Pressure-Induced Phase Transitions and Electronic Structure Evolution of Ba4Au
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guenther, J.; Mallet-Ladeira, S.; Estevez, L.; Miqueu, K.; Amgoune, A.; Bourissou, D. Activation of Aryl Halides at Gold(I): Practical Synthesis of (P,C) Cyclometalated Gold(III) Complexes. J. Am. Chem. Soc. 2014, 136, 1778–1781. [Google Scholar] [CrossRef]
- Rudolph, M.; Hashmi, A.S.K. Gold catalysis in total synthesis—An update. Chem. Soc. Rev. 2012, 41, 2448–2462. [Google Scholar] [CrossRef]
- Kodiyath, R.; Manikandan, M.; Liu, L.; Ramesh, G.V.; Koyasu, S.; Miyauchi, M.; Sakuma, Y.; Tanabe, T.; Gunji, T.; Dao, T.D. Visible-light photodecomposition of acetaldehyde by TiO2-coated gold nanocages: Plasmon-mediated hot electron transport via defect states. Chem. Commun. 2014, 50, 15553–15556. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Devillanova, F.A.; Isaia, F.; Lippolis, V.; Pintus, A. Gold(III) Complexes of Asymmetrically ArylSubstituted 1,2-Dithiolene Ligands Featuring Potential-Controlled Spectroscopic Properties: An Insight into the Electronic Properties of bis(Pyren-1-yl-ethylene-1,2-dithiolato) Gold(III). Chem.-Asian J. 2011, 6, 198–208. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, L.; Yin, Y.; Jin, M. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J. Mater. Chem. 2014, 2, 902–906. [Google Scholar] [CrossRef]
- Ishikawa, T.; Nomura, M.; Kato, K.; Suzuki, N.; Shimizu, K.; Itoh, H. First-principles study on superconductivity of the gold–indium alloy under high pressure. High Press. Res. 2013, 33, 152–157. [Google Scholar] [CrossRef]
- Baranov, D.S.; Vlaic, S.; Baptista, J.; Cofler, E.; Stolyarov, V.S.; Roditchev, D.; Pons, S. Gold Atoms Promote Macroscopic Superconductivity in an Atomic Monolayer of Pb on Si(111). Nano Lett. 2022, 22, 652–657. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, H.; Li, C.K.; Zhang, X.; Liu, J.; Zhang, Y.; Luo, J.; Wang, Z.; Wang, Y.; Ling, L.; et al. Superconductivity in topologically nontrivial material Au2Pb. NPJ Quantum Mater. 2016, 1, 16005. [Google Scholar] [CrossRef]
- Lu, J.; Zhan, M.; Yu, J.; Yu, X.; Duan, Y.; Chen, S.; Xu, M.; Lu, W. Insight on the Electronic, Elastic and Thermal Properties of Au-Al Intermetallic Compounds Based on First-Principles Calculations. J. Electron. Mater. 2024, 53, 3809–3821. [Google Scholar] [CrossRef]
- Ono, S. Two-Dimensional Ionic Crystals: The Cases of IA-VII Alkali Halides and IA-IB CsAu. J. Phys. Soc. Japan 2022, 91, 094606. [Google Scholar] [CrossRef]
- Miao, M.; Brgoch, J.; Krishnapriyan, A.; Goldman, A.; Kurzman, J.A.; Seshadri, R. On the Stereochemical Inertness of the Auride Lone Pair: Ab Initio Studies of AAu (A = K, Rb, Cs). Inorg. Chem. 2013, 52, 8183–8189. [Google Scholar] [CrossRef]
- Aycibin, M.; Dogan, E.K.; Gulebaglan, S.E.; Secuk, M.N.; Erdinc, B.; Akkus, H. Physical properties of RbAu compound. Comput. Condens. Matter 2014, 1, 32–37. [Google Scholar] [CrossRef]
- Lin, J.; Du, X.; Yang, G. Pressure-induced new chemistry. Chin. Phys. B 2019, 28, 106106. [Google Scholar] [CrossRef]
- Lyu, T.; Yang, Q.X.; Li, Z.M.; Zhang, C.; Liu, F.; Li, J.; Hu, L.; Xu, G. High pressure drives microstructure modification and zT enhancement in bismuth telluride-based alloys. ACS Appl. Mater. Interfaces 2023, 15, 19250–19257. [Google Scholar] [CrossRef]
- Miao, M. Caesium in high oxidation states and as a p-block element. Nat. Chem. 2013, 5, 846–852. [Google Scholar] [CrossRef]
- Ma̧czka, M.; Kryś, M.; Sobczak, S.; Vasconcelos, D.L.M.; Freire, P.T.C.; Katrusiak, A. Evidence of Pressure-induced phase transitions and negative linear compressibility in formamidinium manganese-hypophosphite hybrid perovskite. J. Phys. Chem. C 2021, 125, 26958–26966. [Google Scholar] [CrossRef]
- Sun, H.; Huo, M.; Hu, X.; Li, J.; Liu, Z.; Han, Y.; Tang, L.; Mao, Z.; Yang, P.; Wang, B.; et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 2023, 621, 493–498. [Google Scholar] [CrossRef]
- Nelmes, R.J.; Allan, D.R.; McMahon, M.I.; Belmonte, S.A. Self-Hosting Incommensurate Structure of Barium IV. Phys. Rev. Lett. 1999, 83, 4081. [Google Scholar] [CrossRef]
- Li, P.; Gao, G.; Wang, Y.; Ma, Y. Crystal Structures and Exotic Behavior of Magnesium under Pressure. J. Phys. Chem. C 2010, 114, 21745–21749. [Google Scholar] [CrossRef]
- Rahm, M.; Cammi, R.; Ashcroft, N.W.; Hoffmann, R. Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression. J. Am. Chem. Soc. 2019, 141, 10253–10271. [Google Scholar] [CrossRef]
- Luo, D.; Wang, Y.; Yang, G.; Ma, Y. Barium in High Oxidation States in Pressure-Stabilized Barium Fluorides. J. Phys. Chem. C 2018, 122, 12448–12453. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Fu, Y.; Wang, Y.; Bergara, A.; Yang, G. Ba with Unusual Oxidation States in Ba Chalcogenides under Pressure. J. Phys. Chem. Lett. 2021, 12, 4203–4210. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, J.; Sun, S.; Liu, H. Crystal Structures and Electronic Properties of BaAu Compound under High Pressure. Materials 2022, 15, 7381. [Google Scholar] [CrossRef]
- Amsler, M.; Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 2010, 133, 224104. [Google Scholar] [CrossRef]
- Laio, A.; Rodriguez-Fortea, A.; Gervasio, F.L.; Ceccarelli, M.; Parrinello, M. Assessing the accuracy of metadynamics. J. Phys. Chem. B 2005, 109, 6714–6721. [Google Scholar] [CrossRef]
- Lonie, D.C.; Zurek, E. XtalOpt: An open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 2011, 182, 372–387. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 2010, 82, 094116. [Google Scholar] [CrossRef]
- Pickard, C.J.; Needs, R.J. Ab initio random structure searching. J. Phys. Condens. Matter 2011, 23, 053201. [Google Scholar] [CrossRef]
- Peng, F.; Sun, Y.; Pickard, C.J.; Needs, R.J.; Wu, Q.; Ma, Y. Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. Phys. Rev. Lett. 2017, 119, 107001. [Google Scholar] [CrossRef]
- Liu, H.; Naumov, I.I.; Hoffmann, R.; Ashcroft, N.W.; Hemley, R.J. Potential High-Tc Superconducting Lanthanum and Yttrium Hydrides at High Pressure. Proc. Natl. Acad. Sci. USA 2017, 114, 6990–6995. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Lv, J.; Li, Q.; Zhang, L.; Ma, Y. CALYPSO Structure Prediction Method and Its Wide Application. Comput. Mater. Sci. 2016, 112, 406–415. [Google Scholar] [CrossRef]
- Li, B.; Liu, H.; Liu, G.; Chen, K. First-principles study on high-pressure phases and compression properties of gold-bearing intermetallic compounds. J. Phys. Condens. Matter 2022, 34, 464001. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070. [Google Scholar] [CrossRef]
- Wei, Q.; Yang, J.; Jia, X.; Luo, J.; Zhang, M.; Zhu, X. Crystal structures, mechanical properties, and electronic structure analysis of ternary FeCrAl alloys. Phys. Lett. A 2025, 533, 130228. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, W.; Chen, L.; Zhang, Y.; Wang, H.; Zhang, M.; Wei, Q. Structural, strength and fracture mechanisms of superconducting transition metal nitrides TM3N5 (TM= W and Mo). Phys. Chem. Chem. Phys. 2025, 27, 6134–6145. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Savin, A.; Jepsen, O.; Flad, J.; Andersen, O.K.; Preuss, H.; Von Schnering, H.G. Electron localization in solid-state structures of the elements: The diamond structure. Angew. Chem. Int. Ed. 1992, 31, 187–188. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Chaput, L.; Togo, A.; Tanaka, I.; Hug, G. Phonon-phonon interactions in transition metals. Phys. Rev. B 2011, 84, 094302. [Google Scholar] [CrossRef]
- Giannozzi, P.; De Gironcoli, S.; Pavone, P.; Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 1991, 43, 7231. [Google Scholar] [CrossRef]
- Gonze, X.; Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 1997, 55, 10355. [Google Scholar] [CrossRef]
- Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wu, H.; Xie, W.N.; Wang, X.F.; Sun, S.W.; Gu, J.B. Pressure-induced evolution of structures and phase transition of technetium diboride. J. Appl. Phys. 2024, 135, 205901. [Google Scholar] [CrossRef]
- Xie, X.; Wei, Q.; Luo, J.; Jia, X.; Zhang, M. Pressure-induced phase transitions of ZrAl2 from first-principles calculations. Solid State Commun. 2024, 391, 115643. [Google Scholar] [CrossRef]
Phase | Pressure (GPa) | Lattice Parameter | Wyckoff Position | |||
---|---|---|---|---|---|---|
Atoms | x | y | z | |||
I4/mmm | 0 | a = b = 6.576 Å c = 13.165 Å α = β = γ = 90° | Ba1 (4c) Ba2 (4e) Au (2a) | 0 0.500 0 | 0.500 0.500 0 | 0 0.748 0 |
Cmmm | 5 | a = 11.128 Å b = 16.409 Å c = 4.312 Å α = β = γ = 90° | Ba1 (2a) Ba2 (2c) Ba3 (4i) Ba4 (8q) Au (4g) | 0 0.500 0 0.800 0.290 | 1.000 1.000 0.700 0.140 0 | 0 0.500 0 0.500 1.000 |
I4/m | 10 | a = b = 9.108 Å c = 3.882 Å α = β = γ = 90° | Ba (8h) Au (2a) | 0.082 0 | 0.728 0 | 0.500 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wei, Q.; Luo, J.; Jia, X.; Zhang, M.; Zhu, X.; Wei, B. Pressure-Induced Phase Transitions and Electronic Structure Evolution of Ba4Au. Materials 2025, 18, 3728. https://doi.org/10.3390/ma18163728
Wang X, Wei Q, Luo J, Jia X, Zhang M, Zhu X, Wei B. Pressure-Induced Phase Transitions and Electronic Structure Evolution of Ba4Au. Materials. 2025; 18(16):3728. https://doi.org/10.3390/ma18163728
Chicago/Turabian StyleWang, Xinyu, Qun Wei, Jing Luo, Xiaofei Jia, Meiguang Zhang, Xuanmin Zhu, and Bing Wei. 2025. "Pressure-Induced Phase Transitions and Electronic Structure Evolution of Ba4Au" Materials 18, no. 16: 3728. https://doi.org/10.3390/ma18163728
APA StyleWang, X., Wei, Q., Luo, J., Jia, X., Zhang, M., Zhu, X., & Wei, B. (2025). Pressure-Induced Phase Transitions and Electronic Structure Evolution of Ba4Au. Materials, 18(16), 3728. https://doi.org/10.3390/ma18163728