Pharmacological Interaction of Botulinum Neurotoxins with Excitatory and Inhibitory Neurotransmitter Systems Involved in the Modulation of Inflammatory Pain
Abstract
1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Animals
5.2. Drugs
5.3. Surgical Procedure and Drug Injections
5.4. Formalin Test
5.5. Experimental Groups
5.6. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPA | α-ammino-3-idrossi-5-metil-4-isossazol-propionic acid |
BoNTs | botulinum neurotoxins |
BoNT/A, A | botulinum neurotoxin serotype A |
BoNT/B, B | botulinum neurotoxin serotype B |
GABA | γ-aminobutyric acid |
icv | intracerebroventricular |
ip | intraperitoneal |
MK | MK801 |
mu | Muscimol |
NMDA | N-metil-D-aspartate |
sal | saline |
sc | subcutaneous |
SNAP25 | synaptosome associated protein 25 |
VAMP | vesicle associated membrane protein |
References
- Bagues, A.; Hu, J.; Alshanqiti, I.; Chung, M.K. Neurobiological mechanisms of botulinum neurotoxin-induced analgesia for neuropathic pain. Pharmacol. Ther. 2024, 259, 108668. [Google Scholar] [CrossRef]
- Jabbari, B.; Tohidian, A. An update on botulinum toxin treatment of painful diabetic neuropathy, post-traumatic painful neuropathy/neuralgia, post-herpetic neuralgia and occipital neuralgia. Toxicon 2025, 255, 108237. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Yu, X.; Dai, X.; Zou, W. Effectiveness and safety of pharmacological prophylaxis for chronic migraine: A systematic review and network meta-analysis. J. Neurol. 2024, 271, 5762–5777. [Google Scholar] [CrossRef]
- Durham, P.L.; Cady, R.; Cady, R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: Implications for migraine therapy. Headache 2004, 44, 35–42. [Google Scholar] [CrossRef]
- Meng, J.; Wang, J.; Lawrence, G.; Dolly, J.O. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J. Cell Sci. 2007, 120, 2864–2874. [Google Scholar] [CrossRef]
- Dolly, J.O.; O’Connell, M.A. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr. Opin. Pharmacol. 2012, 12, 100–108. [Google Scholar] [CrossRef]
- Verderio, C.; Grumelli, C.; Raiteri, L.; Coco, S.; Paluzzi, S.; Caccin, P.; Rossetto, O.; Bonanno, G.; Montecucco, C.; Matteoli, M. Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 2007, 8, 142–153. [Google Scholar] [CrossRef]
- Poulain, B.; Lemichez, E.; Popoff, M.R. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020, 178, 20–32. [Google Scholar] [CrossRef]
- Porro, C.A.; Cavazzuti, M. Spatial and temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog. Neurobiol. 1993, 41, 565–607. [Google Scholar] [CrossRef]
- Dickenson, A.H.; Sullivan, A.F. Peripheral origin and central modulation of subcutaneous formalin-induced activity of rat dorsal horn neurons. Neurosci. Lett. 1987, 83, 207–211. [Google Scholar] [CrossRef]
- Green, G.M.; Dickenson, A. GABA-receptor control of the amplitude and duration of the neuronal responses to formalin in the rat spinal cord. Eur. J. Pain 1997, 1, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.L.; Yashpal, K.; Pitcher, G.M.; Coderre, T.J. Physiological evidence that the ‘interphase’ in the formalin test is due to active inhibition. Pain 1999, 82, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, M.; Hammond, D.L. Role of spinal gamma-aminobutyric acid A receptors in formalin-induced nociception in the rat. J. Pharmacol. Exp. Ther. 1997, 282, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Coderre, T.J.; Vaccarino, A.L.; Melzack, R. Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res. 1990, 535, 155–158. [Google Scholar] [CrossRef]
- Puig, S.; Sorkin, L.S. Formalin-evoked activity in identified primary afferent fibres: Systemic lidocaina suppresses phase 2 activity. Pain 1996, 64, 45–55. [Google Scholar] [CrossRef]
- Luvisetto, S.; Marinelli, S.; Lucchetti, F.; Marchi, F.; Cobianchi, S.; Rossetto, O.; Monteccucco, C.; Pavone, F. Botulinum neurotoxins and formalin-induced pain: Central vs. peripheral effects in mice. Brain Res. 2006, 1082, 124–131. [Google Scholar] [CrossRef]
- Cui, M.; Khanijou, S.; Rubino, J.; Aoki, K.R. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 2004, 107, 125–133. [Google Scholar] [CrossRef]
- Matak, I.; Stracenski, I.; Lackovic, Z. Comparison of analgesic effects of single versus repeated injection of botulinum toxin in orofacial formalin test in rats. J. Neural Transm. 2013, 120, 141–144. [Google Scholar] [CrossRef]
- Nishiyama, T.; Yaksh, T.L.; Weber, E. Effects of intrathecal NMDA and non-NMDA antagonists on acute thermal nociception and their interaction with morphine. Anesthesiology 1998, 89, 715–722. [Google Scholar] [CrossRef]
- Chaplan, S.R.; Malmberg, A.B.; Yaksh, T.L. Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J. Pharmacol. Exp. Ther. 1997, 280, 829–838. [Google Scholar] [CrossRef]
- Marinelli, S.; Luvisetto, S.; Cobianchi, S.; Makuch, W.; Obara, I.; Mezzaroma, E.; Caruso, M.; Straface, E.; Przewlocka, B.; Pavone, F. Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models. Neuroscience 2010, 171, 316–328. [Google Scholar] [CrossRef]
- Marinelli, S.; Vacca, V.; Ricordy, R.; Uggenti, C.; Tata, A.M.; Luvisetto, S.; Pavone, F. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxins A involves Schwann cells and astrocytes. PLoS ONE 2012, 7, e47977. [Google Scholar] [CrossRef] [PubMed]
- Verderio, C.; Pozzi, D.; Pravettoni, E.; Inverardi, F.; Schenk, U.; Coco, S.; Proux-Gillardeaux, V.; Galli, T.; Rossetto, O.; Frassoni, C.; et al. SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamataergic reponsiveness to depolarization. Neuron 2004, 41, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Basbaum, A.I.; Fields, H.L. Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 1984, 7, 309–338. [Google Scholar] [CrossRef]
- Fields, H.L. More pain; less gain. Science 2014, 345, 513–514. [Google Scholar] [CrossRef] [PubMed]
- Pressey, J.C.; de Saint-Rome, M.; Raveendran, V.A.; Woodin, M.A. Chloride transporters controlling neuronal excitability. Physiol. Rev. 2023, 103, 1095–1135. [Google Scholar] [CrossRef]
- Meisner, J.G.; Marsh, A.D.; Marsh, D.R. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J. Neurotrauma 2010, 27, 729–737. [Google Scholar] [CrossRef]
- Yiangou, Y.; Anand, U.; Otto, W.R.; Sinisi, M.; Fox, M.; Birch, R.; Foster, K.A.; Mukerji, G.; Akbar, A.; Agarwal, S.K.; et al. Increased levels of SV2A botulinum neurotoxin receptor in clinical sensory disorders and functional effects of botulinum toxins A and E in cultured human sensory neurons. J. Pain Res. 2011, 4, 347–355. [Google Scholar] [CrossRef]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Luvisetto, S.; Rossetto, O.; Montecucco, C.; Pavone, F. Toxicity of botulinum neurotoxins in central nervous system of mice. Toxicon 2003, 41, 475–481. [Google Scholar] [CrossRef]
- Luvisetto, S.; Marinelli, S.; Rossetto, O.; Montecucco, C.; Pavone, F. Central injection of botulinum neurotoxins: Behavioural effects in mice. Behav. Pharmacol. 2004, 15, 233–240. [Google Scholar] [CrossRef]
- Mehrabadi, S.; Manaheji, H. Effect of Sub-effective dose of GABA Agonists on Attenuation of Morphine Tolerance in Rats: Behavioral and Electrophysiological Studies. Int. J. Adv. Biol. Biomed. Res. 2019, 7, 326–344. [Google Scholar] [CrossRef]
- Mao, J. NMDA and opioid receptors: Their interactions in antinociception, tolerance and neuroplasticity. Brain Res. Rev. 1999, 30, 289–304. [Google Scholar] [CrossRef]
- Vacca, V.; Marinelli, S.; Eleuteri, C.; Luvisetto, S.; Pavone, F. Botulinum neurotoxin A enhances the analgesic effects on inflammatory pain and antagonizes tolerance induced by morphine in mice. Brain Behav. Immun. 2012, 26, 489–499. [Google Scholar] [CrossRef] [PubMed]
Group Name | icv Injection | ip Injection |
---|---|---|
sal-sal | saline | saline |
A-sal | BoNT/A | saline |
B-sal | BoNT/B | saline |
sal-MK | saline | MK801 |
sal-mu | saline | muscimol |
A-MK | BoNT/A | MK801 |
A-mu | BoNT/A | muscimol |
B-MK | BoNT/B | MK801 |
B-mu | BoNT/B | muscimol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinelli, S.; Pavone, F.; Luvisetto, S. Pharmacological Interaction of Botulinum Neurotoxins with Excitatory and Inhibitory Neurotransmitter Systems Involved in the Modulation of Inflammatory Pain. Toxins 2025, 17, 374. https://doi.org/10.3390/toxins17080374
Marinelli S, Pavone F, Luvisetto S. Pharmacological Interaction of Botulinum Neurotoxins with Excitatory and Inhibitory Neurotransmitter Systems Involved in the Modulation of Inflammatory Pain. Toxins. 2025; 17(8):374. https://doi.org/10.3390/toxins17080374
Chicago/Turabian StyleMarinelli, Sara, Flaminia Pavone, and Siro Luvisetto. 2025. "Pharmacological Interaction of Botulinum Neurotoxins with Excitatory and Inhibitory Neurotransmitter Systems Involved in the Modulation of Inflammatory Pain" Toxins 17, no. 8: 374. https://doi.org/10.3390/toxins17080374
APA StyleMarinelli, S., Pavone, F., & Luvisetto, S. (2025). Pharmacological Interaction of Botulinum Neurotoxins with Excitatory and Inhibitory Neurotransmitter Systems Involved in the Modulation of Inflammatory Pain. Toxins, 17(8), 374. https://doi.org/10.3390/toxins17080374