Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (897)

Search Parameters:
Keywords = gold substrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3248 KiB  
Article
Electrochemical Nanostructured Aptasensor for Direct Detection of Glycated Hemoglobin
by Luminita Fritea, Cosmin-Mihai Cotrut, Iulian Antoniac, Simona Daniela Cavalu, Luciana Dobjanschi, Angela Antonescu, Liviu Moldovan, Maria Domuta and Florin Banica
Int. J. Mol. Sci. 2025, 26(15), 7140; https://doi.org/10.3390/ijms26157140 - 24 Jul 2025
Viewed by 226
Abstract
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and [...] Read more.
Glycated hemoglobin (HbA1c) is an important biomarker applied for the diagnosis, evaluation, and management of diabetes; therefore, its accurate determination is crucial. In this study, an innovative nanoplatform was developed, integrating carbon nanotubes (CNTs) with enhanced hydrophilicity achieved through cyclodextrin (CD) functionalization, and combined with gold nanoparticles (AuNPs) electrochemically deposited onto a screen-printed carbon electrode. The nanomaterials significantly improved the analytical performance of the sensor due to their increased surface area and high electrical conductivity. This nanoplatform was employed as a substrate for the covalent attachment of thiolated ferrocene-labeled HbA1c specific aptamer through Au-S binding. The electrochemical signal of ferrocene was covered by a stronger oxidation peak of Fe2+ from the HbA1c structure, leading to the elaboration of a nanostructured aptasensor capable of the direct detection of HbA1c. The electrochemical aptasensor presented a very wide linear range (0.688–11.5%), an acceptable limit of detection (0.098%), and good selectivity and stability, being successfully applied on real samples. This miniaturized, simple, easy-to-use, and fast-responding aptasensor, requiring only a small sample volume, can be considered as a promising candidate for the efficient on-site determination of HbA1c. Full article
Show Figures

Figure 1

25 pages, 1308 KiB  
Review
Targeting the Substrate: Mechanism-Based Ablation Strategies for Persistent Atrial Fibrillation
by Gabriela-Elena Marascu, Alexandru Ioan Deaconu, Raluca-Elena Mitran, Laura Adina Stanciulescu and Radu Gabriel Vatasescu
J. Clin. Med. 2025, 14(14), 5147; https://doi.org/10.3390/jcm14145147 - 20 Jul 2025
Viewed by 467
Abstract
Pulmonary vein isolation (PVI) is the cornerstone of atrial fibrillation (AF) ablation, especially effective in patients with paroxysmal AF, where the pulmonary veins (PVs) are the primary triggers. More complex arrhythmogenic mechanisms are involved in persistent AF (PsAF), and PVI alone may not [...] Read more.
Pulmonary vein isolation (PVI) is the cornerstone of atrial fibrillation (AF) ablation, especially effective in patients with paroxysmal AF, where the pulmonary veins (PVs) are the primary triggers. More complex arrhythmogenic mechanisms are involved in persistent AF (PsAF), and PVI alone may not be sufficient. Personalized, substrate-based ablation strategies are increasingly used and can significantly enhance outcomes in PsAF patients. While radiofrequency ablation remains the gold standard, cryoablation provides effective PVI, and pulsed field ablation is emerging as a safer, promising alternative. Advanced mapping techniques may better target scar areas responsible for arrhythmogenesis, optimizing procedural results. While still in development, artificial intelligence and machine learning enable more personalized and precise ablation strategies and may improve long-term outcomes. Full article
Show Figures

Figure 1

10 pages, 3823 KiB  
Proceeding Paper
Investigation of Triple-Microcantilever Sensor for Ultra-Low Mass-Sensing Applications
by Luca Banchelli, Vladimir Stavrov, Borislav Ganev, Nikolay Nikolov and Todor Todorov
Eng. Proc. 2025, 100(1), 60; https://doi.org/10.3390/engproc2025100060 - 17 Jul 2025
Viewed by 28
Abstract
This paper discusses a new method and sensor for the detection of ultra-low masses, such as those of viruses and biomarkers. The sensor contains three microcantilevers with a common substrate that vibrates. The detection method processes phase-shifted signals from Wheatstone bridges from connected [...] Read more.
This paper discusses a new method and sensor for the detection of ultra-low masses, such as those of viruses and biomarkers. The sensor contains three microcantilevers with a common substrate that vibrates. The detection method processes phase-shifted signals from Wheatstone bridges from connected piezoresistors formed on the vibrating microcantilevers and passive resistors on the rigid substrate. Each microcantilever has a gold pad that can be either active or passive. When a mass is detected, the shape of the amplitude–frequency response changes. The proposed method has high mass sensitivity and can respond up to one minute, which is an important challenge for nanocantilever sensors. Full article
Show Figures

Figure 1

29 pages, 7799 KiB  
Article
Substrate Flexibility and Metal Deposition Method Effects on Piezoelectric-Enhanced SERS in Metal–ZnO Nanorod Nanocomposites
by Nguyen Thi Quynh Nhu, Le Tran Thanh Thi, Le Vu Tuan Hung and Vincent K. S. Hsiao
Materials 2025, 18(14), 3299; https://doi.org/10.3390/ma18143299 - 13 Jul 2025
Viewed by 425
Abstract
This study investigates the effects of substrate flexibility and metal deposition methods on piezoelectric-enhanced Surface-Enhanced Raman Scattering (SERS) in metal-deposited ZnO nanorod (NR) nanocomposites (NCPs). ZnO NRs were grown on both rigid (ITO–glass) and flexible (ITO-PET) substrates, followed by gold (Au) deposition by [...] Read more.
This study investigates the effects of substrate flexibility and metal deposition methods on piezoelectric-enhanced Surface-Enhanced Raman Scattering (SERS) in metal-deposited ZnO nanorod (NR) nanocomposites (NCPs). ZnO NRs were grown on both rigid (ITO–glass) and flexible (ITO-PET) substrates, followed by gold (Au) deposition by pulsed-laser-induced photolysis (PLIP) or silver (Ag) deposition by thermal evaporation. Structural analysis revealed that ZnO NRs on flexible substrates exhibited smaller diameters (60–80 nm vs. 80–100 nm on glass), a higher density, and diverse orientations that enhanced piezoelectric responsiveness. Optical characterization showed distinct localized surface plasmon resonance (LSPR) peaks at 420 nm for Ag and 525 nm for Au systems. SERS measurements demonstrated that Ag-ZnO NCPs achieved superior detection limits (10−9 M R6G) with enhancement factors of 108–109, while Au-ZnO NCPs reached 10−8 M detection limits. Mechanical bending of flexible substrates induced dramatic signal enhancement (50–100-fold for Au-ZnO/PET and 2–3-fold for Ag-ZnO/PET), directly confirming piezoelectric enhancement mechanisms. This work establishes quantitative structure–property relationships in piezoelectric-enhanced SERS and provides design principles for high-performance flexible sensors. Full article
Show Figures

Figure 1

36 pages, 2877 KiB  
Article
Dual-Oriented Targeted Nanostructured SERS Label-Free Immunosensor for Detection, Quantification, and Analysis of Breast Cancer Biomarker Concentrations in Blood Serum
by Mohammad E. Khosroshahi, Christine Gaoiran, Vithurshan Umashanker, Hayagreev Veeru and Pranav Panday
Biosensors 2025, 15(7), 447; https://doi.org/10.3390/bios15070447 - 11 Jul 2025
Viewed by 350
Abstract
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and [...] Read more.
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and positive IV) and CA 15-3—using a directional, plasmonically active, label-free SERS sensor. Each stage of sensor functionalization, conjugation, and biomarker interaction was verified by UV–Vis spectroscopy. Atomic force microscopy (AFM) characterized the morphology of gold nanourchin (GNU)-immobilized printed circuit board (PCB) substrates. An enhancement factor of ≈ 0.5 × 105 was achieved using Rhodamine 6G as the probe molecule. Calibration curves were initially established using standard HER-II solutions at concentrations ranging from 1 to 100 ng/mL and CA 15-3 at concentrations from 10 to 100 U/mL. The SERS signal intensities in the 620–720 nm region were plotted against concentration, yielding linear sensitivity with R2 values of 0.942 and 0.800 for HER-II and CA15-3, respectively. The same procedure was applied to breast cancer serum (BCS) samples, allowing unknown biomarker concentrations to be determined based on the corresponding calibration curves. SERS data were processed using the filtfilt filter from scipy.signal for smoothing and then baseline-corrected with the Improved Asymmetric Least Squares (IASLS) algorithm from the pybaselines.Whittaker library. Principal Component Analysis (PCA) effectively distinguished the sample groups and revealed spectral differences before and after biomarker interactions. Key Raman peaks were attributed to functional groups including N–H (primary and secondary amines), C–H antisymmetric stretching, C–N (amines), C=O antisymmetric stretching, NH3+ (amines), carbohydrates, glycine, alanine, amides III, C=N stretches, and NH2 in primary amides. Full article
Show Figures

Figure 1

20 pages, 3506 KiB  
Article
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer’s Biomarkers Detection
by Pengcheng Zhao, Jieyu Wang, Hongju Mao, Lin Zhou, Zhenhua Wu, Yunxing Lu, Teng Sun, Jianan Hui and Guowu Ma
Sensors 2025, 25(13), 4088; https://doi.org/10.3390/s25134088 - 30 Jun 2025
Viewed by 379
Abstract
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42 [...] Read more.
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42), on a single reusable electrode. The sensor features a three-electrode system fabricated by sputter-coating a quartz substrate with gold (Au) sensing electrodes, which are further modified with gold nanoparticles (AuNPs) to form 3D dendritic structures that enhance surface area and electron transfer. To improve specificity, immunomagnetic beads (MBs) are employed to selectively capture and isolate target biomarkers from saliva samples. These MB–biomarker complexes are introduced into a polydimethylsiloxane chamber aligned with Au sensing electrodes, where a detachable magnet localizes the complexes onto the electrode surface to amplify redox signals. The AuNPs/MBs sensor achieves detection limits of 2 μg/mL for Lf and 0.1 pg/mL for Aβ1-42, outperforming commercial ELISA kits (37.5 pg/mL for Aβ1-42) and covering physiological salivary concentrations. After the MBs capture the biomarkers, the sensor can output the result within one minute. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements confirm enhanced electron transfer kinetics on AuNP-decorated surfaces, while linear correlations (R2 > 0.95) validate quantitative accuracy across biomarker ranges. The compact and integrated design eliminates reliance on bulky instrumentation and enables user-friendly operation, establishing a promising platform for portable, cost-effective AD screening and monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 1587 KiB  
Article
Electrochemical Disposable Printed Aptasensor for Sensitive Ciprofloxacin Monitoring in Milk Samples
by Daniela Nunes da Silva, Thaís Cristina de Oliveira Cândido and Arnaldo César Pereira
Chemosensors 2025, 13(7), 235; https://doi.org/10.3390/chemosensors13070235 - 28 Jun 2025
Viewed by 420
Abstract
An electrochemical aptasensor was developed for the rapid and sensitive detection of ciprofloxacin (CPX) in milk samples. The device was fabricated on a polyethylene terephthalate (PET) substrate using a screen-printing technique with carbon-based conductive ink. Gold nanoparticles (AuNPs) were incorporated to enhance aptamer [...] Read more.
An electrochemical aptasensor was developed for the rapid and sensitive detection of ciprofloxacin (CPX) in milk samples. The device was fabricated on a polyethylene terephthalate (PET) substrate using a screen-printing technique with carbon-based conductive ink. Gold nanoparticles (AuNPs) were incorporated to enhance aptamer immobilization and facilitate electron transfer at the electrode surface. The sensor’s analytical performance was optimized by adjusting key parameters, including AuNP volume, DNA aptamer concentration, and incubation times for both the aptamer and the blocking agent (6-mercapto-1-hexanol, MCH). Differential pulse voltammetry (DPV) measurements demonstrated a linear response ranging from 10 to 50 nmol L−1 and a low detection limit of 3.0 nmol L−1. When applied to real milk samples, the method achieved high recovery rates (101.4–106.7%) with a relative standard deviation below 3.1%, confirming its robustness. This disposable and cost-effective aptasensor represents a promising tool for food safety monitoring, with potential for adaptation to detect other pharmaceutical residues in dairy products. Full article
Show Figures

Figure 1

11 pages, 2325 KiB  
Article
Enhancing the Interfacial Adhesion of a Ductile Gold Electrode with PDMS Using an Interlocking Structure for Applications in Temperature Sensors
by Shuai Shi, Penghao Zhao, Pan Yang, Le Zhao, Jingguang Yi, Zuohui Wang and Shihui Yu
Nanomaterials 2025, 15(13), 1001; https://doi.org/10.3390/nano15131001 - 28 Jun 2025
Viewed by 376
Abstract
The poor interfacial adhesion between ductile gold (Au) electrodes and polydimethylsiloxane (PDMS) substrates affects their application in flexible sensors. Here, a porous Au electrode is designed and combined with a flexible PDMS substrate to form a structure that embeds Au into the PDMS [...] Read more.
The poor interfacial adhesion between ductile gold (Au) electrodes and polydimethylsiloxane (PDMS) substrates affects their application in flexible sensors. Here, a porous Au electrode is designed and combined with a flexible PDMS substrate to form a structure that embeds Au into the PDMS film, thereby enhancing the interfacial adhesion of the Au/PDMS electrode. The resistivity change of the Au/PDMS electrode is only 12.3% after 100 tape peeling trials. The resistance of the Au/PDMS electrode remains stable at the 30% strain level after 2000 tensile cycling tests. This feature is mainly attributed to the deformation buffering effect of the porous Au film. After 100 min of ultrasonic oscillation testing, the resistivity change of the Au/PDMS electrode remains stable. It is also shown that the Au/PDMS electrode has excellent interfacial adhesion properties, which is mainly attributed to the interlocking effect of the Au/PDMS electrode structure. In addition, the temperature coefficient of resistance (TCR) of the temperature sensor based on the Au/PDMS electrode is approximately 0.00320/°C and the sensor’s sensitivity remains almost stable after 200 temperature measurement cycles. Au/PDMS electrodes have great potential for a wide range of applications in flexible electronics due to their excellent interfacial adhesion and electrical stability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

14 pages, 2173 KiB  
Article
Different Expression of Vascularization and Inflammatory Regulators in Cells Derived from Oral Mucosa and Limbus
by Eleni Voukali, Joao Victor Cabral, Natalia Smorodinova, Vojtech Kolin, Magdalena Netukova, Tomáš Vacík and Katerina Jirsova
Bioengineering 2025, 12(7), 688; https://doi.org/10.3390/bioengineering12070688 - 24 Jun 2025
Viewed by 388
Abstract
Bilateral limbal stem cell deficiency (LSCD) can be effectively treated with cultivated oral mucosa epithelial cell transplantation (COMET). However, COMET is associated with greater superficial neovascularization than limbal stem cell (LESC) transplantation, the gold standard for unilateral LSCD. To investigate the intrinsic molecular [...] Read more.
Bilateral limbal stem cell deficiency (LSCD) can be effectively treated with cultivated oral mucosa epithelial cell transplantation (COMET). However, COMET is associated with greater superficial neovascularization than limbal stem cell (LESC) transplantation, the gold standard for unilateral LSCD. To investigate the intrinsic molecular features of cells intended for grafting, we assessed the in vitro expression of genes involved in vascularization and inflammation using real-time quantitative PCR and multifactorial linear models. Oral mucosal epithelial cells (OMECs) and limbal epithelial cells (LECs) were cultured in either conventional (COM) or xenobiotic-free (XF) media on fibrin substrates. Gene expression profiling revealed distinct transcriptional signatures. The pro-angiogenic genes AGR2, ANGPTL2, CRYAB, EREG, JAM3, and S100A4 were significantly higher in LECs (adjusted p < 0.01), whereas FGF2 was higher in OMECs (adjusted p < 0.001). The anti-angiogenic genes TIMP3 and SERPINF1 were higher in LECs (adjusted p < 0.01), while COL18A1 was higher in OMECs (adjusted p < 0.01). OMECs also showed significantly greater expression of the immunoregulatory genes IL1B, IL6, TNF, CXCL10, and IL1RN (adjusted p < 0.01). Cultivation induced phenotypic changes in OMECs, with COM and XF media exerting comparable effects. These results highlight the contribution of inflammatory mediators to neovascularization following COMET. Full article
(This article belongs to the Special Issue Bioengineering and the Eye—3rd Edition)
Show Figures

Figure 1

14 pages, 2434 KiB  
Article
Surface-Enhanced Raman Spectroscopy (SERS) Method for Rapid Detection of Neomycin and Chloramphenicol Residues in Chicken Meat
by Yan Wu, Junshi Huang, Ni Tong, Qi Chen, Fang Peng, Muhua Liu, Jinhui Zhao and Shuanggen Huang
Sensors 2025, 25(13), 3920; https://doi.org/10.3390/s25133920 - 24 Jun 2025
Viewed by 367
Abstract
In the process of chicken breeding, there has been a great deal of abuse of antibiotics. Antibiotics can enter the human body along with the chicken meat, comprising a possible risk to human health. In this paper, principal component analysis (PCA)–linear discriminant analysis [...] Read more.
In the process of chicken breeding, there has been a great deal of abuse of antibiotics. Antibiotics can enter the human body along with the chicken meat, comprising a possible risk to human health. In this paper, principal component analysis (PCA)–linear discriminant analysis (LDA) was chosen to classify neomycin (NEO) and chloramphenicol (CAP) residues in chicken meat. A total of 400 chicken meat samples were used for the classification, of which 268 samples and 132 samples were used as the training sets and the test sets, respectively. The experimental condition of SERS spectrum collection was optimized, including the use of a gold colloid and active agent, and an improvement in the adsorption time. The optimal measurement conditions for the SERS spectra were an adsorption time of 4 min and the use of a 14th-generation gold colloid as the enhanced substrate without a surfactant. For three groups of different spectral preprocessing methods, the classification accuracies of PCA-LDA models for test sets were 78.79% for baseline correction, 84.85% for the second derivative and 100% for the second derivative combined with baseline correction. LDA was used to establish a classification model to realize the quick determination of NEO and CAP residues in chicken meat by SERS. The results showed that the characteristic peaks at 546 and 666 cm−1 could be used to distinguish NEO and CAP residues in chicken meat. The classification model based on PCA-LDA had higher classification accuracy, sensitivity and specificity using a second derivative combined with baseline correction as the spectral preprocessing method, which shows that the SERS method based on PCA-LDA could be used to perform the classification of NEO and CAP residues in chicken meat quickly and effectively. It also verified the feasibility of PCA-LDA to effectively classify chicken meat samples into four types. This research method could provide a reference for the measurement of such antibiotic residues in chicken meat in the future. Full article
Show Figures

Figure 1

12 pages, 3994 KiB  
Article
AI-Assisted Plasmonic Coupling Analysis of Spherical Gold Nanoparticles on Substrate
by Valeria D. Babaylova, Vladislav S. Tuchin, Nikita S. Petrov, Aleksey V. Kochakov, Anton A. Starovoytov, Igor A. Gladskikh and Daler R. Dadadzhanov
Photonics 2025, 12(6), 619; https://doi.org/10.3390/photonics12060619 - 18 Jun 2025
Viewed by 418
Abstract
A method of electrostatic deposition of CTAB-stabilized gold nanoparticles on a modified APTES and PSS surface was considered. Positively charged gold nanoparticles with a spherical shape were synthesized using a one-step synthesis method with a CTAB surfactant and deposited on a negatively charged [...] Read more.
A method of electrostatic deposition of CTAB-stabilized gold nanoparticles on a modified APTES and PSS surface was considered. Positively charged gold nanoparticles with a spherical shape were synthesized using a one-step synthesis method with a CTAB surfactant and deposited on a negatively charged modified glass substrate surface with an APTES/PSS layer. Depending on the concentration of the gold nanoparticles, the deposition time, and the modification of the substrate, both isolated nanoparticles with a narrow plasmon peak close to the maximum position in solution, and interacting nanoparticles with varying degrees of plasmonic coupling, were obtained. We also present a deep learning approach for rapid, non-contact estimation of relative plasmon coupling (PC) in gold nanoparticles deposited on substrates using simple camera images. To obtain the training dataset, gold nanoparticles were characterized by the intensity of peaks corresponding to plasmonic coupling in the long-wavelength region of the spectrum. A fully connected neural network was trained to regress PC values from color features, minimizing the mean-squared error. The best model, retrained on the full training set, achieved R2 = 0.83, RMSE = 0.007, MSE = 0.086, and MAE = 0.050 on the test dataset. Full article
(This article belongs to the Special Issue Advancements in Optical Metamaterials)
Show Figures

Figure 1

16 pages, 4395 KiB  
Article
Nanoporous Copper Films via Dynamic Hydrogen Bubbling: A Promising SERS Substrate for Sensitive Detection of Methylene Blue
by Noor Tayyaba, Stefano Zago, Andrea Giura, Gianluca Fiore, Luigi Ribotta, Federico Scaglione and Paola Rizzi
Nanomaterials 2025, 15(12), 945; https://doi.org/10.3390/nano15120945 - 18 Jun 2025
Viewed by 427
Abstract
Cu-based nanomaterials have received considerable attention as promising and cost-effective substrates for surface-enhanced Raman spectroscopy (SERS) applications despite their relatively low enhancement factor (EF) compared to noble metals like gold and silver. In this study, a fast and affordable synthesis route is proposed [...] Read more.
Cu-based nanomaterials have received considerable attention as promising and cost-effective substrates for surface-enhanced Raman spectroscopy (SERS) applications despite their relatively low enhancement factor (EF) compared to noble metals like gold and silver. In this study, a fast and affordable synthesis route is proposed to obtain a three-dimensional porous copper film (NPC) via an electrodeposition technique based on the dynamic hydrogen bubbling template (DHBT). Two sets of NPC film were synthesized, one without additives and the other with cetyltrimethylammonium bromide (CTAB). The impacts of deposition time on the NPCs’ porous morphology, thickness, and SERS performance were systematically investigated. With the optimal deposition time, the nanopore sizes could be tailored from 26.8 to 73 μm without additives and from 12.8 to 24 µm in the presence of CTAB. The optimal additive-free NPC film demonstrated excellent SERS performance at 180 s of deposition, while the CTAB-modified film showed strong enhancement at 120 s towards methylene blue (MB), a highly toxic dye, achieving a detection limit of 10−6 M. Additionally, the samples with CTAB showed better efficiency than those without CTAB. The calculated EF of NPC was found to be 5.9 × 103 without CTAB and 2.5 × 103 with the CTAB, indicating the potential of NPC as a cost-effective candidate for high-performance SERS substrates. This comprehensive study provides insights into optimizing the structural morphology of the NPCs to maximize their SERS enhancement factor and improve their detection sensitivity toward MB, thus overcoming the limitations associated with conventional copper-based SERS substrates. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

21 pages, 5135 KiB  
Article
Development of a Gold Nanoparticle Dispersion for Plasma Jet Printing on Solid Substrates
by Lan Kresnik, Peter Majerič, Darja Feizpour and Rebeka Rudolf
Materials 2025, 18(12), 2713; https://doi.org/10.3390/ma18122713 - 9 Jun 2025
Viewed by 427
Abstract
Gold nanoparticles (AuNPs) were synthesised using ultrasonic spray pyrolysis (USP) with the addition of polyvinylpyrrolidone (PVP) as a stabilising agent and subsequently dried via lyophilisation. The resulting dried AuNPs were redispersed in ethanol and homogenised to ensure uniform dispersion. This AuNP dispersion was [...] Read more.
Gold nanoparticles (AuNPs) were synthesised using ultrasonic spray pyrolysis (USP) with the addition of polyvinylpyrrolidone (PVP) as a stabilising agent and subsequently dried via lyophilisation. The resulting dried AuNPs were redispersed in ethanol and homogenised to ensure uniform dispersion. This AuNP dispersion was then deposited onto a ceramic substrate—aluminum oxide (Al2O3)—using plasma jet printing. Comprehensive characterisation of the dispersion, AuNPs, and the resulting printed lines was performed using the following methods: inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), measurements of dispersion viscosity and printed line roughness. ICP-OES confirmed consistent gold content in the AuNP dispersion, while the SEM and EDS analyses revealed predominantly spherical AuNPs with minimal aggregation and similar size distributions. TEM, SAED, and STEM/EDS confirmed that the crystalline structure and elemental composition of the AuNPs had diverse morphologies and strong gold signals. The UV-Vis, DLS, and zeta potential measurements indicated moderate colloidal stability, and thermogravimetric analysis (TGA) verified the AuNPs dispersion’s composition. The AuNP dispersion exhibited thixotropic behaviour favourable for printing applications, while confocal microscopy confirmed smooth, uniform printed traces, with an average surface line roughness of 1.65 µm. The successful use of plasma printing with the AuNP dispersion highlights its potential for functional material applications in electronics. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

16 pages, 2210 KiB  
Article
A Highly Sensitive Graphene-Based Terahertz Perfect Absorber Featuring Five Tunable Absorption Peaks
by Hongyu Ma, Pengcheng Shi and Zao Yi
Materials 2025, 18(11), 2601; https://doi.org/10.3390/ma18112601 - 3 Jun 2025
Viewed by 530
Abstract
In this article, we present a high-sensitivity narrow-band perfect graphene absorber that exhibits excellent tunability across multiple bands. The top layer of the absorber unit is composed of graphene material, and the shape is a square graphene layer with a ring structure and [...] Read more.
In this article, we present a high-sensitivity narrow-band perfect graphene absorber that exhibits excellent tunability across multiple bands. The top layer of the absorber unit is composed of graphene material, and the shape is a square graphene layer with a ring structure and a square structure removed from the middle. A SiO2 dielectric layer is located in the middle, and a layer of gold substrate exists at the bottom. This structure has generated five perfect absorption peaks at 6.08216 THz, 7.29058 THz, 9.34669 THz, 11.5471 THz, and 13.0441 THz, and the levels of absorption are 98.24%, 98.03%, 99.55%, 98.87%, and 99.99%, respectively. We have proved the advantages of our model by comparing the influence of different shapes of graphene on the absorption rate of the model. Then, we changed the relaxation time and Fermi energy level of graphene and other factors such as the refractive index to prove that our structure has good tunable performance. Finally, we calculated the sensitivity, and the sensitivity of this structure is as high as 4508.75 GHZ/RIU. Compared with previous articles, our article has more absorption peaks, a higher absorption efficiency, and a higher sensitivity. The absorber proposed in this paper shows great potential to contribute to high-sensitivity sensors, photoelectric detection, photoelectric communication, and other related fields. Full article
Show Figures

Figure 1

13 pages, 10700 KiB  
Article
Antifouling Modification of Gold Surfaces for Acoustic Wave Sensor Applications
by Aries Delica, Mikhail A. Nazarov, Brian De La Franier and Michael Thompson
Biosensors 2025, 15(6), 343; https://doi.org/10.3390/bios15060343 - 29 May 2025
Viewed by 482
Abstract
This study aims to develop a robust and reproducible method for fabricating efficient ultrathin antifouling coatings on gold surfaces by leveraging hydroxylation-based surface modifications. An ultrathin antifouling coating of a monoethylene glycol silane derivative, known to reduce fouling by at least 90% on [...] Read more.
This study aims to develop a robust and reproducible method for fabricating efficient ultrathin antifouling coatings on gold surfaces by leveraging hydroxylation-based surface modifications. An ultrathin antifouling coating of a monoethylene glycol silane derivative, known to reduce fouling by at least 90% on flat hydroxylated surfaces, was successfully replicated on flat gold (reducing fouling by ~75%) by hydroxylating its surface with β-mercaptoethanol. This tandem coating contains the monoethylene glycol silane layer on top of the β-mercaptoethanol on the gold. Characterization was performed using contact angle goniometry, atomic force microscopy, x-ray photoelectron spectroscopy, and antifouling measurements. The results from these techniques, consistent with the literature, confirmed the successful and reproducible application of the tandem coating. Through heterogeneities, including defects and incomplete coverage, the AFM data revealed distinct visible layers of the tandem coating. The direct application of monoethylene glycol silane onto gold resulted in superior antifouling performance (88% reduction), demonstrating that direct silylation exploits pre-existing oxygen-containing species on the gold surface for a more effective antifouling layer. These findings offer a scalable approach for engineering antifouling coatings on gold substrates, with potential applications in biosensing and implantable device antifouling technologies. Full article
(This article belongs to the Special Issue Mass Sensitive Biosensors for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop