ren, T.L. Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection. Sci. Rep. 2018, 8, 5107. [Google Scholar] [CrossRef]
- Singh, V.K.; Yadav, S.M.; Mishra, H.; Kumar, R.; Tiwari, R.S.; Pandey, A.; Srivastava, A. WS2 Quantum Dot Graphene Nanocomposite Film for UV Photodetection. ACS Appl. Nano Mater. 2019, 2, 3934–3942. [Google Scholar] [CrossRef]
- Kwak, D.-H.; Lim, D.-H.; Ra, H.-S.; Ramasamy, P.; Lee, J.-S. High performance hybrid graphene–CsPbBr3−xIx perovskite nanocrystal photodetector. RSC Adv. 2016, 6, 65252–65256. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Y.; Yu, W.; Wang, Y.; Dai, Z.; Liu, Z.; Shivananju, B.N.; Zhang, Y.; Fu, K.; Shabbir, B.; et al. Flexible Broadband Graphene Photodetectors Enhanced by Plasmonic Cu3-x P Colloidal Nanocrystals. Small 2017, 13, 1701881. [Google Scholar] [CrossRef]
- Chu, A.; Greboval, C.; Prado, Y.; Majjad, H.; Delerue, C.; Dayen, J.F.; Vincent, G.; Lhuillier, E. Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays. Nat. Commun. 2021, 12, 1794. [Google Scholar] [CrossRef] [PubMed]
- Grotevent, M.J.; Hail, C.U.; Yakunin, S.; Bachmann, D.; Calame, M.; Poulikakos, D.; Kovalenko, M.V.; Shorubalko, I. Colloidal HgTe Quantum Dot/Graphene Phototransistor with a Spectral Sensitivity Beyond 3 µm. Adv. Sci. 2021, 8, 2003360. [Google Scholar] [CrossRef]
- Ni, Z.; Ma, L.; Du, S.; Xu, Y.; Yuan, M.; Fang, H.; Wang, Z.; Xu, M.; Li, D.; Yang, J.; et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano 2017, 11, 9854–9862. [Google Scholar] [CrossRef]
- Khalili, A.; Cavallo, M.; Dang, T.H.; Dabard, C.; Zhang, H.; Bossavit, E.; Abadie, C.; Prado, Y.; Xu, X.Z.; Ithurria, S.; et al. Mid-wave infrared sensitized InGaAs using intraband transition in doped colloidal II-VI nanocrystals. J. Chem. Phys. 2023, 158, 094702. [Google Scholar] [CrossRef]
- Huo, N.; Gupta, S.; Konstantatos, G. MoS2-HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm. Adv. Mater. 2017, 29, 1606576. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Hu, X.; Zhang, D.; Tao, Y.; Liu, Z.; He, Y.; Haque, M.A.; Liu, Z.; Wu, T.; et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, D.; Xu, W.; Chen, X.; Pan, G.; Zhou, X.; Ding, N.; Song, H. Plasmonic Photonic Crystals Induced Two-Order Fluorescence Enhancement of Blue Perovskite Nanocrystals and Its Application for High-Performance Flexible Ultraviolet Photodetectors. Adv. Funct. Mater. 2018, 28, 1804429. [Google Scholar] [CrossRef]
- Shen, K.; Xu, H.; Li, X.; Guo, J.; Sathasivam, S.; Wang, M.; Ren, A.; Choy, K.L.; Parkin, I.P.; Guo, Z.; et al. Flexible and Self-Powered Photodetector Arrays Based on All-Inorganic CsPbBr3 Quantum Dots. Adv. Mater. 2020, 32, 2000004. [Google Scholar] [CrossRef] [PubMed]
- Shultz, A.; Liu, B.; Gong, M.; Alamri, M.; Walsh, M.; Schmitz, R.C.; Wu, J.Z. Development of broadband PbS quantum dot/graphene photodetector arrays with high-speed readout circuits for flexible imagers. ACS Appl. Nano Mater. 2022, 5, 16896–16905. [Google Scholar] [CrossRef]
- Ge, Z.; Xu, N.; Zhu, Y.; Zhao, K.; Ma, Y.; Li, G.; Chen, Y. Visible to Mid-Infrared Photodetection Based on Flexible 3D Graphene/Organic Hybrid Photodetector with Ultrahigh Responsivity at Ambient Conditions. ACS Photonics 2022, 9, 59–67. [Google Scholar] [CrossRef]
- Song, J.-K.; Kim, J.; Yoon, J.; Koo, J.H.; Jung, H.; Kang, K.; Sunwoo, S.-H.; Yoo, S.; Chang, H.; Jo, J.; et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 2022, 17, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, P.; Shi, T.; Ke, M.; Xiong, K.; Liu, Y.; Chen, L.; Zhang, L.; Liang, X.; Li, H.; et al. Flexible and broadband colloidal quantum dots photodiode array for pixel-level X-ray to near-infrared image fusion. Nat. Commun. 2023, 14, 5352. [Google Scholar] [CrossRef]
- Liu, B.A.; Alzahrani, S.; Gong, M.; Shultz, A.; Ghopry, S.; Vargas, H.; Robles Hernandez, F.; Wu, J. Flexible Uncooled Ultraviolet to Middle-Wavelength Infrared Ultrabroadband Nanohybrid Photodetectors for Imaging. preprint 2025. [Google Scholar]
- Ahn, S.; Shang, J.Y.; Patel, S.K.; Alvarado, E.; Ndao, A.; Vazquez-Mena, O. Intercalated graphene and colloidal quantum dots for multispectral photodetection. Adv. Funct. Mater. 2024, 34, 2409523. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Wang, B.; Zheng, L.; Lian, S.; Zhang, J.; Zhang, S.; Zhang, G.; Xue, Z.; Yang, S. Integration of PbS quantum dots with 3D-graphene for self-powered broadband photodetectors in image sensors. ACS Photonics 2024, 11, 1342–1351. [Google Scholar] [CrossRef]
- Cai, S.; Xu, X.; Yang, W.; Chen, J.; Fang, X. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138. [Google Scholar] [CrossRef]
- Yang, W.; Yang, H.; Qin, G.; Ma, Z.; Berggren, J.; Hammar, M.; Soref, R.; Zhou, W. Large-area InP-based crystalline nanomembrane flexible photodetectors. Appl. Phys. Lett. 2010, 96, 121107. [Google Scholar] [CrossRef]
- Lou, Z.; Li, L.; Shen, G. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Res. 2015, 8, 2162–2169. [Google Scholar] [CrossRef]
- Hassan, M.; Abbas, G.; Li, N.; Afzal, A.; Haider, Z.; Ahmed, S.; Xu, X.; Pan, C.; Peng, Z. Significance of flexible substrates for wearable and implantable devices: Recent advances and perspectives. Adv. Mater. Technol. 2022, 7, 2100773. [Google Scholar] [CrossRef]
- Wang, M.; Cao, F.; Meng, L.; Tian, W.; Li, L. High-performance flexible self-powered photodetector based on perovskite and low-temperature processed In2S3 nanoflake film. Adv. Mater. Interfaces 2019, 6, 1801526. [Google Scholar] [CrossRef]
- Cai, S.; Zuo, C.; Zhang, J.; Liu, H.; Fang, X. A paper-based wearable photodetector for simultaneous UV intensity and dosage measurement. Adv. Funct. Mater. 2021, 31, 2100026. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Z.; Qiao, H.; Hu, R.; Ma, Q.; Huang, K.; Li, H.; Qi, X. Two-dimensional Bi 2 Se 3 nanosheet based flexible infrared photodetector with pencil-drawn graphite electrodes on paper. Nanoscale Adv. 2020, 2, 906–912. [Google Scholar] [CrossRef]
- Sahatiya, P.; Jones, S.S.; Badhulika, S. 2D MoS2–carbon quantum dot hybrid based large area, flexible UV–vis–NIR photodetector on paper substrate. Appl. Mater. Today 2018, 10, 106–114. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Yang, W.; Leng, B.; Niu, P.; Jiang, X.; Liu, B. High-performance flexible ultraviolet photodetectors based on AZO/ZnO/PVK/PEDOT: PSS heterostructures integrated on human hair. Acs Appl. Mater. Interfaces 2019, 11, 24459–24467. [Google Scholar] [CrossRef] [PubMed]
- Tak, B.R.; Gupta, V.; Kapoor, A.K.; Chu, Y.-H.; Singh, R. Wearable gallium oxide solar-blind photodetectors on muscovite mica having ultrahigh photoresponsivity and detectivity with added high-temperature functionalities. ACS Appl. Electron. Mater. 2019, 1, 2463–2470. [Google Scholar] [CrossRef]
- Pan, W.; Liu, J.; Zhang, Z.; Gu, R.; Suvorova, A.; Gain, S.; Wang, H.; Li, Z.; Fu, L.; Faraone, L. Large area van der Waals epitaxy of II–VI CdSe thin films for flexible optoelectronics and full-color imaging. Nano Res. 2022, 15, 368–376. [Google Scholar] [CrossRef]
- Li, X.; Yu, D.; Chen, J.; Wang, Y.; Cao, F.; Wei, Y.; Wu, Y.; Wang, L.; Zhu, Y.; Sun, Z. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano 2017, 11, 2015–2023. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Liu, D.; Yin, Y.; Wang, M.; Sa, Z.; Sun, L.; Zheng, X.; Zhuang, X.; Lv, Z. Toward smart flexible self-powered near-UV photodetector of amorphous Ga2O3 nanosheet. Mater. Today Phys. 2023, 31, 100997. [Google Scholar] [CrossRef]
- Li, J.; Han, J.; Li, H.; Fan, X.; Huang, K. Large-area, flexible broadband photodetector based on WS2 nanosheets films. Mater. Sci. Semicond. Process. 2020, 107, 104804. [Google Scholar] [CrossRef]
- Velusamy, D.B.; Kim, R.H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S.H.; Song, G.; Cho, S.M.; Cho, S.H.; Hwang, I. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063. [Google Scholar] [CrossRef]
- Chen, P.; Hang, T. Simple template-mediated fabrication of ZnO nanotube arrays and their application in flexible ultraviolet photodetectors. ACS Appl. Nano Mater. 2023, 6, 1948–1955. [Google Scholar] [CrossRef]
- Chen, C.; Yu, H.-L.; Zhao, Y.-M.; Hou, P.-X.; Guo, S.-Y.; Li, S.-Q.; Wang, H.-Z.; Tai, K.; Liu, C. Ultrahigh-response flexible photothermoelectric photodetectors based on a graded Bi2Te3-carbon nanotube hybrid. Chem. Eng. J. 2024, 497, 154263. [Google Scholar] [CrossRef]
- Liu, P.; Ding, E.-X.; Xu, Z.; Cui, X.; Du, M.; Zeng, W.; Karakassides, A.; Zhang, J.; Zhang, Q.; Ahmed, F. Wafer-scale fabrication of wearable all-carbon nanotube photodetector arrays. ACS Nano 2024, 18, 18900–18909. [Google Scholar] [CrossRef]
- Duan, T.; Xie, Y.; Xu, W.; Wei, X.; Cao, J. Photovoltaic-driven flexible single-walled carbon nanotubes for self-powered and polarization-sensitive infrared photodetection. ACS Appl. Electron. Mater. 2022, 4, 5602–5607. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, Y.-M.; Yu, H.-L.; Jiao, X.-Y.; Hu, X.-G.; Li, X.; Hou, P.-X.; Liu, C.; Cheng, H.-M. High-performance infrared photodetector based on single-wall carbon nanotube films. Carbon 2023, 206, 150–156. [Google Scholar] [CrossRef]
- Shen, T.; Binks, D.; Yuan, J.; Cao, G.; Tian, J. Enhanced-performance of self-powered flexible quantum dot photodetectors by a double hole transport layer structure. Nanoscale 2019, 11, 9626–9632. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Tang, X.; Cheng, Y.; Hu, Y. Development of flexible and curved infrared detectors with HgTe colloidal quantum dots. Infrared Phys. Technol. 2020, 108, 103344. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Liu, P.; Yang, J.; Liu, J.; Yang, Y.; Wang, B.; Hu, J.; Zhang, L.; Yang, G. Large-area flexible colloidal-quantum-dot infrared photodiodes for photoplethysmogram signal measurements. Sci. Bull. 2023, 68, 698–705. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Xu, N.; Li, R.; Ou, H.; Li, S.; Zhu, Y.; Ke, Y.; Zhan, R.; Chen, H. A Flexible and Wearable Photodetector Enabling Ultra-Broadband Imaging from Ultraviolet to Millimeter-Wave Regimes. Adv. Sci. 2024, 11, 2401631. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Shen, G.; Guyot-Sionnest, P. Towards infrared electronic eyes: Flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity. Small 2019, 15, 1804920. [Google Scholar] [CrossRef]
- Zhu, Y.; Geng, C.; Hu, L.; Liu, L.; Zhu, Y.; Yao, Y.; Li, C.; Ma, Y.; Li, G.; Chen, Y. Skin-like near-infrared II photodetector with high performance for optical communication, imaging, and proximity sensing. Chem. Mater. 2023, 35, 2114–2124. [Google Scholar] [CrossRef]
- Choi, C.; Choi, M.K.; Liu, S.; Kim, M.; Park, O.K.; Im, C.; Kim, J.; Qin, X.; Lee, G.J.; Cho, K.W. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Leem, J.; Kim, M.; Taqieddin, A.; Cho, C.; Cho, K.W.; Lee, G.J.; Seung, H.; Bae, H.J.; Song, Y.M. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 2020, 11, 5934. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Zhu, C.; Lee, W.Y.; Smith, A.; Ma, H.; Li, X.; Son, D.; Matsuhisa, N.; Kim, J.; Bae, W.G. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv. Mater. 2023, 35, 2203541. [Google Scholar] [CrossRef]
- Choi, C.; Hinton, H.; Seung, H.; Chang, S.; Kim, J.S.; You, W.; Kim, M.S.; Hong, J.P.; Lim, J.A.; Hwang, D.K. Anti-distortion bioinspired camera with an inhomogeneous photo-pixel array. Nat. Commun. 2024, 15, 6021. [Google Scholar] [CrossRef]








| Rigid Device | Spectral Range | R (A/W) | D* (Jones) | Response Time (s) | Reference |
|---|---|---|---|---|---|
| ZnO QD/Gr | UV | 9.9 × 108 | 7.5 × 1014 (at 340 nm) | 5/85 | Ref. [37] |
| ZnSe/ZnS core/shell QD/Gr | UV | 2 × 103 | - | 0.52 | Ref. [74] |
| WS2 QD/Gr | UV | 3.8 × 103 | 1.6 × 1013 (at 365 nm) | 2.04 | Ref. [75] |
| CsPbCl3 QD/Gr | UV-vis | 3.5 × 106 | 1013 (at 390 nm) | 0.3 | Ref. [39] |
| CsPbBr3−xIx NC/Gr | Vis | 8.2 × 108 | 2.4 × 1016 (at 405 nm) | 3.65 | Ref. [76] |
| AuCu/CsPbCl3 core/shell QD/Gr | UV-Vis | 20–6.5 (300–600 nm) | Ref. [60] | ||
| FeS2/PbS QD/Gr | UV-NIR | 3.27 × 106 | 4.89 × 1011 (at 500 nm) | 15 | Ref. [38] |
| PbS QD/Gr | Vis-SWIR | 107 | 7 × 1013 (at 532 nm)/1012 (at 1.55 µm) | 10 × 10−2 | Refs. [9,35] |
| Cu3−xP QD/Gr | Vis-SWIR | 9.34 | 5.98 × 1012 (at 405 nm) | 1 | Ref. [77] |
| HgTe* QD | MWIR | 1.62-NA | 4 × 1011(4.5 µm, 85 K)–1010 (4.0 µm, 220 K) | Ref. [73] | |
| HgTe* NC | SWIR | 1.2 × 103 | 2.0 × 1012 (1.55 µm, 200 K) | 2.2 × 10−5 | Ref. [78] |
| HgTe* QD/Gr | SWIR | 900 | 6 × 108 (at 2.5 µm, 80 K) | Ref. [79] | |
| HgTe QD/Gr | SWIR-MWIR | 5.3 × 104–2.6 × 103 | 1.0 × 1012 (2.25 µm)—5.1 × 1010 (4 µm) | 10−3–10−3 | Ref. [41] |
| Si (B-doped) QD/Gr | UV-MWIR | 10 | 105 (at 3 µm) | - | Ref. [80] |
| HgTe* NC/HgSe QD | MWIR | 6 | 2.0 × 108 (200 K) | <104 | Ref. [81] |
| HgTe* QD/MoS2 | SWIR | 5 × 103 | 1012 (2 µm) | 4 × 10−3 | Ref. [82] |
| Ti2O3 QD/Gr | MWIR-LWIR | >120 | 7 × 108 (at 10 µm) | 10−3 | Ref. [83] |
| Flexible Devices | Spectral range | R (A/W) | Flexibility (radius, cycles) | Imaging | Reference |
| CsPbCl3 NC | UV | 8.1 | NA, 1600 | Ref. [84] | |
| CsPbBr3 QD | UV-vis | 10.1 | NA, 1000 | Ref [85] | |
| CsPbCl3 QD/Gr | UV-vis | 3.5 × 106 | NA, 25 | Ref. [39] | |
| PbS QD/Gr array | Vis-NIR | 5–90 | >5 mm | Direct/scanning | Ref. [86] |
| P3HT:PCBM/Gr | Vis-NIR | 5.8 × 105 | 5 mm, 100 | Ref. [87] | |
| CdSe/ZnS core/Shell on polymer array | Vis-multicolor | 1.5 × 10−5 | Stretchable and flexible | 3-color imaging | Ref. [88] |
| PbS QD array | X-ray-NIR | 0.4 (600 nm) and 2 × 105 μC Gy−1 cm−3 (X-ray) | flexible | Direct imaging | Ref. [89] |
| HgTe QD/Gr | UV-MWIR | 0.65–10−3 | >5 mm | scanning | Ref. [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, J.Z.; Shultz, A. Broadband Flexible Quantum Dots/Graphene Photodetectors. Micromachines 2026, 17, 121. https://doi.org/10.3390/mi17010121
Wu JZ, Shultz A. Broadband Flexible Quantum Dots/Graphene Photodetectors. Micromachines. 2026; 17(1):121. https://doi.org/10.3390/mi17010121
Chicago/Turabian StyleWu, Judy Z., and Andrew Shultz. 2026. "Broadband Flexible Quantum Dots/Graphene Photodetectors" Micromachines 17, no. 1: 121. https://doi.org/10.3390/mi17010121
APA StyleWu, J. Z., & Shultz, A. (2026). Broadband Flexible Quantum Dots/Graphene Photodetectors. Micromachines, 17(1), 121. https://doi.org/10.3390/mi17010121

