Mass Sensitive Biosensors for Biomedical Applications

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Nano- and Micro-Technologies in Biosensors".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 516

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia
Interests: biosensors; DNA aptamers; electrochemistry; molecular acoustics; model membranes; nanomaterials; nanoparticles
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Mass-sensing devices operate generally on the principles of acoustic wave physics associated with piezoelectric materials. Like many biosensors, these sensors operate based on a probe deposited on the device, which is allowed to interact with a target species in a sample solution. Although a number of sensors are available based on various wave motions, two major types have been employed for bio-detection—surface acoustic wave (SAW) and thickness shear mode (TSM) devices. The former function by instigating acoustic waves using interdigital transducers (IDTs), whereas TSM devices involve bulk waves generated by conventional electrodes. The notion of mass sensitivity has its origin in the iconic Sauerbrey expression, which correlates the resonance frequency of the sensor’s piezoelectric material with mass deposited on the device’s surface. Over the years, this has spawned the term “quartz crustal microbalance”, at least for TSM sensors. However, we have recently recognized that acoustic wave biosensors respond not only to mass loading but also to material surface changes in the device, such as interfacial free energy, electrical charge, and viscoelasticity. These observations open up possibilities for the development of novel and highly sensitive reposes to target molecules, as well as for investigating new aspects of surface chemistry.

Prof. Dr. Tibor Hianik
Prof. Dr. Michael Thompson
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • piezoelectric acoustic wave sensors
  • surface acoustic wave devices
  • thickness shear mode biosensor

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 10700 KiB  
Article
Antifouling Modification of Gold Surfaces for Acoustic Wave Sensor Applications
by Aries Delica, Mikhail A. Nazarov, Brian De La Franier and Michael Thompson
Biosensors 2025, 15(6), 343; https://doi.org/10.3390/bios15060343 - 29 May 2025
Viewed by 234
Abstract
This study aims to develop a robust and reproducible method for fabricating efficient ultrathin antifouling coatings on gold surfaces by leveraging hydroxylation-based surface modifications. An ultrathin antifouling coating of a monoethylene glycol silane derivative, known to reduce fouling by at least 90% on [...] Read more.
This study aims to develop a robust and reproducible method for fabricating efficient ultrathin antifouling coatings on gold surfaces by leveraging hydroxylation-based surface modifications. An ultrathin antifouling coating of a monoethylene glycol silane derivative, known to reduce fouling by at least 90% on flat hydroxylated surfaces, was successfully replicated on flat gold (reducing fouling by ~75%) by hydroxylating its surface with β-mercaptoethanol. This tandem coating contains the monoethylene glycol silane layer on top of the β-mercaptoethanol on the gold. Characterization was performed using contact angle goniometry, atomic force microscopy, x-ray photoelectron spectroscopy, and antifouling measurements. The results from these techniques, consistent with the literature, confirmed the successful and reproducible application of the tandem coating. Through heterogeneities, including defects and incomplete coverage, the AFM data revealed distinct visible layers of the tandem coating. The direct application of monoethylene glycol silane onto gold resulted in superior antifouling performance (88% reduction), demonstrating that direct silylation exploits pre-existing oxygen-containing species on the gold surface for a more effective antifouling layer. These findings offer a scalable approach for engineering antifouling coatings on gold substrates, with potential applications in biosensing and implantable device antifouling technologies. Full article
(This article belongs to the Special Issue Mass Sensitive Biosensors for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop