Effect of Standardized Ginger (Zingiber officinale Roscoe) Extract on Gut Morphology, Microbiota Composition, and Growth Performance in Broiler Chickens
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Diets and Treatment
2.3. Sample Collection
2.4. Performance Analysis
2.5. Intestinal Morphometry
2.6. Microbiome Analysis of Ileal Digesta
2.7. Statistical Analysis
3. Results
3.1. Performance Indices
3.2. Quantitative Measurements of Intestinal Tissue
3.3. Microbiome Composition and Diversity
4. Discussion
4.1. Production Performance
4.2. Gut Morphometry
4.3. Microbiome
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ME | Metabolic Energy |
BW | Body Weight |
FCR | Feed Conversion Ratio |
BWG | Body Weight Gain |
FI | Feed Intake |
OTU | Operational Taxonomic Unit |
VH:CD | Villous Height-to-Crypt Depth Ratio |
References
- Bava, R.; Castagna, F.; Lupia, C.; Poerio, G.; Liguori, G.; Lombardi, R.; Naturale, M.D.; Mercuri, C.; Bulotta, R.M.; Britti, D.; et al. Antimicrobial Resistance in Livestock: A Serious Threat to Public Health. Antibiotics 2024, 13, 551. [Google Scholar] [CrossRef]
- More, S.J. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir. Vet. J. 2020, 73, 2. [Google Scholar] [CrossRef]
- Obianwuna, C.X.; Oleforuh-Okoleh, V.U.; Onu, P.N.; Zhang, H.; Qiu, K.; Wu, S. Phytobiotics in poultry: Revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J. Anim. Sci. Biotechnol. 2024, 15, 169. [Google Scholar] [CrossRef]
- Suresh, G.; Das, R.K.; Kaur Brar, S.; Rouissi, T.; Avalos Ramirez, A.; Chorfi, Y.; Godbout, S. Alternatives to antibiotics in poultry feed: Molecular perspectives. Crit. Rev. Microbiol. 2018, 4, 318–335. [Google Scholar] [CrossRef]
- Kizhakkayil, J.; Sasikumar, B. Diversity, characterization and utilization of ginger: A review. Plant Genet. Resour. 2011, 9, 464–477. [Google Scholar] [CrossRef]
- Grzanna, R.; Lindmark, L.; Frondoza, C.G. Ginger—An herbal medicinal product with broad anti-inflammatory actions. J. Med. Food 2005, 8, 125–132. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Al-Nasser, A.; Al-Surrayai, T.; Sultan, H.; Al-Attal, D.; Al-Kandari, R.; Al-Saleem, H.; Al-Holi, A.; Dashti, F. Effect of Ginger Powder on Production Performance, Antioxidant Status, Hematological Parameters, Digestibility, and Plasma Cholesterol Content in Broiler Chickens. Animals 2022, 12, 901. [Google Scholar] [CrossRef]
- Shewita, R.S.; Taha, A.E. Influence of dietary supplementation of ginger powder at different levels on growth performance, haematological profiles, slaughter traits and gut morphometry of broiler chickens. S. Afr. J. Anim. Sci. 2018, 48, 997–1008. [Google Scholar] [CrossRef]
- Dosu, G.; Obanla, T.O.; Zhang, S.; Sang, S.; Adetunji, A.O.; Fahrenholz, A.C.; Ferket, P.R.; Nagabhushanam, K.; Fasina, Y.O. Supplementation of ginger root extract into broiler chicken diet: Effects on growth performance and immunocompetence. Poult. Sci. 2023, 102, 10. [Google Scholar] [CrossRef]
- An, S.; Liu, G.; Guo, X.; An, Y.; Wang, R. Ginger extract enhances antioxidant ability and immunity of layers. Anim. Nutr. 2019, 5, 407–409. [Google Scholar] [CrossRef]
- Yamauchi, K.; Buwjoom, T.; Koge, K.; Ebashi, T. Histological alterations of the intestinal villi and epithelial cells in chickens fed dietary sugar cane extract. Br. Poult. Sci. 2006, 47, 544–553. [Google Scholar]
- Bancroft, J.; Steven, A.; Turner, D.R. Theory and Practice of Histological Techniques, 4th ed.; Churchill Livingstone: Edinburgh, UK, 1996. [Google Scholar]
- Incharoen, T.; Yamauchi, K.; Thongwittaya, N. Intestinal villus histological alterations in broilers fed dietary dried fermented ginger. J. Anim. Physiol. Anim. Nutr. 2010, 94, 130–137. [Google Scholar] [CrossRef]
- Baurhoo, B.; Phillip, L.; Ruiz-Feria, C.A. Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult. Sci. 2007, 86, 1070–1078. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar]
- Caporaso, J.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Gonzalez Peña, A.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef]
- Ademola, S.; Farinu, G.; Babatunde, G. Serum lipid, growth and haematological parameters of broilers fed garlic, ginger and their mixtures. World J. Agric. Sci. 2009, 5, 99–104. [Google Scholar]
- Al-Homidan, A.A. Efficacy of using different sources and levels of Allium sativum and Zingiber officinale on broiler chicks performance. Saudi J. Biol. Sci. 2005, 12, 96–102. [Google Scholar]
- Barazesh, H.; Boujar Pour, M.; Salari, S.; Abadi, T.M. The effect of ginger powder on performance, carcass characteristics and blood parameters of broilers. Int. J. Adv. Biomed. Res. 2013, 1, 1645–1651. [Google Scholar]
- Qorbanpour, M.; Fahim, T.; Javandel, F.; Nosrati, M.; Paz, E.; Seidavi, A.; Ragni, M.; Laudadio, V.; Tufarelli, V. Effect of Dietary Ginger (Zingiber officinale Roscoe) and Multi-Strain Probiotic on Growth and Carcass Traits, Blood Biochemistry, Immune Responses and Intestinal Microflora in Broiler Chickens. Animals 2018, 8, 117. [Google Scholar] [CrossRef]
- Herawati, O. The effect of red ginger as phytobiotic on body weight gain, feed conversion and internal organs condition of broiler. Int. J. Poult. Sci. 2010, 9, 963–967. [Google Scholar]
- Khonyoung, D.; Yamauchi, K.; Buwjoom, T.; Maneewan, B.; Thongwittaya, N. Effects of dietary dried fermented ginger on growth performance, carcass quality, and intestinal histology of heat-stressed broilers. Can. J. Anim. Sci. 2012, 92, 307–317. [Google Scholar] [CrossRef]
- Zhang, G.F.; Yang, Z.B.; Wang, Y.; Yang, W.R.; Jiang, S.Z.; Gai, G.S. Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult. Sci. 2009, 88, 2159–2166. [Google Scholar] [CrossRef]
- Zidan, D.E.; Kahilo, K.A.; El-Far, A.H.; Sadek, K.M. Ginger (Zingiber officinale) and thymol dietary supplementation improve the growth performance, immunity and antioxidant status in broilers. Global Vet. 2016, 16, 530–538. [Google Scholar]
- Rio, T.; Vidyarthi, V.K.; Zuyie, R. Effect of dietary supplementation of ginger powder (Zingiber officinale) on performance of broiler chicken. Livest. Res. Int. 2019, 7, 125–131. [Google Scholar]
- Javid, M.A.; Waqas, Y.; Akhtar, M.S. Evaluation of the Comparative Effect of Feed Additive of Allium Sativum and Zingiber officinale on Bird Growth and Histomorphometric Characteristics of Small Intestine in Broilers. Braz. J. Poult. Sci. 2019, 21, 1–6. [Google Scholar] [CrossRef]
- Risdianto, D.; Suthama, N.; Suprijatna, E.; Sunarso, S. Inclusion effect of ginger and turmeric mixture combined with Lactobacillus spp. isolated from rumen fluid of cattle on health status and growth of broiler. J. Indones. Trop. Anim. Agric. 2019, 44, 423. [Google Scholar] [CrossRef]
- Zomrawi, W.B.; Abdelatti, K.H.A.; Dousa, B.M.; Mahala, A.G. The effect of ginger root powder (Zingiber officinale) supplementation on broiler chick performance, blood and serum constituents. J. Anim. Feed Res. 2012, 1, 457–460. [Google Scholar]
- Onu, P.N. Evaluation of two herbal spices as feed additives for finisher broilers. Biotechnol. Anim. Husb. 2010, 26, 383–392. [Google Scholar] [CrossRef]
- Habibi, R.; Sadeghi, G.H.; Karimi, A. Effect of different concentrations of ginger root powder and its essential oil on growth performance, serum metabolites and antioxidant status in broiler chicks under heat stress. Br. Poult. Sci. 2014, 55, 228–237. [Google Scholar] [CrossRef]
- George, O.S.; Kaegon, S.G.; Igbokwe, A.A. Effects of graded levels of ginger (Zingiber officinale) meal as feed additive on growth performance characteristics of broiler chicks. Int. J. Sci. Res. 2015, 4, 805–808. [Google Scholar]
- Asghar, M.U.; Rahman, A.; Hayat, Z.; Rafique, M.K.; Badar, I.H.; Yar, M.K.; Ijaz, M. Exploration of Zingiber officinale effects on growth performance, immunity and gut morphology in broilers. Braz. J. Biol. 2021, 83, e250296. [Google Scholar] [CrossRef]
- Tekeli, A.; Kutlu, H.R.; Celik, L. Effect of Z. offincinale and propolis extracts on the performance, carcass and some blood parameters of broiler chicks. Cur. Res. Poult. Sci. 2011, 1, 12–23. [Google Scholar] [CrossRef]
- Ebrahimnezhad, Y.; Azarakhsh, V.; Salmanzadeh, M. The effects of ginger root (Zingiber officiale) processed to different levels on growth performance, carcass characteristics and blood biochemistry parameters in broiler chickens. Bull. Environ. Pharm. Life Sci. 2014, 3, 203–208. [Google Scholar]
- Greathead, H. Plants and plant extracts for improving animal productivity. Proc. Nutr. Soc. 2003, 62, 279–290. [Google Scholar] [CrossRef]
- Incharoen, T.; Yamauchi, K. Production performance, egg quality and intestinal histology in laying hens fed dietary dried fermented ginger. Int. J. Poult. Sci. 2009, 8, 1078–1085. [Google Scholar] [CrossRef]
- Huthail Najib, H.; Al-Homidan, I.; Fathi, M.M.; Al-Suhim, A.A. Black seeds (Nigella sativa) and ginger powder (Zingiber officinale) effect on growth performance and immune response of broiler chickens. Asian J. Anim. Sci. 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Hamedi, S.; Rezaian, M.; Shomali, T. Histological changes of small intestinal mucosa of cocks due to sunflower meal single feeding. Am. J. Anim. Vet. Sci. 2011, 6, 171–175. [Google Scholar]
- Izadi, H.; Arshami, J.; Golian, A.; Reza Raji, M. Effects of chicory root powder on growth performance and histomorphometry of jejunum in broiler chicks. Vet. Res. Forum 2013, 4, 169–174. [Google Scholar]
- Uni, Z.; Gal-Garber, O.; Geyra, A.; Sklan, D.; Yahav, S. Changes in growth and function of chick small intestine epithelium due to early thermal conditioning. Poult. Sci. 2001, 80, 438–445. [Google Scholar] [CrossRef]
- Thomson, A.B.R.; Keelan, M.; Thiesen, A.; Clandinin, M.T.; Ropeleski, M.; Wild, G.E. Small bowel review diseases of the small intestine. Dig. Dis. Sci. 2001, 46, 2555–2566. [Google Scholar] [CrossRef]
- Heak, C.; Sukon, P.; Kongpechr, S.; Tengjaroenkul, B.; Chuachan, K. Effect of Direct-fed Microbials on Intestinal Villus Height in Broiler Chickens: A Systematic Review and Meta-Analysis of Controlled Trials. Int. J. Poult. Sci. 2017, 16, 403–414. [Google Scholar] [CrossRef]
- Murugesan, G.R.; Syed, B.; Haldar, S.; Pender, C. Phytogenic feed additives as an alternative to antibiotic growth promoters in broiler chickens. Front. Vet. Sci. 2015, 2, 21. [Google Scholar]
- Karangiya, V.K.; Savsani, H.H.; Patil, S.S.; Garg, D.D.; Murthy, K.S.; Ribadiya, N.K.; Vekariya, S.J. Effect of dietary supplementation of garlic, ginger and their combination on feed intake, growth performance and economics in commercial broilers. Vet. World 2016, 9, 245–250. [Google Scholar] [CrossRef]
- Blum, H.E. The human microbiome. Adv. Med. Sci. 2017, 62, 414–420. [Google Scholar] [CrossRef]
- Grond, K.; Sandercock, B.; Jumpponen, A.; Zeglin, L.H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 2018, 49, e1788. [Google Scholar] [CrossRef]
- Cox, L.M.; Yamanishi, S.; Sohn, J.; Alekseyenko, A.V.; Leung, J.M.; Cho, I.; Kim, S.G.; Li, H.; Gao, Z.; Mahana, D.; et al. Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences. Cell 2014, 158, 705–721. [Google Scholar] [CrossRef]
- Jumpertz, R.; Le, D.S.; Turnbaugh, P.J.; Trinidad, C.; Bogardus, C.; Gordon, J.I.; Krakoff, J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011, 94, 58–65. [Google Scholar] [CrossRef]
- Temmerman, R.; Pelligand, L.; Schelstraete, W.; Antonissen, G.; Garmyn, A.; Devreese, M. Enrofloxacin Dose Optimization for the Treatment of Colibacillosis in Broiler Chickens Using a Drinking Behaviour Pharmacokinetic Model. Antibiotics 2021, 10, 604. [Google Scholar] [CrossRef]
- Huyben, D.; Vidakovic, A.; Hallgren, S.W.; Langeland, M. High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture 2019, 500, 485–491. [Google Scholar] [CrossRef]
- Isaacson, R.; Kim, H.B. The intestinal microbiome of the pig. Anim. Health Res. Rev. 2012, 13, 100–109. [Google Scholar] [CrossRef]
- Ballou, A.L.; Ali, R.A.; Mendoza, M.A.; Ellis, J.C.; Hassan, H.M.; Croom, W.J.; Koci, M.D. Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Front. Vet. Sci. 2016, 3, 2. [Google Scholar] [CrossRef]
- Peng, L.; Shi, H.; Gong, Z.; Yi, P.; Tang, B.; Shen, H.; Fu, B. Protective effects of gut microbiota and gut microbiota-derived acetate on chicken colibacillosis induced by avian pathogenic Escherichia coli. Vet. Microbiol. 2021, 261, 109187. [Google Scholar] [CrossRef]
- Oh, J.K.; Pajarillo, E.A.B.; Chae, J.P.; Kim, I.H.; Kang, D.K. Protective effects of Bacillus subtilis against Salmonella infection in the microbiome of Hy-Line Brown layers. Asian-Australasian. J. Anim. Sci. 2017, 30, 1332–1339. [Google Scholar] [CrossRef]
- Adalsteinsdottir, S.A.; Magnusdottir, O.K.; Halldorsson, T.I.; Birgisdottir, B.E. Towards an individualized nutrition treatment: Role of the gastrointestinal microbiome in the interplay between diet and obesity. Curr. Obes. Rep. 2018, 7, 289–293. [Google Scholar] [CrossRef]
- Pedroso, A.A.; Menten, J.F.M.; Lambais, M.R. The Structure of Bacterial Community in the Intestines of Newly Hatched Chicks. J. Appl. Poult. Res. 2005, 14, 232–237. [Google Scholar] [CrossRef]
- Salaheen, S.; Kim, S.W.; Haley, B.J.; Van Kessel, J.A.S.; Biswas, D. Alternative growth promoters modulate broiler gut microbiome and enhance body weight gain. Front. Microbiol. 2017, 8, 2088. [Google Scholar] [CrossRef]
- Clavijo, V.; Florez, M. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef]
- Thompson, C.L.; Vier, R.; Mikaelyan, A.; Wienemann, T.; Brune, A. Candidatus Arthromitus revised: Segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ. Microbiol. 2012, 14, 1454–1465. [Google Scholar] [CrossRef]
- Thompson, C.L.; Mikaelyan, A.; Brune, A. Immune-modulating gut symbionts are not “Candidatus Arthromitus”. Mucosal Immunol. 2013, 6, 200–201. [Google Scholar] [CrossRef]
- Kim, J.E.; Lillehoj, H.S.; Hong, Y.H.; Kim, G.B.; Lee, S.H.; Lillehoj, E.P.; Bravo, D.M. Dietary Capsicum and Curcuma longa oleoresins increase intestinal microbiome and necrotic enteritis in three commercial broiler breeds. Res. Vet. Sci. 2015, 102, 150–158. [Google Scholar] [CrossRef]
- Magruder, M.; Edusei, E.; Zhang, L.; Albakry, S.; Satlin, M.J.; Westblade, L.F.; Malha, L.; Sze, C.; Lubetzky, M.; Dadhania, D.M. Gut commensal microbiota and decreased risk for Enterobacteriaceae bacteriuria and urinary tract infection. Gut Microbes 2020, 12, 1805281. [Google Scholar] [CrossRef]
- Gerritsen, J.; Hornung, B.; Ritari, J.; Paulin, L.; Rijkers, G.T.; Schaap, P.J.; De Vos, W.M.; Smidt, H. A comparative and functional genomics analysis of the genus Romboutsia provides insight into adaptation to an intestinal lifestyle. bioRxiv 2019, bioRxiv 845511. [Google Scholar] [CrossRef]
- Mangifesta, M.; Mancabelli, L.; Milani, C.; Gaiani, F.; De’Angelis, N.; De’Angelis, G.; Van Sinderen, D.; Ventura, M.; Turroni, F. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci. Rep. 2018, 8, 13974. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, G.; Shao, D.; Wang, Q.; Hu, Y.; Wu, T.; Ji, C.; Shi, S. Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poult. Sci. 2021, 100, 100935. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Zhang, M.; Gu, C.; Wang, H.; Feng, J.; Bao, L.; Wu, Y.; Chen, S.; Zhang, X. Influence of Huangqin Decoction on the immune function and fecal microbiome of chicks after experimental infection with Escherichia coli O78. Sci. Rep. 2022, 5, 12. [Google Scholar]
- Saleem, M.U.; Javid, M.A.; Akthar, S.; Kiani, F.A.; Naseer, O.; Waqas, M.Y. Comparative effects of different concentrations of garlic (Allium sativum) and ginger (Zingiber Officinale) on growth performance, goblet cell histochemistry and gut microbiota of broilers. Indian J. Anim. Res. 2020, 54, 874–878. [Google Scholar]
- Tekeli, A. Potential use of Plant Extracts and Propolis to be Natural Growth Promoter in Broiler Chicks Diets. Ph.D. Thesis, Çukurova University, Graduate School of Natural and Applied Sciences, Adana, Türkiye, 2007; pp. 1–164. [Google Scholar]
- Sengupta, R.; Altermann, E.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Roy, N.C. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat. Inflamm. 2013, 23, 237921. [Google Scholar] [CrossRef]
- De Maesschalck, C.; Eeckhaut, V.; Maertens, L.; De Lange, L.; Marchal, L.; Nezer, C.; De Baere, S.; Croubels, S.; Daube, G.; Dewulf, J.; et al. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Appl. Environ. Microbiol. 2015, 81, 5880–5888. [Google Scholar] [CrossRef]
- Kabir, S.M.L. The role of probiotics in the poultry industry. Int. J. Mol. Sci. 2009, 10, 3531. [Google Scholar] [CrossRef]
Items | Phases | |
---|---|---|
1–21 d | 22–42 d | |
Ingredients% | ||
Corn | 49.3 | 51.8 |
Soybean meal, 46% CP | 31.0 | 21.2 |
Alfalfa | 3.0 | 4.0 |
Corn gluten meal | 5.0 | 3.0 |
Yeast | 2.0 | 4.0 |
Vitamin–mineral premix * | 5.0 | 5.0 |
Sunflower oil | 4.7 | 5.0 |
Soybean, roasted | - | 6.0 |
Total | 100 | 100 |
Calculated analysis | ||
Crude protein (%) | 22.03 | 20.07 |
Lysine (%) | 1.25 | 1.04 |
ME (MJ/kg) | 12.67 | 13.04 |
Crude fat (%) | 7.27 | 8.72 |
Crude fiber (%) | 3.5 | 4.23 |
Crude ash (%) | 6.68 | 6.33 |
Calcium (%) | 1.05 | 1.0 |
Phosphorus, available (%) | 0.40 | 0.38 |
Dietary Treatments | ||||||
---|---|---|---|---|---|---|
Items | Ginger Extract | SEM | p-Value | |||
CON | GE1 | GE2 | GE3 | |||
BW (g) | ||||||
Day 1 | 44.5 | 44.5 | 44.5 | 44.5 | 0.25 | 1.0 |
Day 21 | 813 a | 792 a | 824 a | 685 b | 11.61 | 0.02 |
Day 42 | 2826 a | 2692 b | 2829 a | 2616 b | 26.91 | 0.003 |
BWG (g) | ||||||
Days 1–21 | 767 ab | 747 ab | 779 a | 640 b | 18.65 | 0.05 |
Days 22–42 | 2013 a | 1900 ab | 2005 a | 1857 b | 26.54 | 0.04 |
Days 1–42 | 2781 a | 2647 a | 2784 a | 2497 b | 40.76 | 0.03 |
FI (g/bird) | ||||||
Days 1–21 | 1423 a | 1314 a | 1119 ab | 942 b | 45.16 | 0.02 |
Days 22–42 | 4471 a | 4313 a | 3735 b | 3717 b | 96.83 | 0.001 |
Days 1–42 | 5912 a | 5713 a | 5135 b | 4826 b | 119.04 | 0.001 |
FCR (g/g) | ||||||
Days 1–21 | 1.86 a | 1.76 a | 1.44 b | 1.48 b | 0.05 | 0.002 |
Days 22–42 | 2.22 a | 2.28 ab | 1.86 cd | 2.06 ae | 0.05 | 0.03 |
Days 1–42 | 2.13 a | 2.17 a | 1.85 b | 2.08 ac | 0.04 | 0.01 |
Dietary Treatment | |||||
---|---|---|---|---|---|
Items | Ginger Extract | p-Value | |||
CON | GE1 | GE2 | GE3 | ||
Duodenum | |||||
Villous height (µm) | 1134 a | 1029 b | 1187 a | 1197 a | 0.01 |
Crypt depth (µm) | 205 a | 192 b | 193 a | 189 b | 0.05 |
Villous surface area (µm2) | 184 a | 145 b | 171 abc | 163 b | 0.05 |
Villous height–crypt depth | 5.53 a | 5.36 a | 6.15 b | 6.33 b | 0.03 |
Jejunum | |||||
Villous height (µm) | 1009 b | 1054 a | 1116 a | 925 b | 0.05 |
Crypt depth (µm) | 176 | 182 | 178 | 175 | 0.20 |
Villous surface area (µm2) | 132 | 119 | 130 | 123 | 0.14 |
Villous height–crypt depth | 5.73 a | 5.34 a | 6.27 b | 5.29 a | 0.05 |
Ileum | |||||
Villous height (µm) | 705 | 669 | 682 | 700 | 0.09 |
Crypt depth (µm) | 155 | 163 a | 152 b | 165 a | 0.05 |
Villous surface area (µm2) | 98 a | 80 b | 79 b | 95 | 0.05 |
Villous height–crypt depth | 4.55 | 4.10 | 4.16 | 4.24 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đurić Jarić, M.; Gottstein, Ž.; Vince, S.; Žura Žaja, I.; Brus, M.; Đuričić, D.; Samardžija, M.; Valpotić, H. Effect of Standardized Ginger (Zingiber officinale Roscoe) Extract on Gut Morphology, Microbiota Composition, and Growth Performance in Broiler Chickens. Agriculture 2025, 15, 1448. https://doi.org/10.3390/agriculture15131448
Đurić Jarić M, Gottstein Ž, Vince S, Žura Žaja I, Brus M, Đuričić D, Samardžija M, Valpotić H. Effect of Standardized Ginger (Zingiber officinale Roscoe) Extract on Gut Morphology, Microbiota Composition, and Growth Performance in Broiler Chickens. Agriculture. 2025; 15(13):1448. https://doi.org/10.3390/agriculture15131448
Chicago/Turabian StyleĐurić Jarić, Martina, Željko Gottstein, Silvijo Vince, Ivona Žura Žaja, Maksimiljan Brus, Dražen Đuričić, Marko Samardžija, and Hrvoje Valpotić. 2025. "Effect of Standardized Ginger (Zingiber officinale Roscoe) Extract on Gut Morphology, Microbiota Composition, and Growth Performance in Broiler Chickens" Agriculture 15, no. 13: 1448. https://doi.org/10.3390/agriculture15131448
APA StyleĐurić Jarić, M., Gottstein, Ž., Vince, S., Žura Žaja, I., Brus, M., Đuričić, D., Samardžija, M., & Valpotić, H. (2025). Effect of Standardized Ginger (Zingiber officinale Roscoe) Extract on Gut Morphology, Microbiota Composition, and Growth Performance in Broiler Chickens. Agriculture, 15(13), 1448. https://doi.org/10.3390/agriculture15131448