Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = ginger extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4829 KiB  
Article
Quantitative Analysis of Ginger Maturity and Pulsed Electric Field Thresholds: Effects on Microstructure and Juice’s Nutritional Profile
by Zhong Han, Pan He, Yu-Huan Geng, Muhammad Faisal Manzoor, Xin-An Zeng, Suqlain Hassan and Muhammad Talha Afraz
Foods 2025, 14(15), 2637; https://doi.org/10.3390/foods14152637 - 28 Jul 2025
Viewed by 309
Abstract
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect [...] Read more.
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect on juice yield and bioactive compound extraction was systematically evaluated. At 2.5 kV/cm, old ginger exhibited a pronounced dielectric breakdown effect due to enhanced electrolyte content and cell wall lignification, resulting in a higher degree of cell disintegration (0.65) compared with fresh ginger (0.44). This translated into a significantly improved juice yield of 90.85% for old ginger, surpassing the 84.16% limit observed in fresh ginger. HPLC analysis revealed that the extraction efficiency of 6-gingerol and 6-shogaol increased from 1739.16 to 2233.60 µg/g and 310.31 to 339.63 µg/g, respectively, in old ginger after PEF treatment, while fresh ginger showed increases from 1257.88 to 1824.05 µg/g and 166.43 to 213.52 µg/g, respectively. Total phenolic content (TPC) and total flavonoid content (TFC) also increased in both tissues, with OG-2.5 reaching 789.57 µg GAE/mL and 336.49 µg RE/mL, compared with 738.19 µg GAE/mL and 329.62 µg RE/mL in FG-2.5. Antioxidant capacity, as measured by ABTS•+ and DPPH inhibition, improved more markedly in OG-2.5 (37.8% and 18.7%, respectively) than in FG-2.5. Moreover, volatile compound concentrations increased by 177.9% in OG-2.5 and 137.0% in FG-2.5 compared with their respective controls, indicating differential aroma intensification and compound transformation. Structural characterization by SEM and FT-IR further corroborated enhanced cellular disruption and biochemical release in mature tissue. Collectively, these results reveal a maturity-dependent mechanism of electro-permeabilization in plant tissues, offering new insights into optimizing non-thermal processing for functional food production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

22 pages, 3024 KiB  
Article
Effects of Ginger Supplementation on Markers of Inflammation and Functional Capacity in Individuals with Mild to Moderate Joint Pain
by Jacob Broeckel, Landry Estes, Megan Leonard, Broderick L. Dickerson, Drew E. Gonzalez, Martin Purpura, Ralf Jäger, Ryan J. Sowinski, Christopher J. Rasmussen and Richard B. Kreider
Nutrients 2025, 17(14), 2365; https://doi.org/10.3390/nu17142365 - 18 Jul 2025
Viewed by 1483
Abstract
Background: Ginger contains gingerols, shagaols, paradols, gingerdiones, and terpenes, which have been shown to display anti-inflammatory properties and inhibit pain receptors. For this reason, ginger has been marketed as a natural analgesic. This study examined whether a specialized ginger extract obtained through supercritical [...] Read more.
Background: Ginger contains gingerols, shagaols, paradols, gingerdiones, and terpenes, which have been shown to display anti-inflammatory properties and inhibit pain receptors. For this reason, ginger has been marketed as a natural analgesic. This study examined whether a specialized ginger extract obtained through supercritical CO2 extraction and subsequent fermentation affects pain perception, functional capacity, and markers of inflammation. Methods: Thirty men and women (56.0 ± 9.0 years, 164.4 ± 14 cm, 86.5 ± 20.9 kg, 31.0 ± 7.5 kg/m2) with a history of mild to severe joint and muscle pain as well as inflammation participated in a placebo-controlled, randomized, parallel-arm study. Participants donated fasting blood, completed questionnaires, rated pain in the thighs to standardized pressure, and then completed squats/deep knee bends, while holding 30% of body mass, for 3 sets of 10 repetitions on days 0, 30, and 56 of supplementation. Participants repeated tests after 2 days of recovery following each testing session. Participants were matched by demographics and randomized to ingest 125 mg/d of a placebo or ginger (standardized to contain 10% total gingerols and no more than 3% total shogaols) for 58 days. Data were analyzed by a general linear model (GLM) analysis of variance with repeated measures, mean changes from the baseline with 95% confidence intervals, and chi-squared analysis. Results: There was evidence that ginger supplementation attenuated perceptions of muscle pain in the vastus medialis; improved ratings of pain, stiffness, and functional capacity; and affected several inflammatory markers (e.g., IL-6, INF-ϒ, TNF-α, and C-Reactive Protein concentrations), particularly following two days of recovery from resistance exercise. There was also evidence that ginger supplementation increased eosinophils and was associated with less frequent but not significantly different use of over-the-counter analgesics. Conclusions: Ginger supplementation (125 mg/d, providing 12.5 mg/d of gingerols) appears to have some favorable effects on perceptions of pain, functional capacity, and inflammatory markers in men and women experiencing mild to moderate muscle and joint pain. Registered clinical trial #ISRCTN74292348. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

19 pages, 733 KiB  
Article
Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations
by Lucía Plana, Javier Marhuenda, Raúl Arcusa, Ana María García-Muñoz, Pura Ballester, Begoña Cerdá, Desirée Victoria-Montesinos and Pilar Zafrilla
Antioxidants 2025, 14(7), 873; https://doi.org/10.3390/antiox14070873 - 17 Jul 2025
Viewed by 489
Abstract
Ginger (Zingiber officinale Roscoe) has been widely recognized for its antioxidant properties, primarily attributed to its phenolic compounds such as gingerols and shogaols. However, limited data exist regarding how different pharmaceutical forms influence the bioaccessibility and antioxidant efficacy of these compounds. [...] Read more.
Ginger (Zingiber officinale Roscoe) has been widely recognized for its antioxidant properties, primarily attributed to its phenolic compounds such as gingerols and shogaols. However, limited data exist regarding how different pharmaceutical forms influence the bioaccessibility and antioxidant efficacy of these compounds. This study aimed to evaluate the antioxidant capacity and bioaccessibility of ginger in different pharmaceutical forms—capsules (20 mg, 40 mg, and 80 mg), a pure powdered extract, and a liquid formulation—standardized to ≥6% gingerols. The phenolic profile of each formulation was characterized using HPLC-DAD (High-Performance Liquid Chromatography with Diode Array Detection), followed by the evaluation of antioxidant capacity through DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ORAC (Oxygen Radical Absorbance Capacity) assays, and the assessment of bioaccessibility via an in vitro digestion model. The results demonstrated that antioxidant activity was positively correlated with extract concentration and was highest in the liquid formulation (426.0 ± 0.05 µmol Trolox equivalents (TE) and 11,336.7 ± 0.20 µmol TE in the DPPH and ORAC assays, respectively). The bioaccessibility of 6-gingerol and 6-shogaol significantly increased in the liquid form, reaching 23.44% and 11.31%, respectively, compared to ≤4% in the pure extract. These findings highlight the influence of the formulation matrix on compound release and support the use of liquid preparations to enhance the functional efficacy of ginger-derived nutraceuticals. This standardized comparative approach, using formulations derived from the same extract, offers new insights into how the delivery matrix influences the functional performance of ginger compounds, providing guidance for the development of more effective nutraceutical strategies. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 661
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

14 pages, 2084 KiB  
Article
Optimized High-Pressure Ultrasonic-Microwave-Assisted Extraction of Gingerol from Ginger: Process Design and Performance Evaluation
by Yang Zhang, Siyi Yang, Wensi Li, Xiaoyan Li, Xiangqin Lai, Xiang Li, Wuwan Xiong and Bo Zhang
Processes 2025, 13(7), 2149; https://doi.org/10.3390/pr13072149 - 6 Jul 2025
Viewed by 411
Abstract
This study employed high-pressure ultrasonic-microwave-assisted extraction (HP-UMAE) to extract gingerols from ginger. The extraction yield and total polyphenol content of the extracts were determined. Their antioxidant activity was assessed by DPPH and ABTS radical scavenging assays, and compared with extracts obtained by leaching [...] Read more.
This study employed high-pressure ultrasonic-microwave-assisted extraction (HP-UMAE) to extract gingerols from ginger. The extraction yield and total polyphenol content of the extracts were determined. Their antioxidant activity was assessed by DPPH and ABTS radical scavenging assays, and compared with extracts obtained by leaching extraction, reflux extraction, ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and ultrasonic-microwave-assisted extraction (UMAE). The results demonstrated that HP-UMAE achieved the highest extraction yield and the strongest ABTS radical scavenging activity among the evaluated methods. Furthermore, HP-UMAE extracts exhibited the highest concentrations of key gingerol constituents: 6-gingerol (14.29 mg/L), 8-gingerol (0.38 mg/L), 10-gingerol (1.95 mg/L), and 6-shogaol (4.32 mg/L). This enhanced efficacy is attributed to the synergistic combination of ultrasonic cavitation and microwave-induced thermal effects under elevated pressure. This synergy creates conditions promoting cellular wall disruption, facilitating the release of intracellular components, while concurrently enhancing solvent penetration and gingerol solubility. Scanning electron microscopy (SEM) analysis confirmed the significant structural damage inflicted on ginger cell walls following HP-UMAE treatment. The process parameters for HP-UMAE were optimized using single-factor experiments. The optimal extraction conditions were determined as follows: microwave power 800 W, ultrasonic power 1000 W, liquid-to-solid ratio 55:1, and temperature 100 °C (corresponding pressure 2 MPa). Under these optimized parameters, the extraction yield and ABTS radical scavenging rate reached their peak performance, yielding values of 4.52% and 43.23%, respectively. Full article
Show Figures

Figure 1

16 pages, 1190 KiB  
Article
Effect of Standardized Ginger (Zingiber officinale Roscoe) Extract on Gut Morphology, Microbiota Composition, and Growth Performance in Broiler Chickens
by Martina Đurić Jarić, Željko Gottstein, Silvijo Vince, Ivona Žura Žaja, Maksimiljan Brus, Dražen Đuričić, Marko Samardžija and Hrvoje Valpotić
Agriculture 2025, 15(13), 1448; https://doi.org/10.3390/agriculture15131448 - 4 Jul 2025
Viewed by 356
Abstract
With increasing concerns over antibiotic resistance in livestock, there is an urgent need for sustainable alternatives to enhance health and productivity in poultry production. Ginger (Zingiber officinale Roscoe), a phytobiotic recognized for its diverse health benefits, including growth promotion and the [...] Read more.
With increasing concerns over antibiotic resistance in livestock, there is an urgent need for sustainable alternatives to enhance health and productivity in poultry production. Ginger (Zingiber officinale Roscoe), a phytobiotic recognized for its diverse health benefits, including growth promotion and the improvement of intestinal function, was evaluated for its efficacy. This study investigated the effects of standardized ginger extract on gut morphology, microbiota composition, and growth performance in broiler chickens. A total of 200 day-old (Ross 308) broiler chicks were randomly assigned to four dietary groups: a control group receiving a basal diet and three experimental groups receiving a basal diet supplemented with 2.5 g/kg, 5 g/kg, and 10 g/kg of ginger extract. The performance results demonstrated that dietary ginger supplementation at 5 g/kg significantly improved feed efficiency without adversely affecting final body weight (p < 0.01). Feed intake in broilers was significantly reduced by higher doses of ginger extract (p < 0.01). Broiler chickens supplemented with 5 g/kg of ginger exhibited a significantly higher villous height-to-crypt depth ratio in the duodenum and jejunum (p < 0.05). Groups supplemented with 5 g/kg and 10 g/kg of ginger extract demonstrated a significant decrease in the relative abundance of Proteobacteria and an increase in the proportion of Firmicutes (p < 0.05). In conclusion, the addition of ginger extract at 5 g/kg resulted in improved feed efficiency, intestinal morphology, and microbiota composition. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

13 pages, 340 KiB  
Review
Zingerone as a Neuroprotective Agent Against Cognitive Disorders: A Systematic Review of Preclinical Studies
by Tosin A. Olasehinde and Oyinlola O. Olaokun
Int. J. Mol. Sci. 2025, 26(13), 6111; https://doi.org/10.3390/ijms26136111 - 25 Jun 2025
Viewed by 417
Abstract
Cognitive problems are associated with impaired learning ability and memory dysfunction. Neuroinflammation has been identified as an important factor in the progression of anxiety and depressive disorders. Zingerone is a phenolic alkanone derived from ginger (Zingiber officinale Roscoe), which is known for its [...] Read more.
Cognitive problems are associated with impaired learning ability and memory dysfunction. Neuroinflammation has been identified as an important factor in the progression of anxiety and depressive disorders. Zingerone is a phenolic alkanone derived from ginger (Zingiber officinale Roscoe), which is known for its antioxidant and anti-inflammatory properties. A number of studies have investigated the effect of zingerone on neuroinflammation and cognitive impairment. However, this evidence has not been systematically reviewed. This study sought to systematically review the effect of zingerone on neuroinflammation and neurobehavioural changes associated with memory and learning impairment and anxiety-like and depressive-like behaviours. A systematic review was conducted using pre-defined search criteria on Google Scholar, Scopus and Web of Science. The records obtained were screened based on inclusion criteria, and data was extracted from the included studies. Out of the 482 studies that were identified, only 9 studies met the inclusion criteria. Neuroinflammatory markers such as interleukin 1β (IL-1β), interleukin 6 (IL-6), tumour necrosis factor-alpha (TNF-α) and ionized calcium binding adaptor molecule (IBA-1), as well as behavioural parameters including Morris water maze, Y-Maze, recognition test, passive avoidance test, elevated plus maze, sucrose preference test and forced swimming test were measured. Zingerone exhibited anti-neuroinflammatory effects by improving IL-1β, IL-6 and TNF-α levels. However, zingerone did not show any significant changes on activated microglia. The anti-neuroinflammatory mechanisms of zingerone were linked to the inhibition of nuclear factor kappa B (NF-kB) activation and the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, as well as the reduction in neuronal nitric oxide synthase (nNOS). The anxiolytic and anti-depressive effects of zingerone were also associated with an improvement in cortical cholinergic transmission, the mitigation of oxidative stress and the upregulation of neurotransmitters such as serotonin and dopamine. This review provides scientific evidence on the cognitive enhancing and neuroprotective mechanisms of zingerone, which may be beneficial for future experimental investigations. Full article
Show Figures

Figure 1

26 pages, 1891 KiB  
Article
Developing Novel Plant-Based Probiotic Beverages: A Study on Viability and Physicochemical and Sensory Stability
by Concetta Condurso, Maria Merlino, Anthea Miller, Ambra Rita Di Rosa, Francesca Accetta, Michelangelo Leonardi, Nicola Cicero and Teresa Gervasi
Foods 2025, 14(12), 2148; https://doi.org/10.3390/foods14122148 - 19 Jun 2025
Viewed by 801
Abstract
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus [...] Read more.
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus strains (L. casei, L. plantarum, L. reuteri) and stored under refrigerated conditions during both primary (PSL) and secondary shelf life (SSL). Product shelf life was defined by probiotic viability, considering the functional threshold (≥6 log CFU/mL), which was maintained across all formulations throughout the storage period. Physicochemical parameters, including pH, titratable acidity, and colour, as well as volatile profile, remained stable, with only minor variations depending on the matrix and bacterial strain. Sensory evaluations (triangle and acceptability tests) confirmed that the probiotic juices were acceptable to consumers. Overall, the results demonstrate the feasibility of producing non-fermented, plant-based probiotic beverages that retain their functional properties and meet consumer sensory expectations, offering a promising alternative for vegan and lactose-intolerant individuals. Full article
Show Figures

Figure 1

7 pages, 1083 KiB  
Proceeding Paper
The Effect of Temperature on the Upscaling Process of 6-Gingerol and 6-Shogaol Extraction from Zingiber officinale Using Subcritical Water Extraction
by Mohd Sharizan Md Sarip, Nik Muhammad Azhar Nik Daud, Zuhaili Idham, Mohd Asraf Mohd Zainudin, Amirul Ridzuan Abu Bakar, Muhammad Syafiq Hazwan Ruslan and Ahmad Hazim Abdul Aziz
Eng. Proc. 2025, 87(1), 74; https://doi.org/10.3390/engproc2025087074 - 10 Jun 2025
Viewed by 378
Abstract
Subcritical water extraction (SWE) is an eco-friendly technology offering advantages such as green solvent and selectivity, especially for extracting bioactive compounds. Despite its potential, limited data exists on upscaling this process. This study investigates the upscaling of SWE by comparing two systems: a [...] Read more.
Subcritical water extraction (SWE) is an eco-friendly technology offering advantages such as green solvent and selectivity, especially for extracting bioactive compounds. Despite its potential, limited data exists on upscaling this process. This study investigates the upscaling of SWE by comparing two systems: a commercially available high-pressure system (ASE 200, 32 mL capacity) and high-volume subcritical water extraction (HVSWE) (1000 mL capacity). Medicinal compounds, 6-gingerol and 6-shogaol, were extracted from ginger using SWE at temperatures ranging from 130 °C to 200 °C, at a constant pressure of 3.5 MPa, for 30 min. High-Performance Liquid Chromatography (HPLC) was employed for quantitative analysis. The optimal extraction temperature for 6-gingerol using the high-volume SWE system was 130 °C, yielding 1741.54 ± 0.96 µg/g, whereas ASE 200 achieved optimal extraction at 140 °C with 1957.22 ± 2.55 µg/g. For 6-shogaol, both systems demonstrated an optimal extraction temperature of 170 °C, with yields of 541.78 ± 3.16 µg/g and 1135.23 ± 1.18 µg/g for the high-volume SWE and ASE 200 systems, respectively. These variations stem from the 35-fold difference in capacity, influencing heat and mass transfer during extraction. Thus, scale-up factors must be carefully considered to enhance the mass transfer efficiency and optimize SWE processes at larger scales. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

14 pages, 1706 KiB  
Article
Comparison of Antioxidant and Antibacterial Properties of Five Plants with Anti-Diabetes and Anti-Cancer Potential
by Nassiba Mimi, Leila Madani, Djamila Kerrouche, Nabila Boucherit, Nabil Touzout, Jie Zhang, Abdeltif Amrane and Hichem Tahraoui
Microbiol. Res. 2025, 16(6), 108; https://doi.org/10.3390/microbiolres16060108 - 26 May 2025
Viewed by 764
Abstract
Polyphenols and flavonoids are bioactive organic compounds extracted from medicinal plants. They exhibit significant antioxidant and antibacterial properties, which help fight several chronic diseases, such as diabetes and cancer. Numerous therapeutic effects and a broad spectrum of biological activities are exhibited by the [...] Read more.
Polyphenols and flavonoids are bioactive organic compounds extracted from medicinal plants. They exhibit significant antioxidant and antibacterial properties, which help fight several chronic diseases, such as diabetes and cancer. Numerous therapeutic effects and a broad spectrum of biological activities are exhibited by the following five medicinal plants traditionally utilized in medicine for the treatment of diabetes and cancer: Ginger, ephedra alata, ajuga iva, nettle, and graviola (annona muricata). The objective of the present study is to examine ethanolic and aqueous extracts exhaustively obtained from these plants through decoction and maceration using ethanol, with particular emphasis on the content of total polyphenols and flavonoids, and to evaluate their in vitro antioxidant and antibacterial potential. The antibacterial effect was assessed on the strains Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. The study was complemented by an FTIR analysis of the different extracts. The results indicate that for ginger, graviola, and ajuga iva, as opposed to ephedra alata, maceration appears to be the more efficacious technique compared to decoction. The highest yield (27.465%) was observed in the case of the ethanolic extract of ginger. Ethanolic extracts contain higher concentrations of polyphenols and flavonoids than aqueous extracts. The aqueous extracts of ajuga iva and nettle demonstrate the highest inhibition of Staphylococcus aureus bacteria. Full article
Show Figures

Figure 1

16 pages, 1210 KiB  
Article
Effect of Thermal Processing by Spray Drying on Key Ginger Compounds
by Alina Warren-Walker, Manfred Beckmann, Alison Watson, Steffan McAllister and Amanda J. Lloyd
Metabolites 2025, 15(6), 350; https://doi.org/10.3390/metabo15060350 - 24 May 2025
Viewed by 785
Abstract
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute [...] Read more.
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute to its health benefits. This study aimed to investigate the impact of spray drying on the chemical profile of ginger, particularly focusing on the transformation of gingerols into shogaols and related compounds. Methods: Fresh ginger juice was spray-dried using various carrier agents, including Clear Gum (CO03), pea protein, and inulin. Mass spectra of the resulting powders were acquired using High-Resolution Flow Infusion Electrospray Ionisation Mass Spectrometry (HR-FIE-MS) to obtain fingerprint data. Key bioactive compounds were tentatively identified to Level 2, and their relative intensities were assessed to evaluate the effects of different carriers on the chemical composition of the ginger powders. Results: Spray drying with the commercial carrier CO03 resulted in an increase in shogaol analogues ([10]-, [8]-, and cis-[8]-shogaol), gingerenone B, and oxidation products such as 6-hydroxyshogaol, 6-dehydroshogaol, and zingerone. In contrast, natural carriers like pea protein and inulin led to lower relative intensities of these bioactives, suggesting limited capacity for promoting thermal transformations. Spray drying without a carrier produced a shogaol-dominant profile but resulted in powders with poor handling properties, such as stickiness and agglomeration. Antioxidant and total polyphenol assays showed that spray drying reduced antioxidant capacity, while total polyphenol content was more preserved; natural carriers such as inulin better maintained bioactivity compared to modified starch or pea protein. Conclusions: Among the five formulations evaluated—ginger juice with no carrier, with CO03 (two dilutions), pea protein, or inulin—CO03-based samples showed the greatest chemical transformation, while inulin and pea protein better preserved antioxidant capacity but induced fewer metabolite changes. Thus, choice of carrier in the spray-drying process influences the chemical profile and functional characteristics of resultant ginger powders. While CO03 effectively enhances the formation of bioactive shogaols and related compounds, its ultra-processed nature may not align with clean-label product trends. Natural carriers, although more label-friendly, may not create the desired chemical transformations. Therefore, optimising carrier selection is important to balance bioactivity, product stability, and consumer acceptability in the development of ginger-based functional products. Full article
Show Figures

Figure 1

25 pages, 2404 KiB  
Article
Network Pharmacology-Guided Evaluation of Ginger and Cornelian Cherry Extracts Against Depression and Metabolic Dysfunction in Estrogen-Deficient Chronic Stressed Rats
by Nara Lee, Ting Zhang, Hanbin Joe and Sunmin Park
Int. J. Mol. Sci. 2025, 26(10), 4829; https://doi.org/10.3390/ijms26104829 - 18 May 2025
Viewed by 854
Abstract
This study investigated the therapeutic effects of water extracts from Zingiber officinale Roscoe (ginger) and Cornus officinalis Siebold and Zucc. fruits (COF) water extracts on depression-like behavior and metabolic dysfunction in estrogen-deficient rats exposed to chronic mild stress (CMS). Network pharmacology analysis identified [...] Read more.
This study investigated the therapeutic effects of water extracts from Zingiber officinale Roscoe (ginger) and Cornus officinalis Siebold and Zucc. fruits (COF) water extracts on depression-like behavior and metabolic dysfunction in estrogen-deficient rats exposed to chronic mild stress (CMS). Network pharmacology analysis identified three bioactive compounds in ginger and four in COF, with 11 overlapping targets linked to both depression and metabolic pathways, primarily involving NR3C1, HTR2A, MAOA, and SLC6A4 genes associated with hypothalamic–pituitary–adrenal (HPA) axis regulation and neurotransmitter modulation. Ovariectomized rats received 200 mg/kg/day of ginger or COF extracts for 7 weeks, with a 4-week CMS protocol initiated at week 3. Both extracts significantly improved depression-like behaviors, memory performance, glucose tolerance, lipid profiles, and bone mineral density, normalized HPA axis markers (corticosterone and ACTH), and increased hippocampal serotonin and dopamine levels. Ginger demonstrated greater efficacy in improving memory and metabolic outcomes compared to COF. Molecular docking further validated these findings, revealing strong and stable interactions between key phytochemicals—such as hydroxygenkwanin and telocinobufagin—and target proteins MAOA, HTR2A, and NR3C1, supporting their mechanistic role in stress and mood regulation. These results support supplementing ginger and COF extracts as promising botanical interventions for estrogen-deficiency-related mood and metabolic disorders, with potential clinical application at a human-equivalent dose of 1.5 g/day. Full article
(This article belongs to the Special Issue Medicinal Plants and Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

18 pages, 2181 KiB  
Article
Development of High-Pressure Extraction and Automatic Steam Distillation Methods for Aronia mitschurinii, Juvenile Ginger, and Holy Basil Plants
by Sara Lahoff, Ezra E. Cable, Ryan Buzzetto-More and Victoria V. Volkis
Molecules 2025, 30(10), 2199; https://doi.org/10.3390/molecules30102199 - 17 May 2025
Viewed by 1132
Abstract
Sample preparation is the most time-consuming part of phytochemical, agricultural chemical, and food science studies and is constantly being improved. This includes the development of modern extraction methods, such as high-pressure extraction and automatic steam distillation. These methods feature high reproducibility, low time [...] Read more.
Sample preparation is the most time-consuming part of phytochemical, agricultural chemical, and food science studies and is constantly being improved. This includes the development of modern extraction methods, such as high-pressure extraction and automatic steam distillation. These methods feature high reproducibility, low time consumption, and the ability to run several parallel samples. However, the ideal parameters for processing plant materials using these methods have not been fully explored. These parameters include those that produce the highest yield and those that produce yields comparable to less modern extraction techniques, which would allow for a comparison of data to a wide range of preexisting data obtained from plant materials in different growing locations and climates. As such, this study examined extracts produced by reflux extraction, high-pressure extraction, and traditional and automatic steam distillation for three plants: aronia, holy basil, and juvenile ginger. High-pressure extraction methods were developed to produce extracts similar to those produced by reflux extraction, while automatic distillation methods were developed to produce high essential oil yields. The automatic steam distillation yields were 55.81 ± 1.97 mg/g of holy basil, 61.52 ± 0.61 mg/g of ginger, and 45.79 ± 1.38 mg/g of aronia. The high-pressure extraction yields were 11.09 ± 1.46 mg GAE/g of holy basil, 154.50 ± 17.10 mg of anthocyanins/mL of aronia, 6.60 ± 0.55 mg GAE/g of ginger, and 3.27 ± 0.25 mg GAE/g of ginger. These were compared to reflux yields of 32.71 ± 5.22 mg GAE/g of holy basil, 253.00 ± 39.56 mg of anthocyanin/mL of aronia, and 3.34 ± 2.07 mg GAE/g of ginger. Full article
(This article belongs to the Special Issue Exploring the Natural Antioxidants in Foods)
Show Figures

Graphical abstract

16 pages, 2649 KiB  
Article
Electrophysiological Mechanism and Identification of Effective Compounds of Ginger (Zingiber officinale Roscoe) Shoot Volatiles Against Aphis gossypii Glover (Hemiptera: Aphididae)
by Jiawei Ma, Ye Tian, Xuli Liu, Shengyou Fang, Chong Sun, Junliang Yin, Yongxing Zhu and Yiqing Liu
Horticulturae 2025, 11(5), 490; https://doi.org/10.3390/horticulturae11050490 - 30 Apr 2025
Viewed by 376
Abstract
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic [...] Read more.
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic and insecticidal properties; however, the underlying mechanisms remain poorly understood. This study evaluated the repellent activity of ginger shoot extract (GSE) across four solvent phases—petroleum ether, trichloromethane, ethyl acetate, and methanol—against A. gossypii. The results demonstrated that GSE exhibited significant repellent effects, with the methanol phase showing the most pronounced activity. Twelve fractions were chromatographically separated from the methanol phase, and electroantennography (EAG) analysis revealed that fraction 4 induced strong EAG responses in both winged and wingless aphids. Further identification of active compounds in fraction 4 by gas chromatography–mass spectrometry (GC–MS) indicated the presence of terpenes, aromatics, alkanes, esters, and phenols as major constituents. Subsequent EAG analysis identified several key compounds—octahydro-pentalene (C1), (Z)-cyclooctene (C2), dimethylstyrene (C3), tetramethyl-heptadecane (C5), tetrahydro-naphthalene (C6), and heptacosane (C9)—as responsible for eliciting EAG responses in both aphid forms. Additionally, results from Y-tube olfactometer assays showed that (Z)-cyclooctene and heptacosane were significantly attractive, while octahydro-pentalene acted as a strong repellent to both winged and wingless aphids. These findings offer valuable insights for the development of synthetic attractants and repellents for A. gossypii and provide a theoretical foundation for utilizing ginger in the creation of botanical pesticides targeting this pest. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds of Horticultural Plants)
Show Figures

Figure 1

17 pages, 12385 KiB  
Article
Application of Polysaccharides in Hydrogel Biomaterials
by Piotr Szatkowski, Zuzanna Flis, Anna Ptak and Edyta Molik
Int. J. Mol. Sci. 2025, 26(7), 3387; https://doi.org/10.3390/ijms26073387 - 4 Apr 2025
Viewed by 608
Abstract
Natural compounds incorporated into hydrogel materials have been widely used to support wound healing due to their numerous properties. The aim of this research was to produce hydrogel biomaterials with the addition of adjuvants, such as sodium alginate and polyethylene glycol diacrylate (PEGDA) [...] Read more.
Natural compounds incorporated into hydrogel materials have been widely used to support wound healing due to their numerous properties. The aim of this research was to produce hydrogel biomaterials with the addition of adjuvants, such as sodium alginate and polyethylene glycol diacrylate (PEGDA) with the addition of ethylene ginger extract (EEI). A thermogravimetric (TG) study, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water absorption testing and microscopic analysis were carried out to determine the properties of the developed dressing. The conducted research showed that the 4%Alg/12%PEGDA hydrogel was characterized by the best water absorption values and the slowest weight loss as a function of temperature. Additionally, the 4%Alg/12%PEGDA hydrogel had the best ability to dissipate stress in its structure. It was found that the addition of the ginger modifier had a negative effect on the water absorption values. Hydrogel containing 4%Alg 12%PEGDA 12%EEI showed the best hydrophilic properties and the highest ionic conductivity. The studies conducted showed that both the addition of PEGDA and EEI to hydrogels affects the increase in acidity of dressings. This is important because maintaining an acidic wound microenvironment is a potential therapeutic strategy for wound management. Therefore, although further research is needed, it is possible that 4%Alg 12%PEGDA 12%EEI hydrogel could be used as a high-performance wound dressing. Full article
(This article belongs to the Special Issue New Trends and Challenges in Polysaccharide Biomaterials)
Show Figures

Figure 1

Back to TopTop