Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = glutamatergic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3149 KiB  
Article
Promoter H3K4me3 and Gene Expression Involved in Systemic Metabolism Are Altered in Fetal Calf Liver of Nutrient-Restricted Dams
by Susumu Muroya, Koichi Ojima, Saki Shimamoto, Takehito Sugasawa and Takafumi Gotoh
Int. J. Mol. Sci. 2025, 26(15), 7540; https://doi.org/10.3390/ijms26157540 - 4 Aug 2025
Abstract
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin [...] Read more.
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin immunoprecipitation sequencing results show that genes with an altered trimethylation of histone 3 lysine 4 (H3K4me3) are associated with cortisol synthesis and secretion, the PPAR signaling pathway, and aldosterone synthesis and secretion. Genes with the H3K27me3 alteration were associated with glutamatergic synapse and gastric acid secretion. Compared to HN fetuses, promoter H3K4me3 levels in LN fetuses were higher in GDF15, IRF2BP2, PPP1R3B, and QRFPR but lower in ANGPTL4 and APOA5. Intriguingly, genes with the greatest expression changes (>1.5-fold) exhibited the anticipated up-/downregulation from elevated or reduced H3K4me3 levels; however, a significant relationship was not observed between promoter CpG methylation or H3K27me3 and the gene set with the greatest expression changes. Furthermore, the stress response genes EIF2A, ATF4, DDIT3, and TRIB3 were upregulated in the MUN fetal liver, suggesting activation by upregulated GDF15. Thus, H3K4me3 likely plays a crucial role in MUN-induced physiological adaptation, altering the hepatic gene expression responsible for the integrated stress response and systemic energy metabolism, especially circulating lipoprotein lipase regulation. Full article
(This article belongs to the Special Issue Ruminant Physiology: Digestion, Metabolism, and Endocrine System)
Show Figures

Figure 1

33 pages, 14681 KiB  
Article
Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle
by Yanchun Bao, Fengying Ma, Chenxi Huo, Hongxia Jia, Yunhan Li, Xiaoyi Yang, Jiajing Liu, Pengbo Gu, Caixia Shi, Mingjuan Gu, Lin Zhu, Yu Wang, Bin Liu, Risu Na and Wenguang Zhang
Animals 2025, 15(15), 2277; https://doi.org/10.3390/ani15152277 - 4 Aug 2025
Abstract
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total [...] Read more.
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total of 6161 high-quality nuclei from the hypothalamus, 14,715 nuclei from the pituitary, and 26,072 nuclei from the ovary, providing a comprehensive cellular atlas across the HPO axis. In the hypothalamus, neurons exhibited synaptic and neuroendocrine specialization, with glutamatergic subtype Glut4 serving as a TGFβ signaling hub to regulate pituitary feedback, while GABAergic GABA1 dominated PRL signaling, likely adapting maternal behavior. Pituitary stem cells dynamically replenished endocrine populations via TGFβ, and lactotrophs formed a PRLPRLR paracrine network with stem cells, synergizing mammary development. Ovarian luteal cells exhibited steroidogenic specialization and microenvironmental synergy: endothelial cells coregulated TGFβ-driven angiogenesis and immune tolerance, while luteal–stromal PRLPRLR interactions amplified progesterone synthesis and nutrient support. Granulosa cells (GCs) displayed spatial-functional stratification, with steroidogenic GCs persisting across pseudotime as luteinization precursors, while atretic GCs underwent apoptosis. Spatial mapping revealed GCs’ annular follicular distribution, mediating oocyte–somatic crosstalk, and luteal–endothelial colocalization supporting vascularization. This study unveils pregnancy-specific HPO axis regulation, emphasizing multi-organ crosstalk through TGFβ/PRL pathways and stem cell-driven plasticity, offering insights into reproductive homeostasis and pathologies. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

9 pages, 477 KiB  
Opinion
Underlying Piezo2 Channelopathy-Induced Neural Switch of COVID-19 Infection
by Balázs Sonkodi
Cells 2025, 14(15), 1182; https://doi.org/10.3390/cells14151182 - 31 Jul 2025
Viewed by 174
Abstract
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the [...] Read more.
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the multiorgan SARS-CoV-2 infection-induced vascular pathologies and brain–body-wide systemic pro-inflammatory signaling, depending on the concentration and exposure to infecting SARS-CoV-2 viruses. This common initiating microdamage is suggested to be the primary damage or the acquired channelopathy of the Piezo2 ion channel, leading to a principal gateway to pathophysiology. This Piezo2 channelopathy-induced neural switch could not only explain the initiation of disrupted cell–cell interactions, metabolic failure, microglial dysfunction, mitochondrial injury, glutamatergic synapse loss, inflammation and neurological states with the central involvement of the hippocampus and the medulla, but also the initiating pathophysiology without SARS-CoV-2 viral intracellular entry into neurons as well. Therefore, the impairment of the proposed Piezo2-induced quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling seems to be the principal and critical underlying COVID-19 infection-induced primary damage along the brain axes, depending on the loci of SARS-CoV-2 viral infection and intracellular entry. Moreover, this initiating Piezo2 channelopathy may also explain resultant autonomic dysregulation involving the medulla, hippocampus and heart rate regulation, not to mention sleep disturbance with altered rapid eye movement sleep and cognitive deficit in the short term, and even as a consequence of long COVID. The current opinion piece aims to promote future angles of science and research in order to further elucidate the not entirely known initiating pathophysiology of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Insights into the Pathophysiology of NeuroCOVID: Current Topics)
Show Figures

Figure 1

12 pages, 2075 KiB  
Communication
Pharmacological Interaction of Botulinum Neurotoxins with Excitatory and Inhibitory Neurotransmitter Systems Involved in the Modulation of Inflammatory Pain
by Sara Marinelli, Flaminia Pavone and Siro Luvisetto
Toxins 2025, 17(8), 374; https://doi.org/10.3390/toxins17080374 - 28 Jul 2025
Viewed by 257
Abstract
Botulinum neurotoxins (BoNTs) are known to inhibit synaptic transmission by targeting SNARE proteins, but their selectivity toward central excitatory and inhibitory pathways is not yet fully understood. In this study, the interaction of serotypes A (BoNT/A) and B (BoNT/B) with the glutamatergic and [...] Read more.
Botulinum neurotoxins (BoNTs) are known to inhibit synaptic transmission by targeting SNARE proteins, but their selectivity toward central excitatory and inhibitory pathways is not yet fully understood. In this study, the interaction of serotypes A (BoNT/A) and B (BoNT/B) with the glutamatergic and GABAergic systems has been investigated using a pharmacological approach in an animal model of inflammatory pain, i.e., the formalin test in mice. BoNTs were administered intracerebroventricularly, three days before testing, followed 15 min before testing by systemic administration of sub-analgesic doses of MK801, an NMDA receptor antagonist, or muscimol, a GABA_A receptor agonist. BoNT/A reduced the second phase of the formalin test without affecting both the first phase and the interphase, suggesting a selective action on excitatory glutamatergic circuits while sparing GABAergic inhibition. Co-administration of MK801 with BoNT/A did not enhance analgesia, and muscimol did not further reduce interphase, confirming preserved GABAergic transmission. In contrast, BoNT/B abolished the interphase, consistent with impaired GABA release. Co-administration of MK801 or muscimol with BoNT/B restored the interphase, indicating compensatory rebalancing of excitatory-inhibitory networks. These results demonstrate that BoNT/A and BoNT/B exert distinct effects on central neurotransmission and support the hypothesis that BoNT/A preferentially targets excitatory synapses, while BoNT/B targets inhibitory synapses. This work contributes to a deeper understanding of anti-inflammatory mechanisms of BoNTs and their selective interaction with central pain pathways. Full article
(This article belongs to the Special Issue Botulinum Toxins: New Uses in the Treatment of Diseases (2nd Edition))
Show Figures

Figure 1

23 pages, 5573 KiB  
Article
Expression Profiles of Genes Related to Serotonergic Synaptic Function in Hypothalamus of Hypertensive and Normotensive Rats in Basal and Stressful Conditions
by Olga E. Redina, Marina A. Ryazanova, Dmitry Yu. Oshchepkov, Yulia V. Makovka and Arcady L. Markel
Int. J. Mol. Sci. 2025, 26(15), 7058; https://doi.org/10.3390/ijms26157058 - 22 Jul 2025
Viewed by 196
Abstract
The hypothalamus belongs to the central brain structure designed for the neuroendocrine regulation of many organismal functions, including the stress response, cardiovascular system, and blood pressure, and it is well known that the serotonergic hypothalamic system plays a significant role in these processes. [...] Read more.
The hypothalamus belongs to the central brain structure designed for the neuroendocrine regulation of many organismal functions, including the stress response, cardiovascular system, and blood pressure, and it is well known that the serotonergic hypothalamic system plays a significant role in these processes. Unfortunately, the genetic determination of serotonergic hypothalamic mechanisms has been little studied. The aim of this article is to describe the expression profile of the genes in the hypothalamic serotonergic synapses in hypertensive ISIAH rats in comparison with normotensive WAG rats in control conditions and under the influence of a single short-term restraint stress. It was found that 14 differentially expressed genes (DEGs) may provide the inter-strain differences in the serotonergic synaptic function in the hypothalamus between the hyper- and normotensive rats studied. In hypertensive rats, downregulation of Slc18a1 gene in the presynaptic serotoninergic ends and decreased expression of Cacna1s and Htr3a genes determining the postsynaptic membrane conductance may be considered as a main factors causing differences in the function of hypothalamic serotoninergic synapses in hypertensive ISIAH and normotensive WAG rats at the basal conditions. Under basal conditions, glial cell genes were not involved in the formation of inter-strain differences in serotonergic synaptic function. The analysis of transcriptional responses to restraint stress revealed key genes whose expression is involved in the regulation of serotonergic signaling, and a cascade of interrelated changes in biological processes and metabolic pathways. Stress-dependent changes in the expression of some DEGs are similar in the hypothalamus of hypertensive and normotensive rats, but the expression of a number of genes changes in a strain-specific manner. The results suggest that in hypothalamic glial cells of both strains, restraint stress induces changes in the expression of DEGs associated with the synthesis of Ip3 and its receptors. Many of the identified serotonergic DEGs participate in the regulation of not only serotonergic synapses but may also be involved in the regulation of cholinergic, GABAergic, glutamatergic, and dopaminergic synapses. The results of the study provide new information on the genetic mechanisms of inter-strain differences in the functioning of the hypothalamic serotonergic system in hypertensive ISIAH and normotensive WAG rats at rest and under the influence of a single short-term restraint (emotional) stress. Full article
(This article belongs to the Special Issue Serotonin in Health and Diseases)
Show Figures

Figure 1

22 pages, 1041 KiB  
Review
A Systematic Review of Neurobiological Mechanisms of Passiflora: Beyond GABA Modulation
by Vitor Marcelo Soares Campos, Angela Theresa Zuffo Yabrude, Renata Delarue Toniolo Lima, Fernanda Wagner and Henrique Nunes Pereira Oliva
BioChem 2025, 5(3), 21; https://doi.org/10.3390/biochem5030021 - 18 Jul 2025
Viewed by 608
Abstract
Background/Objectives: Passiflora (passionflower), traditionally used for anxiety and insomnia, is primarily known for GABAergic modulation. However, evidence suggests broader neuropharmacological actions. This review aimed to systematically explore non-GABAergic mechanisms of Passiflora. Methods: We performed a systematic review following PRISMA Guidelines [...] Read more.
Background/Objectives: Passiflora (passionflower), traditionally used for anxiety and insomnia, is primarily known for GABAergic modulation. However, evidence suggests broader neuropharmacological actions. This review aimed to systematically explore non-GABAergic mechanisms of Passiflora. Methods: We performed a systematic review following PRISMA Guidelines (PROSPERO: CRD420251028681). PubMed/Medline, PsycINFO, Embase, Web of Science, and Scopus were searched for original research on non-GABA neurobiological mechanisms of Passiflora species (P. incarnata, P. edulis, P. caerulea, P. actinia, P. foetida). Studies were screened and assessed for eligibility, and data on design, Passiflora preparation, mechanisms, and main findings were extracted. Results: Thirteen studies revealed diverse non-GABAergic actions. Passiflora modulates opioidergic and nicotinic cholinergic systems (relevant to analgesia), monoaminergic pathways (affecting dopamine, norepinephrine, serotonin), and the glutamatergic system (offering neuroprotection via NMDA receptor inhibition). It also exhibits significant anti-inflammatory and antioxidant effects (reducing cytokines, activating Nrf2) and modulates the HPA axis (reducing stress hormones). Other mechanisms include gut microbiota modulation and metabolic effects. Conclusions: Passiflora’s therapeutic potential extends beyond GABA, involving multiple neurotransmitter systems and neuroprotective, anti-inflammatory, antioxidant, and HPA axis-regulating activities. This multi-target profile likely contributes to its clinical efficacy in conditions like anxiety, pain, and stress, potentially with a favorable side-effect profile. Further research, including mechanistic studies and clinical trials with relevant biomarkers, is needed to fully elucidate its complex pharmacology. Full article
Show Figures

Graphical abstract

16 pages, 823 KiB  
Review
GABAergic Influences on Medulloblastoma
by Viviane Aline Buffon, Jurandir M. Ribas Filho, Osvaldo Malafaia, Isadora D. Tassinari, Rafael Roesler and Gustavo R. Isolan
Brain Sci. 2025, 15(7), 746; https://doi.org/10.3390/brainsci15070746 - 11 Jul 2025
Viewed by 393
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and typically arises in the cerebellum, likely due to disruptions in neuronal precursor development. The primary inhibitory neurotransmitter in the central nervous system (CNS), γ-aminobutyric acid (GABA), exerts its effects through GABA [...] Read more.
Medulloblastoma (MB) is the most common malignant brain tumor in children and typically arises in the cerebellum, likely due to disruptions in neuronal precursor development. The primary inhibitory neurotransmitter in the central nervous system (CNS), γ-aminobutyric acid (GABA), exerts its effects through GABAA, GABAB, and GABAC receptors. GABA receptor activity regulates the development and function of cerebellar neurons, including glutamatergic cerebellar granule cells (CGCs). Beyond the nervous system, GABA is also a common metabolite in non-neuronal cell types. An increasing body of evidence indicates that GABA can influence cell proliferation, differentiation, and migration in several types of adult solid tumors, including brain cancers. GABA and GABAA receptor agonists can impair the viability and survival of MB cells, primarily acting on GABAA receptors containing the α5 subunit. A marked expression of the gene encoding the α5 subunit is found across all MB tumor molecular subgroups, particularly Group 3 MB, which has a poor prognosis. Importantly, high levels of the γ-aminobutyric acid type A receptor subunit α5 (GABRA5) gene are associated with shorter patient overall survival in Group 3 and Group 4 MB. In contrast, high γ-aminobutyric acid type A receptor subunit β1 (GABRB1) gene expression is related to longer survival in all MB subgroups. The GABAergic system may, therefore, regulate MB cell function and tumor progression and influence patient prognosis, and is worthy of further investigation as a biomarker and therapeutic target in MB. Full article
(This article belongs to the Special Issue Editorial Board Collection Series: Advances in Neuro-Oncology)
Show Figures

Figure 1

21 pages, 3040 KiB  
Article
Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors
by Hannah Mettee, Aaron Asparin, Zulaikha Ali, Shi He, Xianzhi Li, Joshua Hall, Alexis Kim, Shuo Wu, Morgan J. Hawker, Masaki Uchida and He Wei
Sensors 2025, 25(14), 4326; https://doi.org/10.3390/s25144326 - 10 Jul 2025
Viewed by 518
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system, plays a pivotal role in synaptic signaling, learning, and memory. Abnormal glutamate levels are implicated in various neurological disorders, including epilepsy, Alzheimer’s disease, and ischemic stroke. Despite the utility of magnetic resonance imaging [...] Read more.
Glutamate, the primary excitatory neurotransmitter in the central nervous system, plays a pivotal role in synaptic signaling, learning, and memory. Abnormal glutamate levels are implicated in various neurological disorders, including epilepsy, Alzheimer’s disease, and ischemic stroke. Despite the utility of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in diagnosing such conditions, the development of effective glutamate-sensitive contrast agents remains a challenge. In this study, we present ultrasmall, citric acid-coated superparamagnetic iron oxide nanoparticles (CA-SPIONs) as highly selective and sensitive MRS probes for glutamate detection. These 5 nm magnetite CA-SPIONs exhibit a stable dispersion in physiological buffers and undergo aggregation in the presence of glutamate, significantly enhancing the T2 MRS contrast power. At physiological glutamate levels, the CA-SPIONs yielded a pronounced signal change ratio of nearly 60%, while showing a negligible response to other neurotransmitters such as GABA and dopamine. Computational simulations confirmed the mechanism of glutamate-mediated aggregation and its impact on transversal relaxation rates and relaxivities. The sensitivity and selectivity of CA-SPIONs underscore their potential as eco-friendly, iron-based alternatives for future neurological sensing applications targeting glutamatergic dysfunction. Full article
(This article belongs to the Special Issue Nanomaterial-Based Devices and Biosensors for Diagnostic Applications)
Show Figures

Figure 1

21 pages, 3299 KiB  
Article
Cognitive and Affective Dysregulation in Neuropathic Pain: Associated Hippocampal Remodeling and Microglial Activation
by Anna Tyrtyshnaia, Igor Manzhulo, Anastasia Egoraeva and Darya Ivashkevich
Int. J. Mol. Sci. 2025, 26(13), 6460; https://doi.org/10.3390/ijms26136460 - 4 Jul 2025
Viewed by 502
Abstract
Neuropathic pain is a persistent and exhausting condition which results from damage to the nervous system and is often accompanied by emotional and cognitive impairments. In this study, we investigated dynamic changes in pain-related behaviors over 8 weeks using a spared nerve injury [...] Read more.
Neuropathic pain is a persistent and exhausting condition which results from damage to the nervous system and is often accompanied by emotional and cognitive impairments. In this study, we investigated dynamic changes in pain-related behaviors over 8 weeks using a spared nerve injury (SNI) model in male C57Bl/6 mice. We examined behavioral outcomes in conjunction with glial activation, neurogenesis, and glutamatergic signaling in the hippocampus to elucidate the mechanisms underlying cognitive and affective alterations associated with chronic pain. Our findings demonstrate that SNI-induced neuropathic pain progressively increases anxiety-like behavior and impairs both working and long-term memory. These behavioral deficits are accompanied by significant activation of microglia and astrocytes, a reduction in hippocampal neurogenesis, and a decrease in the expression of NMDA and AMPA glutamate receptor subunits and the scaffolding protein PSD-95. Taken together, our results suggest that hippocampal neuroinflammation and associated synaptic dysfunction contribute to the affective and cognitive disturbances observed in chronic pain, providing insight into potential molecular targets for therapeutic intervention. Full article
(This article belongs to the Special Issue Physiological Functions and Pathological Effects of Microglia)
Show Figures

Figure 1

43 pages, 1978 KiB  
Review
Positive AMPA and Kainate Receptor Modulators and Their Therapeutic Potential in CNS Diseases: A Comprehensive Review
by Alina Vialko, Paulina Chałupnik and Ewa Szymańska
Int. J. Mol. Sci. 2025, 26(13), 6450; https://doi.org/10.3390/ijms26136450 - 4 Jul 2025
Viewed by 908
Abstract
Ionotropic glutamate receptors—including N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors—play a pivotal role in excitatory signaling in the central nervous system (CNS), which is particularly important for learning and memory processes. Among them, AMPA and kainate receptors (known as [...] Read more.
Ionotropic glutamate receptors—including N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors—play a pivotal role in excitatory signaling in the central nervous system (CNS), which is particularly important for learning and memory processes. Among them, AMPA and kainate receptors (known as ‘non-NMDA’ receptors) have gained increasing attention as therapeutic targets for various CNS disorders. Positive allosteric modulators (PAMs) of these receptors enhance their activity without directly activating them, offering a promising strategy to fine-tune glutamatergic signaling with potentially fewer side effects compared to orthosteric agonists. This review presents a comprehensive overview of recent advances in the development of AMPA and kainate receptor PAMs. We classify the most relevant modulators into main chemotype groups and discuss their binding modes, structure–activity relationships, and efficacy as determined through in vitro and in vivo studies. Additionally, we provide an overview of AMPA receptor PAMs that have entered into clinical trials over the past few decades. The increasing interest in kainate receptor PAMs is also mentioned, underlining their emerging role in future neuropharmacological strategies. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

27 pages, 733 KiB  
Review
The Role of Magnesium in Depression, Migraine, Alzheimer’s Disease, and Cognitive Health: A Comprehensive Review
by Péter Varga, Andrea Lehoczki, Mónika Fekete, Tamás Jarecsny, Agata Kryczyk-Poprawa, Virág Zábó, Dávid Major, Vince Fazekas-Pongor, Tamás Csípő and János Tamás Varga
Nutrients 2025, 17(13), 2216; https://doi.org/10.3390/nu17132216 - 4 Jul 2025
Viewed by 2945
Abstract
Magnesium is an essential mineral involved in hundreds of biochemical reactions, with particular relevance to maintaining neural homeostasis, modulating neurotransmitter systems, and regulating inflammatory and oxidative stress mechanisms. This comprehensive review aims to evaluate the potential role of magnesium in the pathophysiology and [...] Read more.
Magnesium is an essential mineral involved in hundreds of biochemical reactions, with particular relevance to maintaining neural homeostasis, modulating neurotransmitter systems, and regulating inflammatory and oxidative stress mechanisms. This comprehensive review aims to evaluate the potential role of magnesium in the pathophysiology and treatment of three prevalent neurological and psychiatric disorders—depression, migraine, and Alzheimer’s disease—as well as its broader implications for cognitive health. Current research suggests that magnesium deficiency is associated with the development of depression, as magnesium influences glutamatergic and GABAergic neurotransmission, as well as the activity of the hypothalamic–pituitary–adrenal (HPA) axis, both of which play critical roles in stress responses and mood regulation. Additionally, magnesium’s anti-inflammatory properties may contribute to the alleviation of depressive symptoms. In the context of migraine’s pathophysiology, magnesium plays a role in regulating cerebral vascular tone, modulating the trigeminovascular system, and reducing neuronal hyperexcitability, which may explain the observed correlation between magnesium levels and the incidence of migraines. Regarding Alzheimer’s disease, preclinical and epidemiological studies suggest that magnesium may contribute to modulating neurodegenerative processes and preserving cognitive function; however, due to the heterogeneity of the current findings, further longitudinal and interventional studies are necessary to determine its precise clinical relevance. This review aims to enhance the understanding of the relationship between magnesium and these disorders through a narrative review of relevant clinical studies. The findings may provide insights into the potential therapeutic applications of magnesium and guide the future directions of the research into the prevention and treatment of depression, migraine, and Alzheimer’s disease and overall cognitive health. Full article
(This article belongs to the Special Issue The Role of Magnesium Status in Human Health)
Show Figures

Figure 1

22 pages, 1830 KiB  
Article
Decoupling Behavioral Domains via Kynurenic Acid Analog Optimization: Implications for Schizophrenia and Parkinson’s Disease Therapeutics
by Diána Martos, Bálint Lőrinczi, István Szatmári, László Vécsei and Masaru Tanaka
Cells 2025, 14(13), 973; https://doi.org/10.3390/cells14130973 - 25 Jun 2025
Viewed by 910
Abstract
Kynurenic acid (KYNA), a putative neuroprotective agent, modulates glutamatergic pathways in schizophrenia and Parkinson’s disease but is limited by acute motor activity impairments (e.g., ataxia). Research leveraging animal disease models explores its structure–activity relationship to enhance therapeutic efficacy while mitigating adverse effects, addressing [...] Read more.
Kynurenic acid (KYNA), a putative neuroprotective agent, modulates glutamatergic pathways in schizophrenia and Parkinson’s disease but is limited by acute motor activity impairments (e.g., ataxia). Research leveraging animal disease models explores its structure–activity relationship to enhance therapeutic efficacy while mitigating adverse effects, addressing global neuropsychiatric disorders affecting over 1 billion people. Structural analogs of KYNA (SZR-72, SZR-73, and SZR-81) were designed to uncouple therapeutic benefits from motor toxicity; yet, systematic comparisons of their acute behavioral profiles remain unexplored. Here, we assess the motor safety, time-dependent effects, and therapeutic potential of these analogs in mice. Using acute intracerebroventricular dosing, we evaluated motor coordination (rotarod), locomotor activity (open-field), and stereotypic behaviors. KYNA induced significant ataxia and stereotypic behaviors at 15 min, resolving by 45 min. In contrast, all analogs avoided acute motor deficits, with SZR-73 maintaining baseline rotarod performance and eliciting a delayed decrease in ambulation and inquisitiveness in open-field assays. These findings demonstrate that the structural optimization of KYNA successfully mitigates motor toxicity while retaining neuromodulatory activity. Here, we show that SZR-73 emerges as a lead candidate, combining transient therapeutic effects with preserved motor coordination. This study advances the development of safer neuroactive compounds, bridging a critical gap between preclinical innovation and clinical translation. Future work must validate chronic efficacy, disease relevance, and mechanistic targets to harness the full potential of KYNA analogs in treating complex neuropsychiatric disorders. Full article
Show Figures

Graphical abstract

19 pages, 7023 KiB  
Article
Modulation of Neurexins Alternative Splicing by Cannabinoid Receptors 1 (CB1) Signaling
by Elisa Innocenzi, Giuseppe Sciamanna, Alice Zucchi, Vanessa Medici, Eleonora Cesari, Donatella Farini, David J. Elliott, Claudio Sette and Paola Grimaldi
Cells 2025, 14(13), 972; https://doi.org/10.3390/cells14130972 - 25 Jun 2025
Viewed by 583
Abstract
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding [...] Read more.
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding thousands of isoforms with different properties of interaction with post-synaptic molecules for a quick adaptation to internal and external inputs. The endocannabinoid system also plays a central role in synaptic plasticity, regulating key retrograde signaling at both excitatory and inhibitory synapses. This study aims at elucidating the crosstalk between alternative splicing of neurexin and the endocannabinoid system in the hippocampus. By employing an ex vivo hippocampal system, we found that pharmacological activation of cannabinoid receptor 1 (CB1) with the specific agonist ACEA led to reduced neurotransmission, associated with increased expression of the Nrxn1–3 spliced isoforms excluding the exon at splice site 4 (SS4−). In contrast, treatment with the CB1 antagonist AM251 increased glutamatergic activity and promoted the expression of the Nrxn variants including the exon (SS4+) Knockout of the involved splicing factor SLM2 determined the suppression of the exon splicing at SS4 and the expression only of the SS4+ variants of Nrxns1–3 transcripts. Interestingly, in SLM2 ko hippocampus, modulation of neurotransmission by AM251 or ACEA was abolished. These findings suggest a direct crosstalk between CB1-dependent signaling, neurotransmission and expression of specific Nrxns splice variants in the hippocampus. We propose that the fine-tuned regulation of Nrxn13 genes alternative splicing may play an important role in the feedback control of neurotransmission by the endocannabinoid system. Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
Show Figures

Figure 1

22 pages, 2332 KiB  
Review
Glutamate-Mediated Neural Alterations in Lead Exposure: Mechanisms, Pathways, and Phenotypes
by Wagner A. Tamagno and Jennifer L. Freeman
Toxics 2025, 13(7), 519; https://doi.org/10.3390/toxics13070519 - 21 Jun 2025
Viewed by 514
Abstract
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial [...] Read more.
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial use, and ongoing applications in modern technologies. This review focuses on the mechanisms by which Pb disrupts glutamatergic signaling, a critical pathway for learning, memory, and synaptic plasticity. Pb’s interference with glutamate receptors (ionotropic NMDA and AMPA, as well as metabotropic receptors), transporters (EAATs, VGLUTs, and SNATs), and metabolic pathways (glutamate–glutamine cycle, TCA cycle, and glutathione synthesis) are detailed. By mimicking divalent cations like Ca2+ and Zn2+, Pb2+ disrupts calcium homeostasis, exacerbates excitotoxicity, and induces oxidative stress, ultimately impairing neuronal communication and synaptic function. These molecular disruptions manifest cognitive deficits, behavioral abnormalities, and increased susceptibility to neurodevelopmental and neurodegenerative disorders. Understanding Pb’s impact on glutamatergic neurotransmission offers critical insights into its neurotoxic profile and highlights the importance of addressing its effects on neural function. Full article
Show Figures

Graphical abstract

20 pages, 1301 KiB  
Review
The Involvement of the Endocannabinoid, Glutamatergic, and GABAergic Systems in PTSD
by Anna Dorota Grzesińska
Int. J. Mol. Sci. 2025, 26(13), 5929; https://doi.org/10.3390/ijms26135929 - 20 Jun 2025
Viewed by 728
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental health condition that develops in response to traumatic events. The endocannabinoid, glutamatergic, and GABAergic systems play crucial roles in the neurobiological mechanisms of PTSD. Both the endocannabinoid, glutamatergic, and GABAergic systems are involved in synaptic [...] Read more.
Post-traumatic stress disorder (PTSD) is a debilitating mental health condition that develops in response to traumatic events. The endocannabinoid, glutamatergic, and GABAergic systems play crucial roles in the neurobiological mechanisms of PTSD. Both the endocannabinoid, glutamatergic, and GABAergic systems are involved in synaptic remodeling and neuronal differentiation, ensuring efficient information transmission in the brain. Their interplay influences motivation, behavior, sensory perception, pain regulation, and visual processing. Additionally, these systems regulate processes such as cellular proliferation, adhesion, apoptosis, and immune responses. This article explores the involvement of the endocannabinoid, glutamatergic, and GABAergic systems in PTSD pathogenesis. A literature review was conducted on studies examining the relationship between the endocannabinoid, glutamatergic, and GABAergic systems in PTSD. Relevant publications were sourced from the Web of Science and Scopus databases, covering research up to 29 February 2025. Neurobiological mechanisms underlying PTSD may share common pathways with other mental and somatic disorders, particularly those involving inflammatory processes. The identification of biomarkers is crucial for assessing PTSD risk and implementing targeted interventions to improve patient outcomes. A deeper understanding of these mechanisms could enhance therapeutic strategies, ultimately improving the quality of life for individuals affected by PTSD. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop