Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = giant-magnetostrictive material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5491 KiB  
Article
Design of an Angled Single-Excitation Elliptical Vibration System
by Qiang Liu, Xiping He, Weiguo Wang and Yanning Yang
Micromachines 2025, 16(7), 808; https://doi.org/10.3390/mi16070808 - 13 Jul 2025
Viewed by 234
Abstract
An angled single-excitation elliptical vibration system for ultrasonic-assisted machining was developed in this paper, which was composed of a giant magnetostrictive transducer and an angled horn. Based on the continuous boundary conditions between the components, the frequency equation of the angled vibration system [...] Read more.
An angled single-excitation elliptical vibration system for ultrasonic-assisted machining was developed in this paper, which was composed of a giant magnetostrictive transducer and an angled horn. Based on the continuous boundary conditions between the components, the frequency equation of the angled vibration system was derived, and the resonant frequencies of vibration systems with different angles were theoretically calculated. The finite element method was employed to investigate the impact of varying angles on the resonant frequency, elliptical trajectory, phase difference, and output amplitude of the vibration systems. The electrical impedance of the vibration system and the longitudinal and transverse vibration amplitudes at the end face of the horn were tested experimentally. The results show that the resonant frequency and phase difference in the vibration system decreased, the transverse amplitude of the output elliptical trajectory increased, and the longitudinal amplitude decreased with the increase in the included angle. The elliptical trajectories obtained from the test were generally consistent with the calculated results, and the calculated values of the resonant frequencies of the three angled vibration systems were in good agreement with the experimental test values. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 2287 KiB  
Article
The Design of a Turning Tool Based on a Self-Sensing Giant Magnetostrictive Actuator
by Dongjian Xie, Qibo Wu, Yahui Zhang, Yikun Yang, Bintang Yang and Cheng Zhang
Actuators 2025, 14(6), 302; https://doi.org/10.3390/act14060302 - 19 Jun 2025
Viewed by 314
Abstract
Smart tools are limited by actuation–sensing integration and structural redundancy, making it difficult to achieve compactness, ultra-precision feed, and immediate feedback. This paper proposes a self-sensing giant magnetostrictive actuator-based turning tool (SSGMT), which enables simultaneous actuation and output sensing without external sensors. A [...] Read more.
Smart tools are limited by actuation–sensing integration and structural redundancy, making it difficult to achieve compactness, ultra-precision feed, and immediate feedback. This paper proposes a self-sensing giant magnetostrictive actuator-based turning tool (SSGMT), which enables simultaneous actuation and output sensing without external sensors. A multi-objective optimization model is first established to determine the key design parameters of the SSGMT to improve magnetic transfer efficiency, system compactness, and sensing signal quality. Then, a dynamic hysteresis model with a Hammerstein structure is developed to capture its nonlinear characteristics. To ensure accurate positioning and a robust response, a hybrid control strategy combining feedforward compensation and adaptive feedback is implemented. The SSGMT is experimentally validated through a series of tests including self-sensing displacement accuracy and trajectory tracking under various frequencies and temperatures. The prototype achieves nanometer-level resolution, stable output, and precise tracking across different operating conditions. These results confirm the feasibility and effectiveness of integrating actuation and sensing in one structure, providing a promising solution for the application of smart turning tools. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

22 pages, 10518 KiB  
Article
Longitudinal–Torsional Frequency Coupling Design of Novel Ultrasonic Horns for Giant Magnetostrictive Transducers
by Khurram Hameed Mughal, Bijan Shirinzadeh, Muhammad Asif Mahmood Qureshi, Muhammad Mubashir Munir and Muhammad Shoaib Ur Rehman
Sensors 2024, 24(18), 6027; https://doi.org/10.3390/s24186027 - 18 Sep 2024
Cited by 2 | Viewed by 1296
Abstract
The use of advanced brittle composites in engineering systems has necessitated robotic rotary ultrasonic machining to attain high precision with minimal machining defects such as delamination, burrs, and cracks. Longitudinal–torsional coupled (LTC) vibrations are created by introducing helical slots to a horn’s profile [...] Read more.
The use of advanced brittle composites in engineering systems has necessitated robotic rotary ultrasonic machining to attain high precision with minimal machining defects such as delamination, burrs, and cracks. Longitudinal–torsional coupled (LTC) vibrations are created by introducing helical slots to a horn’s profile to enhance the quality of ultrasonic machining. In this investigative research, modified ultrasonic horns were designed for a giant magnetostrictive transducer by generating helical slots in catenoidal and cubic polynomial profiles to attain a high amplitude ratio (TA/LA) and low stress concentrations. Novel ultrasonic horns with a giant magnetostrictive transducer were modelled to compute impedances and harmonic excitation responses. A structural dynamic analysis was conducted to investigate the effect of the location, width, depth and angle of helical slots on the Eigenfrequencies, torsional vibration amplitude, longitudinal vibration amplitude, stresses and amplitude ratio in novel LTC ultrasonic horns for different materials using the finite element method (FEM) based on the block Lanczos and full-solution methods. The newly designed horns achieved a higher amplitude ratio and lower stresses in comparison to the Bezier and industrial stepped LTC horns with the same length, end diameters and operating conditions. The novel cubic polynomial LTC ultrasonic horn was found superior to its catenoidal counterpart as a result of an 8.45% higher amplitude ratio. However, the catenoidal LTC ultrasonic horn exhibited 1.87% lower stress levels. The position of the helical slots was found to have the most significant influence on the vibration characteristics of LTC ultrasonic horns followed by the width, depth and angle. This high amplitude ratio will contribute to the improved vibration characteristics that will help realize good surface morphology when machining advanced materials. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

18 pages, 7944 KiB  
Article
Structural Optimization of a Giant Magnetostrictive Actuator Based on BP-NSGA-II Algorithm
by Yang Liu, Jianjun Meng and Tailong Li
Actuators 2024, 13(8), 293; https://doi.org/10.3390/act13080293 - 3 Aug 2024
Cited by 2 | Viewed by 1609
Abstract
This study introduces an integrated structural optimization design method based on a BP neural network and NSGA-II multi-objective genetic algorithm. Initially, a two-dimensional axisymmetric finite element model of the Giant Magnetostrictive Actuator (GMA) was established, and the coupling simulation of the electromagnetic field, [...] Read more.
This study introduces an integrated structural optimization design method based on a BP neural network and NSGA-II multi-objective genetic algorithm. Initially, a two-dimensional axisymmetric finite element model of the Giant Magnetostrictive Actuator (GMA) was established, and the coupling simulation of the electromagnetic field, structural field, and temperature field was conducted to obtain the GMA’s performance parameters. Subsequently, the structural parameters of the GMA magnetic circuit, including the magnetic conducting ring, magnetic conducting sidewall, magnetic conducting body, and coil, were used as inputs, and the axial magnetic induction intensity, uniformity of axial magnetic induction intensity, and coil loss on the Giant Magnetostrictive Material (GMM) rod were used as outputs to establish a back propagation (BP) neural network model. This model delineated the nonlinear relationship between structural parameters and performance parameters. Then, the BP-NSGA-II algorithm was applied to perform multi-objective optimization on the actuator’s structural parameters, resulting in a set of Pareto optimal non-dominated solutions, from which a set of optimal solutions was obtained using the entropy weight method. Finally, simulation analysis of this optimal solution was conducted, indicating that under a 5 A power supply excitation, the maximum axial magnetic induction intensity on the optimized GMM rod increased from 0.87 T to 1.12 T; the uniformity of axial magnetic induction intensity improved from 93.1% to 96.5%; and the coil loss decreased from 7.79 × 104 W/m3 to 4.97 × 104 W/m3. Based on the optimization results, a prototype actuator was produced, and the test results of the prototype’s output characteristics proved the feasibility of this optimization design method. Full article
Show Figures

Figure 1

14 pages, 5568 KiB  
Article
Structural Optimization and Temperature Compensation of GMM-FBG Fiber Current Transducer
by Wei-Chao Zhang, Lin-Heng Li and Tao Zhang
Photonics 2023, 10(12), 1376; https://doi.org/10.3390/photonics10121376 - 14 Dec 2023
Cited by 3 | Viewed by 1665
Abstract
In order to improve the sensitivity and accuracy of the giant magnetostrictive material-fiber Bragg gratings’ (GMM-FBG) current sensor, in which the magnetostrictive modulator is Terfenol-D, the temperature effects on the FBG center wavelength and GMM magnetostriction coefficient are investigated to initiate an amending [...] Read more.
In order to improve the sensitivity and accuracy of the giant magnetostrictive material-fiber Bragg gratings’ (GMM-FBG) current sensor, in which the magnetostrictive modulator is Terfenol-D, the temperature effects on the FBG center wavelength and GMM magnetostriction coefficient are investigated to initiate an amending scheme in which temperature parameters are introduced into a GMM-FBG sensing model so as to calibrate current values. Based on electromagnetism theory, the magnetic structure is optimized in design to significantly increase the magnetic coupling efficiency and to homogenize magnetic distribution, employing finite element simulations of the electromagnetic field. The relevant experimental platform is constructed with a wavelength demodulation system. At the temperature range of 20~70 °C, response amplitudes of the current sensor are tested under various current values. The experimental results indicate that the sensitivity of the GMM-FBG current sensor decreases with the temperature increment and is also positively correlated to the target current. Through analyzing the response characteristics of the current sensor to temperature variation, a reasonable GMM-FBG sensing amelioration model with a temperature compensation coefficient is established based on a mathematical fitting method, according to which the current detecting accuracy can be increased by 4.8% while measuring 60 A current at the representative working temperature of 40 °C. Full article
(This article belongs to the Special Issue Emerging Trends in Optical Fiber Sensors and Sensing Techniques)
Show Figures

Figure 1

10 pages, 5230 KiB  
Article
Variations in the Crystal Lattice of Tb-Dy-Fe Magnetostrictive Materials: The Lattice Constant Disturbance
by Jiaxin Gong, Jiheng Li, Xiaoqian Bao and Xuexu Gao
Micromachines 2023, 14(12), 2166; https://doi.org/10.3390/mi14122166 - 28 Nov 2023
Viewed by 1519
Abstract
In Tb-Dy-Fe alloy systems, Tb0.29Dy0.71Fe1.95 alloy shows giant magnetostrictive properties under low magnetic fields, thus having great potential for transducers, microsensors, and other applications. The C15 cubic crystal structure of Tb-Dy-Fe has long been thought to be the [...] Read more.
In Tb-Dy-Fe alloy systems, Tb0.29Dy0.71Fe1.95 alloy shows giant magnetostrictive properties under low magnetic fields, thus having great potential for transducers, microsensors, and other applications. The C15 cubic crystal structure of Tb-Dy-Fe has long been thought to be the source of giant magnetostriction. It is surprising that such a highly symmetrical crystal structure exhibits such a large magnetostrictive strain. In this work, the lattice parameters of Tb0.29Dy0.71Fe1.95 magnetostrictive materials were studied by processing atomic-resolution images. The selected area diffraction patterns show a face-centered cubic structure, but the fast Fourier transform diagram shows that the cubic structure has obvious distortion. The lattice parameters obtained by geometric phase analysis (GPA) and Gaussian model-based fitting and calculation show that the lattice constants a, b, and c are not strictly equal, and small disturbance of the lattice constants occurs based on the cubic structure. The actual crystal structure of the Tb-Dy-Fe material is a slightly disturbed cubic structure. This variation in the crystal lattice is mainly caused by the inhomogeneous composition and may be related to the giant magnetostrictive properties of Tb-Dy-Fe alloy. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

13 pages, 2362 KiB  
Article
Temperature Drift Characteristics Analysis of GMM-FBG Current Sensor Based on Finite-Element Multi-Physics Simulations
by Ying Li, Wei-Feng Sun and Weichao Zhang
Appl. Sci. 2023, 13(19), 10955; https://doi.org/10.3390/app131910955 - 4 Oct 2023
Cited by 1 | Viewed by 1449
Abstract
A composite current sensor is designed with soft ferrite as the magnetizer in combination with giant magnetostrictive material (GMM) and fiber Bragg grating (FBG). The temperature drift characteristics of the GMM, detecting performances under thermal strain caused by temperature variation in the GMM [...] Read more.
A composite current sensor is designed with soft ferrite as the magnetizer in combination with giant magnetostrictive material (GMM) and fiber Bragg grating (FBG). The temperature drift characteristics of the GMM, detecting performances under thermal strain caused by temperature variation in the GMM rod, are investigated by simulating the coupled fields of magnetostriction and thermal expansion with the finite-element multi-physics method to explore the temperature-drift mechanism of the ferrite–GMM current detector. The sensing characteristics of the GMM-FBG current sensor under quasi-static current excitation at various work temperatures are evaluated by simulating thermal stress between the GMM and FBG to analyze the temperature drift mechanism of the Bragg wavelength signal modulated by FBG. Even though temperature elevation suppresses GMM magnetization and thereby reduces the slopes of stress–strain curves, the steering magnetization of magnetic domains in the GMM rod tends to saturation without appreciable thermal inhibition in the high-stress region of large current excitation, while the magnetostrictive strain is still abated by the reduction in magnetic flux density caused by the thermal expansion of GMM rods. The temperature elevation can also produce thermal stress between the GMM and FBG, which will decrease the detection sensitivity and testing range of the GMM-FBG current sensor. The temperature drift characteristics of the GMM-FBG are generalized into a formula by fitting the wavelength shifting as a function of thermal strain, which will significantly facilitate designing the scale calibration for various ambient temperatures. The present researchers provide a theoretical basis and experimental guidance for developing GMM-FBG current sensors with high sensitivity and stability. Full article
Show Figures

Figure 1

10 pages, 2109 KiB  
Article
Lattice Deformation of Tb0.29Dy0.71Fe1.95 Alloy during Magnetization
by Jiaxin Gong, Jiheng Li, Xiaoqian Bao and Xuexu Gao
Micromachines 2023, 14(10), 1861; https://doi.org/10.3390/mi14101861 - 28 Sep 2023
Viewed by 1363
Abstract
In Tb-Dy-Fe alloy systems, Tb0.29Dy0.71Fe1.95 alloy shows giant magnetostrictive properties under low magnetic fields, thus having great potential for transducer and sensor applications. In this work, the lattice parameters of Tb0.29Dy0.71Fe1.95 compounds as [...] Read more.
In Tb-Dy-Fe alloy systems, Tb0.29Dy0.71Fe1.95 alloy shows giant magnetostrictive properties under low magnetic fields, thus having great potential for transducer and sensor applications. In this work, the lattice parameters of Tb0.29Dy0.71Fe1.95 compounds as a function of a magnetic field were investigated using in situ X-ray diffraction under an applied magnetic field. The results showed that the c-axis elongation of the rhombohedral unit cell was the dominant contributor to magnetostriction at a low magnetic field (0–500 Oe). As the magnetic field intensity increased from 500 Oe to 1500 Oe, although the magnetostrictive coefficient continued to increase, the lattice constant did not change, which indicated that the elongated c-axis of the rhombohedral unit cell rotated in the direction of the magnetic field. This rotation mainly contributed to the magnetostriction phenomenon at magnetic fields of above 500 Oe. The structural origin of the magnetostriction performance of these materials was attributed to the increase in rhombohedral lattice parameters and the rotation of the extension axis of the rhombohedral lattice. Full article
(This article belongs to the Special Issue Magnetic Materials and Devices)
Show Figures

Figure 1

20 pages, 4536 KiB  
Article
Domain Switching-Based Nonlinear Coupling Response for Giant Magnetostrictive Materials
by Yunshuai Chen, Pengyang Li, Jian Sun and Guoqing Chen
Materials 2023, 16(14), 4914; https://doi.org/10.3390/ma16144914 - 9 Jul 2023
Cited by 2 | Viewed by 1750
Abstract
This paper proposes a multilevel three-dimensional constitutive model based on a microscopically phenomenological approach from the domain rotation mechanism, which is a fully coupled self-consistent homogenization scheme considering the interactions between elastic–inelastic strain and hysteresis. Considering the interactions among magnetic domains, grains, polycrystalline [...] Read more.
This paper proposes a multilevel three-dimensional constitutive model based on a microscopically phenomenological approach from the domain rotation mechanism, which is a fully coupled self-consistent homogenization scheme considering the interactions between elastic–inelastic strain and hysteresis. Considering the interactions among magnetic domains, grains, polycrystalline complexes, and macroscopic phenomenology, we predict the nonlinear magnetostrictive response of Terfenol-D under different types of external force loads and magnetic excitations in various thermal environments involving multi-fields of coupled magnetic, elastic, thermal, and mechanical phenomena. The average values of the mechanical bulk strains for different magnetization states are obtained at the grain scale utilizing Boltzmann functions and a self-consistent homogenization scheme. A Taylor series expansion of the Gibbs function concerning the field variables and an adapted Jiles–Atherton model are used to construct the hysteresis coupled constitutive relations at the macroscopic scale. The results associated with the experiments show that the established model can reasonably predict the magnetostrictive response under different external mixed stimuli. It can provide theoretical guidance for the precise control of nonlinear vibrations and the optimal design of the rotating giant magnetostrictive transducers at both microscopic and macroscopic multiple scales. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

28 pages, 2178 KiB  
Review
Development and Prospect of Smart Materials and Structures for Aerospace Sensing Systems and Applications
by Wenjie Wang, Yue Xiang, Jingfeng Yu and Long Yang
Sensors 2023, 23(3), 1545; https://doi.org/10.3390/s23031545 - 31 Jan 2023
Cited by 44 | Viewed by 11662
Abstract
The rapid development of the aviation industry has put forward higher and higher requirements for material properties, and the research on smart material structure has also received widespread attention. Smart materials (e.g., piezoelectric materials, shape memory materials, and giant magnetostrictive materials) have unique [...] Read more.
The rapid development of the aviation industry has put forward higher and higher requirements for material properties, and the research on smart material structure has also received widespread attention. Smart materials (e.g., piezoelectric materials, shape memory materials, and giant magnetostrictive materials) have unique physical properties and excellent integration properties, and they perform well as sensors or actuators in the aviation industry, providing a solid material foundation for various intelligent applications in the aviation industry. As a popular smart material, piezoelectric materials have a large number of application research in structural health monitoring, energy harvest, vibration and noise control, damage control, and other fields. As a unique material with deformation ability, shape memory materials have their own outstanding performance in the field of shape control, low-shock release, vibration control, and impact absorption. At the same time, as a material to assist other structures, it also has important applications in the fields of sealing connection and structural self-healing. Giant magnetostrictive material is a representative advanced material, which has unique application advantages in guided wave monitoring, vibration control, energy harvest, and other directions. In addition, giant magnetostrictive materials themselves have high-resolution output, and there are many studies in the direction of high-precision actuators. Some smart materials are summarized and discussed in the above application directions, aiming at providing a reference for the initial development of follow-up related research. Full article
Show Figures

Figure 1

10 pages, 2135 KiB  
Article
Large Cryogenic Magnetostriction Induced by Hydrostatic Pressure in MnCo0.92Ni0.08Si Alloy
by Xiaowen Hao, Hongwei Liu, Bo Yang, Jie Li, Zhe Li, Zongbin Li, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao and Liang Zuo
Materials 2023, 16(3), 1143; https://doi.org/10.3390/ma16031143 - 29 Jan 2023
Cited by 3 | Viewed by 1917
Abstract
Giant magnetostriction could be achieved in MnCoSi-based alloys due to the magneto-elastic coupling accompanied by the meta-magnetic transition. In the present work, the effects of hydrostatic pressure on magnetostrictive behavior in MnCo0.92Ni0.08Si alloy have been investigated. The saturation magnetostriction [...] Read more.
Giant magnetostriction could be achieved in MnCoSi-based alloys due to the magneto-elastic coupling accompanied by the meta-magnetic transition. In the present work, the effects of hydrostatic pressure on magnetostrictive behavior in MnCo0.92Ni0.08Si alloy have been investigated. The saturation magnetostriction (at 30,000 Oe) could be enhanced from 577 ppm to 5034 ppm by the hydrostatic pressure of 3.2 kbar at 100 K. Moreover, under a magnetic field of 20,000 Oe, the reversible magnetostriction was improved from 20 ppm to 2112 ppm when a hydrostatic pressure of 6.4 kbar was applied at 70 K. In all, it has been found that the magnetostrictive effect of the MnCo0.92Ni0.08Si compound is strongly sensitive to external hydrostatic pressure. This work proves that the MnCoSi-based alloys as a potential cryogenic magnetostrictive material can be modified through applied hydrostatic pressure. Full article
Show Figures

Figure 1

12 pages, 5911 KiB  
Article
Grating Spectrum Design and Optimization of GMM-FBG Current Sensor
by Fei Jiao, Yuqing Lei, Guozheng Peng, Funing Dong, Qing Yang and Wei Liao
Energies 2023, 16(2), 997; https://doi.org/10.3390/en16020997 - 16 Jan 2023
Cited by 5 | Viewed by 2215
Abstract
In this study, the performance of a current sensor based on giant magnetostrictive materials (GMM) and fiber Bragg grating (FBG) has been improved by optimizing the spectral characteristics of gratings. By analyzing the influence of FBG on the current sensor characteristics, three key [...] Read more.
In this study, the performance of a current sensor based on giant magnetostrictive materials (GMM) and fiber Bragg grating (FBG) has been improved by optimizing the spectral characteristics of gratings. By analyzing the influence of FBG on the current sensor characteristics, three key parameters (gate region length, refractive index modulation depth, and toe cutting system) are selected for optimization. The optimal grating parameters are determined to improve the linearity and sensitivity of sensor output. Experimental tests reveal that after grating optimization, the current sensor shows excellent performance parameters, including a linearity of 0.9942, sensitivity of 249.75 mV/A, and good stability in the temperature range of 0–60 °C. This research can provide a reference for improving the grating design and performance of existing GMM-FBG current sensors. Full article
(This article belongs to the Topic High Voltage Systems and Smart Technologies)
Show Figures

Figure 1

19 pages, 19616 KiB  
Article
Design and Optimization of High-Power and Low-Frequency Broadband Transducer with Giant Magnetostrictive Material
by Long Yang, Wenjie Wang, Xu Zhao, Haojun Li and Yue Xiang
Sensors 2023, 23(1), 108; https://doi.org/10.3390/s23010108 - 22 Dec 2022
Cited by 4 | Viewed by 2879
Abstract
The applications of sensors in the aerospace industry are mostly concentrated in the middle and high frequencies, and low-frequency sensors often face the problems of low power and short working bandwidth. A lightweight, thin, high-power, low-frequency broadband transducer based on giant magnetostrictive material [...] Read more.
The applications of sensors in the aerospace industry are mostly concentrated in the middle and high frequencies, and low-frequency sensors often face the problems of low power and short working bandwidth. A lightweight, thin, high-power, low-frequency broadband transducer based on giant magnetostrictive material is designed. The design and optimization processes of the core components are introduced and analyzed emphatically. The finite element simulation results are validated by the PSV-100 laser vibration meter. Three basic configurations of the work panel are proposed, and the optimal configuration is determined by modal, acoustic, and vibration coupling analyses. Compared with the original configuration, it is found that the lowest resonant frequency of the optimal configuration is reduced by 24.6% and the highest resonant frequency within 2000 Hz is 1744.9 Hz, which is 54.2% higher than that of the original configuration. This greatly improves the vibration power and operating frequency range of the transducer. Then, the honeycomb structure is innovatively applied to the work panel, and it is verified that the honeycomb structure has a great effect on the vibration performance of the work panel. By optimizing the size of the honeycomb structure, it is determined that the honeycomb structure can improve the vibration power of the work panel to its maximum value when the distance between the half-opposite sides of the hexagon is H = 3.5 mm. It can reduce the resonant frequency of the work panel; the lowest resonant frequency is reduced by 12.8%. At the same time, the application of a honeycomb panel structure can reduce the weight of the transducer. Full article
Show Figures

Figure 1

11 pages, 4447 KiB  
Article
Microstructure and Magnetic Properties Dependence on the Sputtering Power and Deposition Time of TbDyFe Thin Films Integrated on Single-Crystal Diamond Substrate
by Zhenfei Lv, Xiulin Shen, Jinxuan Guo, Yukun Cao, Chong Lan, Yanghui Ke, Yixian Yang and Junyi Qi
Processes 2022, 10(12), 2626; https://doi.org/10.3390/pr10122626 - 7 Dec 2022
Cited by 3 | Viewed by 2196
Abstract
As giant magnetostrictive material, TbDyFe is regarded as a promising choice for magnetic sensing due to its excellent sensitivity to changes in magnetic fields. To satisfy the requirements of high sensitivity and the stability of magnetic sensors, TbDyFe thin films were successfully deposited [...] Read more.
As giant magnetostrictive material, TbDyFe is regarded as a promising choice for magnetic sensing due to its excellent sensitivity to changes in magnetic fields. To satisfy the requirements of high sensitivity and the stability of magnetic sensors, TbDyFe thin films were successfully deposited on single-crystal diamond (SCD) substrate with a Young’s modulus over 1000 GPa and an ultra-stable performance by radio-frequency magnetron sputtering at room temperature. The sputtering power and deposition time effects of TbDyFe thin films on phase composition, microstructure, and magnetic properties were investigated. Amorphous TbDyFe thin films were achieved under various conditions of sputtering power and deposition time. TbDyFe films appeared as an obvious boundary to SCD substrate as sputtering power exceeded 100 W and deposition time exceeded 2 h, and the thickness of the films was basically linear with the sputtering power and deposition time based on a scanning electron microscope (SEM). The film roughness ranged from 0.15 nm to 0.35 nm, which was measured by an atomic force microscope (AFM). The TbDyFe film prepared under a sputtering power of 100 W and a deposition time of 3 h possessed the coercivity of 48 Oe and a remanence ratio of 0.53, with a giant magnetostriction and Young’s modulus effect, suggesting attractive magnetic sensitivity. The realization of TbDyFe/SCD magnetic material demonstrates a foreseeable potential in the application of high-performance sensors. Full article
Show Figures

Graphical abstract

13 pages, 5420 KiB  
Article
Displacement Model of Giant Magnetostrictive Actuator for Direct-Drive Injector
by Zhaoqi Zhou, Zhongbo He, Guangming Xue, Jingtao Zhou, Ce Rong and Guoping Liu
Actuators 2022, 11(11), 310; https://doi.org/10.3390/act11110310 - 27 Oct 2022
Cited by 2 | Viewed by 1945
Abstract
Aiming at the inherent problems of non-direct-drive injectors, such as long oil circuits and a difficult precise control of the needle stroke, based on the structure of a direct-drive injector and combined with the demand for the needle drive of a truck diesel [...] Read more.
Aiming at the inherent problems of non-direct-drive injectors, such as long oil circuits and a difficult precise control of the needle stroke, based on the structure of a direct-drive injector and combined with the demand for the needle drive of a truck diesel injector, this study designs and fabricates a giant magnetostrictive actuator for direct-drive injectors. A simplified model of a giant magnetostrictive actuator is established, which mainly simplifies the magnetization model to facilitate the subsequent integrated modeling of the fuel injector. An actuator output displacement test system was built, and the output waveform and frequency characteristics of the actuator were analyzed. It was found that the experimental results were in good agreement with the calculated results of the model, and the average relative error of the amplitude was 3.26%, while the average relative error of the phase difference was 3.83%, which verifies the correctness of the model. This research enriches the modeling method of giant magnetostrictive actuators and has an important reference value for the research and design of fuel injectors. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

Back to TopTop