Material Analysis of 18th Century Polychrome Sacred Sculpture of Our Lady: Iconographic Impact and the Conservation and Restoration Process
Abstract
1. Introduction
2. Experimental Section
2.1. Sample Collection
2.2. FTIR Spectroscopy
2.3. Raman Spectroscopy
2.4. SEM-EDS
3. Result and Discussion
3.1. FTIR Spectroscopy
3.2. Raman Spectroscopy
3.3. SEM-EDS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Megale, N.B.; Costa, N.M. As devoções portuguesa e espanhola na implantação do culto a Maria no Brasil. In Proceedings of the Congresso Internacional de História, Maringá, Brazil, 9–11 October 2017; pp. 1978–1986. Available online: http://www.cih.uem.br/anais/2017/trabalhos/4064.pdf (accessed on 16 December 2020).
- Poliszuk, A.; Ybarra, G. Analysis of Cultural Heritage Materials by Infrared Spectroscopy. In Infrared Spectroscopy: Theory; Developments and Applications Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 519–536. [Google Scholar]
- Retko, K.; Legan, L.; Kosel, J.; Ropret, P. Identification of iron gall inks, logwood inks, and their mixtures using Raman spectroscopy, supplemented by reflection and transmission infrared spectroscopy. Herit. Sci. 2024, 12, 212. [Google Scholar] [CrossRef]
- Falcone, F.; Cinosi, A.; Siviero, G.; Rosatelli, G. Innovative methodological approach integrating SEM-EDS and TXRF microanalysis for characterization in materials science: A perspective from cultural heritage studies. Spectrochim. Acta Part B At. Spectrosc. 2024, 218, 106980. [Google Scholar] [CrossRef]
- Costa, T.; Junior, A.; Meurer, L.; Barbosa, R.d.S.; Richter, F.; Beirao, F.; Micke, G.A.; Goncalves, S.; Szpoganicz, B.; Gonçalves, S.; et al. SEM-FEG-EDS, GC-MS, EPR and vibrational spectroscopy analysis of materials in baroque-style sculpture “our lady of sorrows” from garopaba, santacatarina, brazil. Int. J. Conserv. Sci. 2023, 14, 937–954. [Google Scholar] [CrossRef]
- RRUFF Sample Database. Available online: https://rruff.info/ (accessed on 10 May 2025).
- Caggiani, M.C.; Cosentino, A.; Mangone, A. Pigments Checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database. Microchem. J. 2016, 129, 123–132. [Google Scholar] [CrossRef]
- de Viguerie, L.; Payard, P.A.; Portero, E.; Walter, P.; Cotte, M. The drying of linseed oil investigated by Fourier transform infrared spectroscopy: Historical recipes and influence of lead compounds. Prog. Org. Coat. 2016, 93, 46–60. [Google Scholar] [CrossRef]
- Mazzeo, R.; Prati, S.; Quaranta, M.; Joseph, E.; Kendix, E.; Galeotti, M. Attenuated total reflection micro FTIR characterization of pigment–binder interaction in reconstructed paint films. Anal. Bioanal. Chem. 2008, 392, 65–76. [Google Scholar] [CrossRef]
- Costa, T.G.; Ritcher, F.A.; Correia, M.D.d.M.; Escorteganha, M.R.; Santiago, A.G.; Gonçalves, S.; Spudeit, D.A.; Micke, G.A.; Miranda, F.S. Multi-technical analysis as a tool to investigate structural species in the “replica” of First Mass in Brazil painting by Sebastião Vieira Fernandes. J. Mol. Struct. 2016, 1120, 196–204. [Google Scholar] [CrossRef]
- Henderson, E.J.; Helwig, K.; Read, S.; Rosendahl, S. Infrared chemical mapping of degradation products in cross-sections from paintings and painted objects. Herit. Sci. 2019, 7, 71. [Google Scholar] [CrossRef]
- Morsch, S.; van Driel, B.A.; van den Berg, K.; Dik, J. Investigating the Photocatalytic Degradation of Oil Paint using ATR-IR and AFM-IR. ACS Appl. Mater. Interfaces 2017, 9, 10169–10179. [Google Scholar] [CrossRef]
- DePolo, G.; Iedema, P.; Shull, K.; Hermans, J. Comprehensive Characterization of Drying Oil Oxidation and Polymerization Using Time-Resolved Infrared Spectroscopy. Macromolecules 2024, 57, 8263–8276. [Google Scholar] [CrossRef] [PubMed]
- Banou, P.; Boyatzis, S.; Choulis, K.; Theodorakopoulos, C.; Alexopoulou, A. Oil Media on Paper: Investigating the Interaction of Cold-Pressed Linseed Oil with Paper Supports with FTIR Analysis. Polymers 2023, 15, 2567. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, M.; Chiantore, O. Drying and oxidative degradation of linseed oil. Polym. Degrad. Stab. 1999, 65, 303–313. [Google Scholar] [CrossRef]
- Cairns, L.K.; Forbes, P.B.C. Insights into the yellowing of drying oils using fluorescence spectroscopy. Herit. Sci. 2020, 8, 59. [Google Scholar]
- Thickett, D.; Pretzel, B. FTIR surface analysis for conservation. Herit. Sci. 2020, 8, 5. [Google Scholar] [CrossRef]
- Missau, J.; da Rocha, J.G.; Dotto, G.L.; Bertuol, D.A.; Ceron, L.P.; Tanabe, E.H. Purification of crude wax using a filter medium modified with a nanofiber coating. Chem. Eng. Res. Des. 2018, 136, 734–743. [Google Scholar] [CrossRef]
- Parma, M.G.; Beraldo, H.; Mendes, I.C. Syntheses of Prussian Blue Pigment Following 18th-Century Methodologies: Factors Influencing Product Purity and Syntheses Yields. ACS Omega 2025, 10, 11375–11385. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Hu, S.; Zhen, Z.; Gomez, M.A.; Yao, S. A systematic study of the synthesis conditions of blue and green ultramarine pigments via the reclamation of the industrial zeolite wastes and agricultural rice husks. Environ. Sci. Pollut. Res. 2020, 27, 10910–10924. [Google Scholar] [CrossRef]
- Gómez, B.A.; Parera, S.D.; Siracusano, G.; Maier, M.S. Integrated analytical techniques for the characterization of painting materials in two south american polychrome sculptures. Paint. Mater. South Am. Polychrome Sculpt. e-PS 2010, 7, 1–7. [Google Scholar]
- Vagnini, M.; Anselmi, C.; Vivani, R.; Sgamellotti, A. Non-invasive detection of lead carboxylates in oil paintings by in situ infrared spectroscopy: How far can we go? Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 301, 122962. [Google Scholar] [CrossRef]
- Sánchez-Polo, A.; Briceño, S.; Jamett, A.; Galeas, S.; Campaña, O.; Guerrero, V.; Arroyo, C.R.; Debut, A.; Mowbray, D.J.; Zamora-Ledezma, C.; et al. An Archaeometric Characterizationof Ecuadorian Pottery. Sci. Rep. 2019, 9, 2642. [Google Scholar] [CrossRef] [PubMed]
- Jubb, A.M.; Allen, H.C. Vibrational Spectroscopic Characterization of Hematite, Maghemite, and Magnetite Thin Films. ACS Appl. Mater. Interfaces 2010, 2, 2804–2812. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Franks, M.L. The resonance Raman spectrum of ultramarine blue. Chem. Phys. Lett. 1975, 34, 69–72. [Google Scholar] [CrossRef]
- Moretti, G.; Gervais, C. Raman spectroscopy of the photosensitive pigment Prussian blue. J. Raman Spectrosc. 2018, 49, 1198–1204. [Google Scholar] [CrossRef]
- Berenblut, B.J.; Dawson, P.; Wilkinson, G.R. The Raman spectrum of gypsum. Spectrochim. Acta A Mol. Spectrosc. 1971, 27, 1849–1863. [Google Scholar] [CrossRef]
- Harris, J.; Mey, I.; Hajir, M.; Mondeshki, M.; Wolf, S.E. Pseudomorphic transformation of amorphous calcium carbonate films follows spherulitic growth mechanisms and can give rise to crystal lattice tilting. CrystEngComm 2015, 17, 6831–6837. [Google Scholar] [CrossRef]
- Burrafato, G.; Calabrese, M.; Cosentino, A.; Gueli, A.M.; Troja, S.O.; Zuccarello, A. ColoRaman project: Raman and fluorescence spectroscopy of oil, tempera and fresco paint pigments. J. Raman Spectrosc. 2004, 35, 879–886. [Google Scholar] [CrossRef]
- Bellei, S.; Nevin, A.; Cesaratto, A.; Capogrosso, V.; Vezin, H.; Tokarski, C.; Valentini, G.; Comelli, D. Multianalytical Study of Historical Luminescent Lithopone for the Detection of Impurities and Trace Metal Ions. Anal. Chem. 2015, 87, 6049–6056. [Google Scholar] [CrossRef]
- Clark, R.J.H. Raman microscopy: Application to the identification of pigments on medieval manuscripts. Chem. Soc. Rev. 1995, 24, 187–196. [Google Scholar] [CrossRef]
- Oliveira, M.; Murta, E.; Dias, L.; Mirão, J.; Candeias, A. Gilding materials and techniques: Comparison between altarpieces and their sculptures—A case study. Conserv. Patrim. 2015, 22, 41–49. [Google Scholar] [CrossRef]
- Calza, C.; Oliveira, D.; Freitas, R.; Rocha, H.; Nascimento, J.; Lopes, R. Analysis of Sculptures Using XRF and X-Ray Radiography. Radiat. Phys. Chem. 2015, 116, 326–331. [Google Scholar] [CrossRef]
- Borges, R.M.S.P.; Cavalcante, J.E.; Franzi, I.V.N.S.; Paula, A.G.; Silva, M.; Sanches, F.; Gomes, R.A.F.; Bueno, R.; Machado, A.; dos Anjos, M.; et al. Evaluating Sculptures Depicting Our Lady of Conception Through the Use of X-Ray Techniques. X-Ray Spectrom. 2025. ahead of print. [Google Scholar] [CrossRef]
- Badde, A.; Illerhaus, B. Three Dimensional Computerized Microtomography in the Analysis of Sculpture. Scanning 2008, 30, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, S.R.; Oliveira, R.; Gusmão, E.; Anjos, M.; Sanches, F.; Lopes, R.; Oliveira, D. X-ray radiographic analysis of the two wooden sculptures of 18th century. Braz. J. Radiat. Sci. 2025, 12, 2766. [Google Scholar] [CrossRef]






| Sample | Description | Analysis Performed |
|---|---|---|
| S1 | Brown from mantle | SEM-EDS, Raman, FTIR |
| S2 | Gilding from mantle | SEM-EDS |
| S3 | Blue from mantle | SEM-EDS, Raman, FTIR |
| S4 | White preparation base * | SEM-EDS, Raman, FTIR |
| S5 | White paint of the face and neck | SEM-EDS, Raman, FTIR |
| S6 | White repainting from head | SEM-EDS, Raman, FTIR |
| Sample | EDS | FTIR (cm−1) | µ-Raman (cm−1) | Conclusions |
|---|---|---|---|---|
S1![]() | Fe, Ca, Pb, S, Al, Si | 2955, 2916, 2848, 1733w, 1705, 1464, 1377, 1250, 1164, 729, 719 | 222, 296, 402, 610 |
|
S2![]() | Au, Fe, S, Ca | - | - |
|
S3![]() | Fe, Ca, K, S, Al, Si, Na | 2955, 2913, 2845, 2088, 1732w, 1700, 1463, 1411, 1356, 1251, 1166, 1073, 982, 800, 730, 718, 608 | 524, 712, 770, 920, 1314 (ultramarine)–2091, 2150 (Prussian Blue) |
|
S4![]() | Ca, S | 3541, 3402, 2955, 2916, 2848, 1731w, 1701, 1682, 1622, 1461, 1402, 1110, 800, 731, 716, 666, 599 | 411, 491, 617, 665, 1008, 1132 (1087–CaCO3) |
|
S5![]() | Ca, Pb, Al, Si | 2929, 2847,1730w, 1526, 1390, 1099, 1037, 678 | 420, 1048, 1353 |
|
S6![]() | Zn, Ba, Ca, Pb, S | 2933, 2856, 1730, 1406, 1235, 1175, 1116, 1075, 1001, 871, 635 | 459, 616, 646, 985, 1052, 1138 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, T.G.; Kremer, K.; Richter, F.A.; de Campos Júnior, F.A.; Furini, L.N. Material Analysis of 18th Century Polychrome Sacred Sculpture of Our Lady: Iconographic Impact and the Conservation and Restoration Process. Colorants 2025, 4, 31. https://doi.org/10.3390/colorants4040031
Costa TG, Kremer K, Richter FA, de Campos Júnior FA, Furini LN. Material Analysis of 18th Century Polychrome Sacred Sculpture of Our Lady: Iconographic Impact and the Conservation and Restoration Process. Colorants. 2025; 4(4):31. https://doi.org/10.3390/colorants4040031
Chicago/Turabian StyleCosta, Thiago Guimarães, Karen Kremer, Fábio Andreas Richter, Feik Amil de Campos Júnior, and Leonardo Negri Furini. 2025. "Material Analysis of 18th Century Polychrome Sacred Sculpture of Our Lady: Iconographic Impact and the Conservation and Restoration Process" Colorants 4, no. 4: 31. https://doi.org/10.3390/colorants4040031
APA StyleCosta, T. G., Kremer, K., Richter, F. A., de Campos Júnior, F. A., & Furini, L. N. (2025). Material Analysis of 18th Century Polychrome Sacred Sculpture of Our Lady: Iconographic Impact and the Conservation and Restoration Process. Colorants, 4(4), 31. https://doi.org/10.3390/colorants4040031







