Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = gold alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1161 KB  
Article
Electrochemical Interactions of Titanium and Cobalt–Chromium–Molybdenum Alloy in Different Solutions
by Anja Ivica, Matea Nimac, Ivica Pelivan, Matija Roglić, Tomislav Kovačević, Mario Cifrek and Jurica Matijević
Materials 2026, 19(2), 367; https://doi.org/10.3390/ma19020367 - 16 Jan 2026
Viewed by 231
Abstract
Pure titanium (Ti) and its alloys are the gold standard for dental implants because a stable titanium dioxide passive film provides excellent corrosion resistance in physiological environments. In this study, we aimed to examine electrochemical interactions between Ti and cobalt–chromium–molybdenum alloy (CoCrMo), and [...] Read more.
Pure titanium (Ti) and its alloys are the gold standard for dental implants because a stable titanium dioxide passive film provides excellent corrosion resistance in physiological environments. In this study, we aimed to examine electrochemical interactions between Ti and cobalt–chromium–molybdenum alloy (CoCrMo), and between a novel Ti–magnesium composite (BIACOM TiMg) and CoCrMo, when immersed in everyday solutions representing beverage or oral hygiene exposure. Test solutions included Coca-Cola®, lemon juice, Elmex® fluoride gel, Listerine® Cool Mint, and Sensodyne® fluoride paste. Immersion experiments paired Ti sticks with CoCrMo sticks and, separately, BIACOM TiMg with CoCrMo sticks, with three measurements per configuration. When galvanically coupled with CoCrMo, immersion in Coca-Cola produced galvanic potential differences of ~983 mV for the BIACOM TiMg-CoCrMo couple and 830 mV for the commercially pure grade 4 (CP4) Ti-CoCrMo couple, indicating significant electrochemical instability. Both materials showed significant potential increases in Elmex fluoride gel. Listerine Cool Mint and Sensodyne fluoride exposure produced electrochemical interactions exceeding 200 mV. Significant differences in corrosion stability were observed between CP4 Ti and BIACOM TiMg. These findings indicate that material pairing and electrolyte environment significantly influence galvanic behavior, with the Ti-Mg composite showing greater susceptibility than CP4 Ti, informing dental/biomedical material selection in oral environments. Full article
Show Figures

Graphical abstract

30 pages, 1761 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Viewed by 309
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

13 pages, 2916 KB  
Article
Synergistic Catalysis of Gold–Platinum Alloy Nanozymes: A Novel Colorimetric Sensor for ALP Detection in Complex Biological Matrices
by Baojie Du, Bingqing Zhang, Xiaofeng Ren, Jie Yang, Fan Yang, Chunyu Yan, Liping Li and Ruiping Zhang
Pharmaceuticals 2025, 18(12), 1795; https://doi.org/10.3390/ph18121795 - 25 Nov 2025
Viewed by 551
Abstract
Background/Objectives: Alkaline phosphatase (ALP) is a crucial enzyme in numerous pathological processes and a significant biomarker in clinical diagnostics. Conventional ALP detection methods are hampered by reliance on complex sample pretreatment, sophisticated instrumentation, time-consuming procedures, and high costs. This study aimed to [...] Read more.
Background/Objectives: Alkaline phosphatase (ALP) is a crucial enzyme in numerous pathological processes and a significant biomarker in clinical diagnostics. Conventional ALP detection methods are hampered by reliance on complex sample pretreatment, sophisticated instrumentation, time-consuming procedures, and high costs. This study aimed to develop a simple, rapid, and cost-effective colorimetric sensing method for ALP detection with enhanced resistance to matrix interference in biological samples. Methods: We designed a colorimetric assay based on bimetallic gold–platinum nanocatalysts (AuPt NPs) exhibiting peroxidase-like (POD-like) activity. The detection principle involves a dual-reaction cascade: (1) Alkaline phosphatase (ALP) catalyzes the conversion of trisodium L-ascorbic acid-2-phosphate (AA2P) into ascorbic acid (AA), and (2) the generated AA reduces oxidized 3,3′,5,5′-tetramethylbenzidine (oxTMB) produced by the catalytic activity of AuPt NPs. This method was evaluated for its detection performance in diluted human serum without complex sample pretreatment. Results: AuPt NPs exhibited resistance to biological matrix interference, enabling sensitive detection of ALP. The assay showed a linear ALP detection range of 0–90 mU·mL−1 (R2 = 0.994) and a limit of detection of 3.91 mU·mL−1. In spiked human serum, recoveries were 95.45–111.97%, with negligible interference from ions and biomolecules. Conclusions: We developed a simple, rapid, and reliable colorimetric sensor for ALP detection based on AuPt NPs. It overcomes limitations of conventional methods, holding great potential for clinical diagnostics and point-of-care applications. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 4085 KB  
Article
Vacuum Distillation-Assisted Hydrometallurgical Route for Industrial Production of 99.999% Pure Gold from Au–Ag Alloys Feedstocks
by Weihuang Wu and Guozheng Zha
Metals 2025, 15(11), 1271; https://doi.org/10.3390/met15111271 - 20 Nov 2025
Viewed by 557
Abstract
In response to the growing industrial demand for ultra-high-purity gold, a vacuum distillation-assisted hydrometallurgical process is developed in this study for the industrial-scale production of 99.999% pure (5N) gold from crude Au–Ag alloy feedstocks. This integrated approach combines vacuum distillation, aqua regia dissolution, [...] Read more.
In response to the growing industrial demand for ultra-high-purity gold, a vacuum distillation-assisted hydrometallurgical process is developed in this study for the industrial-scale production of 99.999% pure (5N) gold from crude Au–Ag alloy feedstocks. This integrated approach combines vacuum distillation, aqua regia dissolution, solvent extraction, and in situ reduction. An alloy containing approximately 56.47 wt% Au and 43.06 wt% Ag was first vacuum distilled, yielding a pre-enriched alloy with 94.76 wt% Au and less than 5.17 wt% Ag. The enriched Au alloy was subjected to aqua regia dissolution, solvent extraction, and Na2SO3-assisted reduction. The influence of the liquid-to-solid ratio, settling time, phase ratio, extraction time, and centrifugation speed on gold purity and recovery was systematically investigated. Under optimized conditions, the process achieved 99.999% purity and over 99.5% overall recovery, meeting the GB/T 25933-2010 standard. The use of Na2SO3 as a combined reducing and stripping agent simplified the operation, lowered reagent consumption, and improved environmental compatibility. This method provides a scalable, cost-effective, and environmentally friendly alternative to conventional refining techniques and is suitable for advanced manufacturing applications. Full article
(This article belongs to the Special Issue Green Technologies in Metal Recovery)
Show Figures

Figure 1

25 pages, 5741 KB  
Article
Stabilizing the Localized Surface Plasmon Resonance (LSPR) of Citrate-Synthesized Metal Nanoparticles in Organic Solvents
by Jacob P. Magdon, Matthew J. Jasienski, Madison R. Waltz, Gabrielle A. Grzymski, Calvin Chen, Arion M. Solomon, Minh Dang Nguyen, Jong Moon Lee, John C. Deàk, T. Randall Lee and Riddhiman Medhi
Materials 2025, 18(22), 5246; https://doi.org/10.3390/ma18225246 - 20 Nov 2025
Viewed by 947
Abstract
Gold–silver nanoshells (GS-NSs) are hollow spherical nanoparticles with an alloyed Ag-Au shell. GS-NSs exhibit a tunable localized surface plasmon resonance (LSPR) in the visible to near-IR wavelengths as a function of composition and shell thickness and offer greater stability across pH ranges compared [...] Read more.
Gold–silver nanoshells (GS-NSs) are hollow spherical nanoparticles with an alloyed Ag-Au shell. GS-NSs exhibit a tunable localized surface plasmon resonance (LSPR) in the visible to near-IR wavelengths as a function of composition and shell thickness and offer greater stability across pH ranges compared to other metal nanoparticles. These properties make GS-NSs promising materials for diagnostics, photothermal therapy, and photocatalysis. However, current research has explored GS-NSs only in aqueous systems, since they immediately aggregate in other solvents, limiting their utility. This paper provides an in-depth study of the choice and effect of non-thiol ligands on the stability and phase-transfer of GS-NSs from aqueous to non-aqueous solvents, such as ethylene glycol, tetrahydrofuran, dichloromethane, and toluene. Ligand exchange for functionalization of GS-NSs was performed with Triton X-100 (TX100), sodium stearate (NaSt), polyvinylpyrrolidone (PVP), and hydroxypropyl cellulose (HPC), prior to phase-transfer. The nanoparticles were phase-transferred to the non-aqueous solvents, and the stability of the colloids in the various solvents before and after functionalization was recorded with UV–visible spectroscopy, dynamic light scattering (DLS), zeta potential (ζ), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The study was also extended to include silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) to evaluate broad-range applicability. Among the ligands studied, HPC functionalization demonstrated the widest range of phase-transfer stability across 21 days for all three particle systems studied. UV–vis spectroscopy demonstrated sustained LSPR integrity after HPC functionalization in EG, THF, and DCM. SEM, TEM, and hydrodynamic size measurements by DLS further confirmed no aggregation in EG, THF, and DCM but suggested possible twinning or clustering in the solution. Overall, this work successfully identified non-toxic alternatives to expand the LSPR stability of citrate-synthesized metal nanoparticles in organic solvents. Full article
Show Figures

Graphical abstract

15 pages, 10416 KB  
Review
Nanostructured Oxides Obtained by Anodizing Aluminum Intermetallic Alloys
by Paulina Chilimoniuk-Szwarc, Piotr Dobroń and Wojciech Jerzy Stępniowski
Materials 2025, 18(22), 5192; https://doi.org/10.3390/ma18225192 - 15 Nov 2025
Viewed by 683
Abstract
Aluminum anodizing has been a well-established method of corrosion protection for over a century. A nanoporous and hexagonally arranged anodic aluminum oxide has become one of the most important template materials in nanotechnology. A totally new branch of research in anodizing was sparked [...] Read more.
Aluminum anodizing has been a well-established method of corrosion protection for over a century. A nanoporous and hexagonally arranged anodic aluminum oxide has become one of the most important template materials in nanotechnology. A totally new branch of research in anodizing was sparked by purple gold anodizing. This pioneering research showed that metal aluminides can be anodized and result in new classes of nanomaterials. Simultaneously, materials from Ti-Al systems were anodized, and the transition from nanopores to the nanotubes was mechanistically understood. Also, materials like Ni3Al were anodized; however, the most frequently used aluminides are materials from the Fe-Al binary phase diagram, from Fe3Al to FeAl3. The research on metal aluminides has shown that it is possible to obtain mixed oxides with a highly developed nanostructured morphology. A significant amount of fundamental research has shown it is possible to obtain such mixed oxides with tunable band gaps, depending on the substrate material, anodizing conditions, and heat treatment. Despite significant progress in fundamental research, there is a noticeable lack of applied research on this class of materials. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

12 pages, 3516 KB  
Article
Material Analysis of 18th Century Polychrome Sacred Sculpture of Our Lady: Iconographic Impact and the Conservation and Restoration Process
by Thiago Guimarães Costa, Karen Kremer, Fábio Andreas Richter, Feik Amil de Campos Júnior and Leonardo Negri Furini
Colorants 2025, 4(4), 31; https://doi.org/10.3390/colorants4040031 - 22 Oct 2025
Cited by 1 | Viewed by 878
Abstract
In this work, molecular and elemental spectroscopic analyses were carried out on the preparation base, the paintings, the repaintings, and the gilding of an 18th century sacred sculpture of Our Lady found on Anhatomirim Island, where the Santa Cruz fortress was built in [...] Read more.
In this work, molecular and elemental spectroscopic analyses were carried out on the preparation base, the paintings, the repaintings, and the gilding of an 18th century sacred sculpture of Our Lady found on Anhatomirim Island, where the Santa Cruz fortress was built in 1739 in the state of Santa Catarina, southern Brazil. The preparation base of the sculpture was characterized as gypsum (calcium sulfate dihydrate, (CaSO4.2H2O) [µ-Raman, SEM-EDS], applied directly to the wooden support. The blue paint comprised a mixture of Prussian blue (Fe4[Fe(CN)6]3) and ultramarine (NaxAl6Si6O24Sx) [µ-Raman, FTIR, SEM-EDS]; hematite (Fe2O3) was identified in the brown paint [µ-Raman, SEM-EDS]; and the white paint consisted of lead white (2 PbCO3·Pb(OH)2) [µ-Raman, FTIR, SEM-EDS]. Repainted areas were identified by the presence of lithopone (ZnS + BaSO4) [µ-Raman, SEM-EDS, FTIR], likely resulting from later interventions. In the gilded areas, gold was identified along with traces of iron [SEM-EDS], indicating a lower-quality gilding compared to, for example, silver alloys. Lead white was also identified in the polychrome areas, where it served to produce different tones in the painting. FTIR analyses revealed traces of aged oil used as a binder in the older layers. Mineral oil was detected in some samples, which may indicate that wax was used as a protective layer on the sculpture. The results will assist professionals in the iconographic characterization of the sacred image of Our Lady and in the conservation and restoration processes based on the identified constituent materials. Full article
Show Figures

Figure 1

13 pages, 4227 KB  
Article
Wear Measurements in Cylindrical Telescopic Crowns Using an Active Piezoresistive Cantilever with an Integrated Gold Microsphere Probe
by Tomasz Dąbrowa, Dominik Badura, Bartosz Pruchnik, Władysław Kopczyński, Ivo W. Rangelow, Edward Kijak and Teodor Gotszalk
Materials 2025, 18(19), 4624; https://doi.org/10.3390/ma18194624 - 7 Oct 2025
Viewed by 775
Abstract
In this paper, we report a novel application of atomic force microscopy (AFM) for measurement of wear of prosthetic materials. In contrast to previously employed methods, we introduce AFM-based wear induction. In this way, we utilize AFM as both measurement technique and the [...] Read more.
In this paper, we report a novel application of atomic force microscopy (AFM) for measurement of wear of prosthetic materials. In contrast to previously employed methods, we introduce AFM-based wear induction. In this way, we utilize AFM as both measurement technique and the mean for surface wear. We describe the methodology along with the metrological advantages of the approach regarding the supreme resolution of volume measurement (down to 1 μm3). We investigate wear between prosthetic gold alloy (Degulor M) and FGP polymeric material from Bredent in nanoscale. For that purpose, we modify active piezoresistive cantilever, replacing the original tip with Degulor M microsphere. We elaborate on the process of modification and present how the mass volume and topology of the tip is controlled throughout the process. Wear process was performed in reciprocal motion over the length of 5 μm in 35,000 repetitions to mimic the actual conditions occurring in human mouth cavity. We present how this method, by focusing on a small area of investigated materials, leads to shortening the overall time of wear measurements from tong term observations down to several minutes. AFM-measured data present consistent relation between wear energy and wear volume. Exemplary results seem to confirm durability of the FGP-Degulor M mechanical contact and occurring strengthening of the mechanical contact with roughening of the polymeric surface. Full article
Show Figures

Figure 1

30 pages, 7965 KB  
Article
Nanoporous Gold Nanoparticles-Modified Electrode for the Detection of Endotoxins
by Dhanbir Lingden, Preston Willis, Jay K. Bhattarai and Keith J. Stine
Micromachines 2025, 16(9), 1014; https://doi.org/10.3390/mi16091014 - 31 Aug 2025
Cited by 1 | Viewed by 1410
Abstract
Nanoporous gold nanoparticles (np-AuNPs) combine inertness, a nanoscale structure, and a porous framework with high surface area, conductivity, and biocompatibility, making them ideal for biosensing, catalysis, fuel cells, and drug delivery. Their open pore structure and low-coordinated atoms enhance biomolecule capture and mass [...] Read more.
Nanoporous gold nanoparticles (np-AuNPs) combine inertness, a nanoscale structure, and a porous framework with high surface area, conductivity, and biocompatibility, making them ideal for biosensing, catalysis, fuel cells, and drug delivery. Their open pore structure and low-coordinated atoms enhance biomolecule capture and mass transfer, while their tunable size, pore volume, and ease of surface modification make them promising biosensor transducers. However, synthesizing colloidal np-AuNPs in a simple way with controllable size and scalability remains challenging. The existing approaches mostly rely on specialized equipment, complex setups, and expert knowledge, while still facing challenges in terms of scalability. In this study, we present a simple, seedless, wet-chemical synthesis of colloidal np-AuNPs via the co-reduction of Au/Ag alloys followed by dealloying. By adjusting the Au:Ag ratio, we produced np-AuNPs sized ~120–530 nm, which were immobilized on electrodes for detecting lipopolysaccharide (LPS), a toxic component of Gram-negative bacterial membranes. The LPS biosensor exhibited excellent sensitivity towards detecting wild-type LPS, with a low limit of detection (LOD) of 0.1244 ng/L. This work demonstrates the effective synthesis and application of np-AuNPs in LPS biosensing. Full article
Show Figures

Figure 1

18 pages, 2867 KB  
Article
Multimodal Evaluation of Three NiTi Rotary Systems: Clinical Simulation, Mechanical Testing, and Finite Element Analysis
by Jesus A. Aparicio, Pedro M. Mendez S, Giulia Malvicini, Simone Grandini, Carlo Gaeta, Ana Paula García Guerrero, Kristel Lidice Miranda Robles, José Aranguren and Alejandro R. Pérez
Dent. J. 2025, 13(8), 368; https://doi.org/10.3390/dj13080368 - 15 Aug 2025
Cited by 2 | Viewed by 1326
Abstract
Objectives: This study aimed to compare the clinical durability, mechanical performance, and stress behavior of three NiTi rotary systems—BlueShaper (Blue), BlueShaper Pro (Dual Wire), and BlueShaper Gold (fully gold-treated NiTi)—through a multimodal evaluation that included simulated instrumentation in 3D-printed replicas, mechanical testing, and [...] Read more.
Objectives: This study aimed to compare the clinical durability, mechanical performance, and stress behavior of three NiTi rotary systems—BlueShaper (Blue), BlueShaper Pro (Dual Wire), and BlueShaper Gold (fully gold-treated NiTi)—through a multimodal evaluation that included simulated instrumentation in 3D-printed replicas, mechanical testing, and finite element analysis (FEA). Methods: Sixty instruments (n = 20 per group) were tested. Simulated canal preparation was conducted in standardized 3D-printed mandibular molars with a 40° mesial root curvature until fracture occurred. Mechanical tests included torsional and flexural loading using a universal testing machine and stainless steel blocks with a standardized 40° curvature. FEA simulations evaluated von Mises stress, shear stress, total deformation, cyclic fatigue behavior, and contact pressure between the instrument and canal wall. Results: BlueShaper Gold prepared an average of 7.5 canals before fracture, followed by BlueShaper Pro (5.67 canals) and Blue (5.00 canals) (p < 0.001). Gold exhibited the highest torsional resistance (6.08 ± 3.08 N) and the longest fatigue life (325 ± 55.7 cycles), with the lowest von Mises stress and damage factor in FEA. BlueShaper Pro showed the longest time to fracture in mechanical testing (73.85 ± 7.10 s) and balanced mechanical behavior. Blue demonstrated the lowest performance across most parameters, including the shortest fatigue life and highest stress concentration. Conclusions: BlueShaper Gold exhibited the highest mechanical strength and fatigue resistance. BlueShaper Pro demonstrated the longest fatigue life and balanced mechanical behavior. Blue showed the lowest performance across most parameters. The strong correlation among clinical, mechanical, and FEA data reinforces the critical role of alloy composition in determining instrument durability, even when design remains constant. Full article
(This article belongs to the Special Issue Endodontics and Restorative Sciences: 2nd Edition)
Show Figures

Figure 1

12 pages, 4567 KB  
Article
Pressure-Induced Phase Transitions and Electronic Structure Evolution of Ba4Au
by Xinyu Wang, Qun Wei, Jing Luo, Xiaofei Jia, Meiguang Zhang, Xuanmin Zhu and Bing Wei
Materials 2025, 18(16), 3728; https://doi.org/10.3390/ma18163728 - 8 Aug 2025
Cited by 5 | Viewed by 814
Abstract
Considering previous studies on the high-pressure phases and compressibility of Ba–Au alloys with stoichiometries Au2Ba, AuBa, and Au2Ba3, the concentration of the alkaline-earth metal Ba increased, and a particle-swarm optimization algorithm was employed to conduct comprehensive structure [...] Read more.
Considering previous studies on the high-pressure phases and compressibility of Ba–Au alloys with stoichiometries Au2Ba, AuBa, and Au2Ba3, the concentration of the alkaline-earth metal Ba increased, and a particle-swarm optimization algorithm was employed to conduct comprehensive structure searches for the Ba4Au compound at 0, 10, 20, and 50 GPa. First-principles calculations were subsequently carried out to investigate its structural evolution and electronic properties under compression. Enthalpy-difference calculations indicate that the I4/mmm phase of Ba4Au transforms to the Cmmm phase at approximately 0.4 GPa. As pressure increases above 5.7 GPa, the I4/m structure becomes energetically more favorable than Cmmm-Ba4Au, indicating that the Cmmm phase transforms to the I4/m phase at 5.7 GPa. Both phase transitions are first-order and accompanied by discernible volume collapses. Additionally, a comparative analysis of the electronic properties of Ba4Au was performed before and after the phase transitions. In this study, theoretical guidance is provided for the exploration of the high-pressure structural evolution of Ba4Au, and critical insights are offered regarding the changes that occur in its physical and chemical properties under compression. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

17 pages, 3267 KB  
Article
The Power Electronic Soldering Process: An Evaluation of Soldering Materials and Basic Soldering Principles
by Marek Chnapko, Jan Sitar, Michal Frivaldsky and Libor Hargas
Appl. Sci. 2025, 15(14), 7732; https://doi.org/10.3390/app15147732 - 10 Jul 2025
Viewed by 2062
Abstract
The article describes a basic comparison of soldering materials (preforms) from several suppliers, focusing on the main differences in surface structure, internal structure, and contamination on the surface and in the interior of the solder. As a result, we are able to define [...] Read more.
The article describes a basic comparison of soldering materials (preforms) from several suppliers, focusing on the main differences in surface structure, internal structure, and contamination on the surface and in the interior of the solder. As a result, we are able to define how different preforms of the surface, preforms related to impurities, or preforms of the structures of the composition parts of the power modules, which are subjected to the soldering process, influence the formation of different void types. Simultaneously an investigation of the impact on the soldering process (heating, cleaning, soldering, cooling), which influences the formation of the solder joint and on the formation intermetallic structure (IMC) and voids, is performed as well. A comparison of the individual results between RTG or X-ray (Radioisotope Thermoelectric Generator) and SAM (Scanning Acoustic Microscopy) are given together with the highlighted differences. This application study was carried out under various settings to investigate the effects of temperature and exposure time on formic acid. The findings confirm that oxide reduction is a time-dependent process. The lowest average void area—0.2%—was observed at the highest tested temperature of 230 °C, and the longest formic acid exposure duration of 300 s. Full article
Show Figures

Figure 1

17 pages, 3854 KB  
Article
Pulsed Current Electrodeposition of Gold–Copper Alloys Using a Low-Cyanide Electrolyte
by Mohamed Amazian, Teresa Andreu and Maria Sarret
Coatings 2025, 15(7), 778; https://doi.org/10.3390/coatings15070778 - 30 Jun 2025
Viewed by 2225
Abstract
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling [...] Read more.
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling and environmental compatibility without compromising performance. Electrolyte compositions were optimized via cyclic voltammetry, and coatings were deposited using direct current, pulse current, and reverse pulse current methods. The novel low-cyanide electrolyte system achieved a 99.1% reduction in cyanide use compared with the commercial formulation. Coatings produced with pulse current and reverse pulse current deposition exhibited structural, morphological, and mechanical properties comparable to those obtained from cyanide-based electrolytes. Overall, the low-cyanide electrolyte represents a safer, high-performance alternative to traditional cyanide-based systems. Full article
Show Figures

Figure 1

20 pages, 3729 KB  
Article
Au-Co Alloy Nanoparticles Supported on ZrO2 as an Efficient Photocatalyst for the Deoxygenation of Styrene Oxide
by Hashini T. Abeyrathna, Chamodi L. Fernando Thibiripalage, Huai Yong Zhu and Eric R. Waclawik
Nanomaterials 2025, 15(13), 957; https://doi.org/10.3390/nano15130957 - 20 Jun 2025
Viewed by 1085
Abstract
Epoxide deoxygenation by photocatalysis was explored using Au-Co alloy nanoparticles supported on ZrO2 under visible light irradiation. The active metals were deposited on commercial monoclinic ZrO2 by chemical impregnation to achieve controlled mass ratios of gold and cobalt in the alloy [...] Read more.
Epoxide deoxygenation by photocatalysis was explored using Au-Co alloy nanoparticles supported on ZrO2 under visible light irradiation. The active metals were deposited on commercial monoclinic ZrO2 by chemical impregnation to achieve controlled mass ratios of gold and cobalt in the alloy nanoparticles. The characterisation of the alloy nanoparticles confirmed the technique produced an average particle size of 4.50 ± 0.29 nm. Catalysts containing pure 3% Au and different Au-Co metal ratios attached to the ZrO2 induced the deoxygenation of styrene oxide in an isopropanol solvent medium. Only 20 mg of pure Au/ZrO2 catalyst gave a 99% yield of styrene at an 80 °C temperature within 16 h under visible light irradiation (400–800 nm). Au-Co/ZrO2 catalysts generally induced conversion to styrene under the same conditions below 60 °C. Above 60 °C, a new reaction pathway was observed to favour a different product over Au-Co/ZrO2, which was identified as styrene glycol. This study developed a new approach to the synthesis of styrene glycol, a molecule that has many useful applications in the chemical and polymer industries. Surface-enhanced Raman spectroscopic (SERS) studies and electron paramagnetic resonance spectroscopic (EPR) studies identified changes in the reaction mechanism and pathway upon increasing the cobalt molar ratio in the Au-Co alloy catalysts. Full article
Show Figures

Graphical abstract

22 pages, 5474 KB  
Article
3D Printing of Optimized Titanium Scaffold for Bone Replacement
by Parvathi Nathan, Siaw Meng Chou and Wai Yee Yeong
Processes 2025, 13(6), 1827; https://doi.org/10.3390/pr13061827 - 9 Jun 2025
Cited by 1 | Viewed by 2536
Abstract
Critical-sized bone defects or CSDs result from bone loss due to trauma, tumor removal, congenital defects, or degenerative diseases. Though autologous bone transplantation is the current gold standard in treating CSDs, its limitations include donor-site morbidity, unavailability of donor bone tissues, risk of [...] Read more.
Critical-sized bone defects or CSDs result from bone loss due to trauma, tumor removal, congenital defects, or degenerative diseases. Though autologous bone transplantation is the current gold standard in treating CSDs, its limitations include donor-site morbidity, unavailability of donor bone tissues, risk of infection, and mismatch between the bone geometry and the defect site. Customized scaffolds fabricated using 3D printing and biocompatible materials can provide mechanical integrity and facilitate osseointegration. Ti-6Al-4V (Ti64) is one of the most widely used commercial alloys in orthopedics. To avoid elastic modulus mismatch between bones and Ti64, it is imperative to use porous lattice structures. Ti64 scaffolds with diamond, cubic, and triply periodic minimal surface (TPMS) gyroid lattice architectures were fabricated using selective laser melting (SLM)with pore sizes ranging from 300 to 900 μm using selective laser melting and evaluated for mechanical and biological performance. Increasing pore size led to higher porosity (up to 90.54%) and reduced mechanical properties. Young’s modulus ranged from 13.18 GPa to 1.01 GPa, while yield stress decreased from 478.16 MPa to 14.86 MPa. Diamond and cubic scaffolds with 300–600 μm pores exhibited stiffness within the cortical bone range, while the 900 μm diamond scaffold approached trabecular stiffness. Gyroid scaffolds (600–900 μm) also showed modulus and yield strength within the cortical bone range but were not suitable for trabecular applications due to their higher stiffness. Cytocompatibility was confirmed through leachate analysis and DAPI-stained osteoblast nuclei. The biological evaluation reported maximum cell adherence in lower pore sizes, with gyroid scaffolds showing a statistically significant (p < 0.01) increase in cell proliferation. These findings suggest that 300–600 μm lattice scaffolds offer an optimal balance between mechanical integrity and biological response for load-bearing bone repair. Full article
(This article belongs to the Special Issue Recent Advances in Additive Manufacturing and 3D Printing)
Show Figures

Figure 1

Back to TopTop