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Abstract: As giant magnetostrictive material, TbDyFe is regarded as a promising choice for magnetic
sensing due to its excellent sensitivity to changes in magnetic fields. To satisfy the requirements of
high sensitivity and the stability of magnetic sensors, TbDyFe thin films were successfully deposited
on single-crystal diamond (SCD) substrate with a Young’s modulus over 1000 GPa and an ultra-stable
performance by radio-frequency magnetron sputtering at room temperature. The sputtering power
and deposition time effects of TbDyFe thin films on phase composition, microstructure, and magnetic
properties were investigated. Amorphous TbDyFe thin films were achieved under various conditions
of sputtering power and deposition time. TbDyFe films appeared as an obvious boundary to SCD
substrate as sputtering power exceeded 100 W and deposition time exceeded 2 h, and the thickness
of the films was basically linear with the sputtering power and deposition time based on a scanning
electron microscope (SEM). The film roughness ranged from 0.15 nm to 0.35 nm, which was measured
by an atomic force microscope (AFM). The TbDyFe film prepared under a sputtering power of 100 W
and a deposition time of 3 h possessed the coercivity of 48 Oe and a remanence ratio of 0.53, with a
giant magnetostriction and Young’s modulus effect, suggesting attractive magnetic sensitivity. The
realization of TbDyFe/SCD magnetic material demonstrates a foreseeable potential in the application
of high-performance sensors.

Keywords: TbDyFe; single-crystal diamond; thin film; microstructure; magnetic properties

1. Introduction

Magnetic thin films deposited on various substrates are increasingly permeating
through research fields of magnetic sensing [1,2], recording technology [3,4], photodetec-
tion [5–9], and microactuators [10–13], etc., due to its multiple-structure design. Inspired
by the excellent mechanical, electrical, thermal, and chemical properties, diamond has
attracted extraordinary interests as a substrate candidate for its extraordinary performance
in fields such as microelectromechanical systems (MEMS) [14–16], electrical devices [17–19],
and mechanical processing [20–22]. Rather than polycrystalline or nanocrystalline dia-
mond, single-crystal diamond (SCD) demonstrates more comparable properties with ideal
materials. Zhang et al. fabricated a highly sensitive MEMS magnetic sensor by using
an SCD MEMS resonator integrated with giant magneto-strictive nano-thick FeGa thin
film [23], and they studied the impact of growth parameters on FeGa thin film integrated
with SCD substrate [24]. The soft magnetic properties of FeGa thin film deposited on SCD
substrate proved to be superior to that on Si substate. TbDyFe ternary alloy is regarded as
a promising choice in electronic engineering, especially for magnetic sensing in merits of
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its giant magnetostriction, high frequency bandwidth, high energy conversion rate, short
response time, and high stability [25–27]. Recently, integrated TbDyFe thin film on SCD
microcantilevers for magnetic sensing has been realized as an MEMS resonator structure
via Young’s modulus effect [28]. Nevertheless, previous research was mainly devoted to
the realization of unique function and outstanding performance, rather than illustrating
how the processing condition of TbDyFe thin films deposited on SCD substrate affects the
microstructure and magnetic properties. Conventionally, the processing condition plays a
crucial role in the determination of the microstructure and magnetic properties of thin film,
thus affecting the performance of devices [29–32]. Furthermore, the microstructure and
magnetic properties of TbDyFe thin film on Si [33] and Pt/TiO2/SiO2/Si [34] substrate have
proven to vary in strong dependence on the processing condition, including sputtering
power, deposition pressure, substrate to target distance, and deposition temperature.

Herein, radio-frequency magnetron sputtering (RFMS) [35] was applied to obtain
the TbDyFe thin films deposited on SCD substrates at room temperature via varying
processing parameters involving sputtering power and deposition time. The impact of
processing parameters on the phase composition, microstructure, and magnetic properties
of TbDyFe thin films deposited on SCD substrate were investigated for the first time. A high
dependence of surface roughness (Ra), coercivity (Hc), saturation magnetization (Hs), and
remanence ratio (Mr/Ms) of TbDyFe thin films on the processing parameters was discussed
in detail. This work provides a technical and theoretical basis for the magnetic property
enhancement of TbDyFe films under various processing conditions and an integration with
wide-gap semiconductor materials.

2. Materials and Methods
2.1. Fabrication and Treatment of SCD Substrates

Microwave plasma chemical vapor deposition (MPCVD, AX5200S) was employed to
prepare high-quality (100)-oriented SCDs. Diamond seed crystals with a size of
3 mm × 3 mm × 1 mm were placed in the center of the growth chamber, and the growth
temperature of diamond was monitored through infrared temperature measurement out-
side the chamber every half hour to ensure power stability. The SCD substrates were
cleaned in the boiling mixture of nitric acid (69%, mass fraction) and sulfuric acid (98%,
mass fraction) with a volume ratio of 1:2 at 300 ◦C for 120 min to remove surface hangings.
Subsequently, the as-prepared SCD substrates were cleaned with acetone, ethanol, and
deionized water, respectively, and then dried with a nitrogen gun.

2.2. Deposition of TbDyFe

TbDyFe possesses giant magnetostriction and stability as promising candidates in-
tegrated with SCD substrate for the fabrication of high-quality MEMS. Conventionally,
processing parameters play an intensively important role in the influence on the phase
composition, microstructure, and comprehensive properties of sputtered films.

TbDyFe thin films were deposited on to SCD substrate by RFMS using Tb0.3Dy0.7Fe1.92
alloy single harrow at room temperature. Herein, the distance between the target and the
substrate was locked at 100 mm. The strain arising from the thermal expansion mismatch of
the thin film and substrate was insignificant due to the room-temperature deposition. The
growth chamber was vacuumed to below 10−6 Pa to guarantee the high-quality of TbDyFe
thin films, and the working pressure was set to 0.8 Pa with 10 sccm Ar flow according to
the result of the pre-experiment. A flexible sputtering power of 50–200 W with a step size
of 50 W and deposition time of 1 h, 2 h, 3 h, and 4 h were varied to explore their effect on
the morphology and performance of TbDyFe films. The varying processing parameters are
exhibited in Table 1.
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Table 1. The varying processing parameters of TbDyFe thin films deposited on SCD substrate.

Theme

Processing Parameters

Power (W) Time (h) Working
Pressure (Pa) Ar Flow (sccm)

Power effect

50

3

0.8 10

100
150
200

Deposition time
effect

100

1
2
3
4

2.3. Characterization Method

The phase structures of SCD substrates were characterized by the aberration corrected
transmission electron microscope (TEM, JEOL, Akishima, Japan, JEM-2100F(UHR), 200 kV)
system using high-resolution TEM (HRTEM) and selected area electron diffraction (SAED).
The as-processed specimen for TEM characterization was fabricated through the focused
ion beam (FIB) method. Raman (HORIBA-Jobin-Yvon, Paris, France, T64000) technology
was conducted to verify the quality of the SCD substrate. The crystal composition and
thickness of prepared TbDyFe films were determined by X-ray diffraction (XRD, Rigaku
Corporation, Tokyo, Japan, Smart lab, Cu Ka radiation (λ = 1.54 Å)) and a scanning electron
microscope (SEM, Hitachi, Tokyo, Japan, S-4800), respectively, and film roughness was
quantified by atomic force microscope (AFM, Bruker, Billerica, MA, USA, Nanoscope5).
In-plane hysteresis loops were measured by a vibrating sample magnetometer (VSM,
LakeShore, Columbus, OH, USA, 7410) with data normalized.

3. Results and Discussion
3.1. SCD Substrate Characterization

Raman spectroscopic characterization plays an irreplaceable role in the structural
determination of carbon materials due to its advantages of having high resolution, having
high sensitivity, being nondestructive, and having an easy operation [36,37]. The SCD
constituted of sp3 hybridization possesses the Raman characteristic peak of 1332 cm−1 [24].
The Raman spectrum and full width at half maximum (FWHM) of the SCD substrate
is exhibited in Figure 1a,b. As is shown, there is merely a sharp characteristic peak at
1332.4 cm−1, with FWHM distribution concentrated at 2.4–2.8 cm−1, which is exceedingly
close to that of natural diamond. The high-resolution TEM image of the SCD substrate, as
illustrated in Figure 1c, shows a complete and orderly diamond lattice structure, verifying
its single crystal feature. The SAED image shown in Figure 1d further confirms the single
crystal structure and high quality of SCD with a (111)-oriented lattice plane, which can act
as ideal substrate material and provide a superior platform for the deposition of TbDyFe
thin films.

3.2. TbDyFe Phase Composition

Crystallized TbDyFe mainly consists of REFe2 (RE refers to Tb and Dy, Laves, cubic
close packing (CCP)), which greatly contributes to the realization of larger magnetostriction
coefficients. In order to reveal the crystal composition of TbDyFe thin film on SCD substrate,
X-ray diffraction (XRD) was conducted. The XRD patterns of TbDyFe films prepared under
3 h and different sputtering powers are shown in Figure 2a, with no visible Laves phase
characteristic peak, which can be attributed to that the films prepared at room temperature
were basically amorphous [33,38], lacking long-range crystallographic order and producing



Processes 2022, 10, 2626 4 of 11

inconspicuous peaks with low intensities in XRD patterns, according to Bragg’s law shown
in Equation (1) [39,40].

nλ = 2dhkl sin(θ) (1)

where n is the order of diffraction, λ is the wavelength of the incident beam in nm, dhkl is
the lattice spacing in nm, and θ is the angle of the diffracted beam in degree.
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Figure 1. (a) Raman spectrum, (b) full width at half maximum image, (c) high-resolution transmission
electron microscope image, (d) selected area electron diffraction image of the SCD substrate.
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Figure 2. XRD patterns of TbDyFe films obtained at different (a) sputtering powers (50 W, 100 W,
150 W, and 200 W) and (b) deposition times (1 h, 2 h, 3 h, and 4 h).

In addition, the characteristic peak of the Fe (110)-oriented texture perpendicular to
the thin film plane appears as the sputtering power exceeds 150 W due to the obvious



Processes 2022, 10, 2626 5 of 11

selective sputtering of Fe in the alloy target under excessive sputtering power. Generally,
the broadening of the diffraction peak is mainly dictated by the grain size, not the internal
strain, when the grain size is in the range of 0–100 nm. In this situation, the Scherrer
equation, exhibited in Equation (2), is utilized to calculate the nanoscale grain size in
out-of-plane direction based on XRD data [41].

D = 0.89λ/βcos(θ) (2)

where D is the grain size in nm, λ is the X-ray wavelength in nm, θ is the diffraction angle
in degree, and β is the FWHM in radian.

The grain size of Fe in the film at a sputtering power higher than 150 W was calculated
as within 43 nm (shown in Table 2), indicating a smooth surface and good sputtering effect.
As demonstrated in Figure 2b, XRD patterns of TbDyFe films obtained under 100 W and
different deposition times from 1 to 4 h were still amorphous. At 4 h, the characteristic
peak of Fe (110) occurred, presumably owing to the prolonged deposition time inducing
a heated target and enlarging the energy of the system accordingly, hence the selective
sputtering of Fe. As demonstrated in previous literature [25], different atomic mass leads to
uneven deposition efficiency. The variety of surface composition induced by the increasing
deposition time lasts until the new equilibrium is built in stable parameters. In this case,
the proportion of RE and Fe atoms deposited on the substrate are approximate to those of
the target.

Table 2. The grain size of Fe in the TbDyFe films calculated from the diffraction angle and FWHM.

Processing
Parameters Diffraction Angle (◦) FWHM (Radian) Grain Size (nm)

150 W, 3 h 22.21 0.0035 42.34
200 W, 3 h 22.25 0.0089 16.63
100 W, 4 h 22.27 0.0079 18.87

As can be concluded from the XRD spectrum, high sputtering powers (150 W, 200 W)
and long deposition times (4 h) both produce an iron diffraction peak owing to the selective
sputtering of iron. The enrichment of iron atoms indicates that the composition distribution
of sputtered films is uneven, which is not conducive to obtain TbDyFe films with a compo-
sition close to the target, thus degrading the magnetic performance. Therefore, a sputtering
power of 100 W and a deposition time of 3 h are considered to be optimum conditions for
sputtering at room temperature, which is verified by further characterization and analysis
below.

3.3. TbDyFe Microstructure

SEM images of TbDyFe thin film/SCD sample cross-section under 3 h and different
sputtering powers are shown in Figure 3a–d. When the sputtered film vapor condenses on
the diamond substrate, a large number of alloy target atoms appear randomly at first, and
then the discontinuous distributed atoms continue to accumulate until they contact and
merge with each other. A sputtering power of 50 W is too weak to form a distinct TbDyFe
layer on the SCD surface until the power reaches 100 W. As was speculated, a small amount
and low energy of Ar gas plasma in the working chamber induces inadequate sputtering of
the alloy target atoms; accordingly, the films deposited on the substrate are almost invisible
under the condition of excessively low sputtering power. Figure 3e–h are SEM images of
TbDyFe thin film/SCD cross-section under 100 W and different deposition times. TbDyFe
thin films and layer boundaries can be clearly observed despite 1 h, and the surfaces of the
thin films are smooth without abnormal concavity.
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100 W, 150 W, and 200 W, respectively) and (e–h) deposition times (1 h, 2 h, 3 h, and 4 h, respectively).

Figure 4a–h exhibits the AFM images of TbDyFe films prepared under different
sputtering powers (the same deposition time of 3 h) and various deposition times (the
same sputtering power of 100 W). Further, the dependence of surface roughness Ra and
film thickness on sputtering power and deposition time obtained by AFM and SEM,
respectively, are shown in Figure 4i–j. A larger surface roughness of 0.441 nm of TbDyFe
film was demonstrated as the sputtering power was 50 W, which can be attributed to
the random and discontinuous distribution on the substrate effectuated by seldom alloy
target atoms splashed out at low power. Additionally, the presence of fringes may be
caused by the rough surface of single-crystalline diamond substrate. The roughness of the
films fluctuated between 0.15 nm and 0.35 nm in parallel with the increase of sputtering
power. The roughness of film fabricated under a sputtering power of 50 W was ignored
due to its invisibility (shown in Figure 3a). The increase of roughness at 150 W was
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likely due to the selective sputtering of Fe, and the higher power improved the energy
of the incoming ionized species and decreased the rearrangement time of the atoms on
the substrate before the arrival of next atoms. At a higher power of 200 W, the kinetic
energy of the incoming atoms increased, enhancing the lateral diffusion of Fe atoms, and
then the surface roughness decreased. The variation rule of roughness along with power
were consistent with the alteration of the XRD peak, as shown in Figure 2a. Furthermore,
except for an operating power of 50 W, the deposition thickness of the films exhibited an
approximately positive linear relationship with sputtering power but not significantly due
to dissipation of substrate heating and secondary electron reflection at a high sputtering
power (200 W). With the increase of deposition time, the films maintained dense and
smooth surfaces with a maximum Ra of 0.243 nm. The roughness and thickness of the films
had a linear positive correlation with the deposition time. The deposition rate of TbDyFe
on SCD was around 30 nm-thick per hour.
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3.4. Magnetic Properties of TbDyFe

As shown in Figure 5a,b, the easy magnetization direction of the deposited TbDyFe
films is in-plane. Since the films sputtered at 50 W were almost non-existent, their impact
in the analysis was not taken into consideration. It can be seen from Figure 5c,e that
there were minor discrepancies of in-plane Hc, Hs, and Mr/Ms between TbDyFe films
acquired under a sputtering power of 100 W and 150 W, respectively, but they represented
a sharp increase as the sputtering power reached 200 W. The roughness of the film was
basically negatively correlated with Hc as the unobvious film thickness changed. For a
film fabricated under 100 W, the Hc possessed an initial value of 48 Oe. As the sputtering
power increased to 150 W and 200 W, the coercivity Hc decreased slightly to 43 Oe, and
then increased to 75 Oe, while the Mr/Ms showed a steady increasing tendency. It was
hypothesized that the effect originating from the surface roughness was more apparent for
the thinner film. Defects occluded the movement of magnetic domain walls, increasing
the coercivity of the film. This also explained that the saturated magnetic field strength of
TbDyFe films acquired under a sputtering power of 100 W and 150 W, respectively, were
identical, but the coercivity and remanence ratios were significantly different. Moreover,
with increasing power, the intense collisions between various atoms on the target surface
led to a temperature increase of the target and substrate, which could change both the micro
morphology (lower roughness shown in Figure 4i) and stress, leading to the transformation
of the film magnetic properties. As depicted in Figure 5d,f, the Hs of TbDyFe films had a
weak dependence on the deposition time and remained at 500 Oe. Moreover, minuscule
effects of the deposition time on Hc, Hs, and Mr/Ms of TbDyFe films were found as long
as the deposition time was enough to form a continuous smooth film (>1 h) on the SCD
substrate surface. With the lengthening of deposition time, Hc and Mr/Ms of TbDyFe
films started at 55 Oe/0.62 and initially declined to 48 Oe/0.52, thereupon rising up to
77 Oe/0.71. As was speculated, the Hc of TbDyFe films was dominated by the film
roughness when the deposition time was below 3 h. However, when the deposition time
reached 4 h, the enhancement of Hc by deposition thickness occupied the main position.
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The appearance of the characteristic diffraction peak of Fe exhibited in Figure 2b increase
the magnetic nonuniformity of the film, resulting in a decrease in the coercivity of the
film [42]. It is worth noting that the excessively long sputtering time also increased the film
surface temperature, thereby affecting the structure and magnetic properties of the film.
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4. Conclusions

In summary, TbDyFe thin films integrated into the SCD substrate were successfully
prepared by radio-frequency magnetron sputtering at ambient temperature. The sputtering
power and deposition time exhibited significant influence on the phase composition, mi-
crostructure, and magnetic properties of TbDyFe thin films. Amorphous TbDyFe thin films
were achieved with sputtering power from 100 to 200 W and deposition time exceeding
2 h. The thickness of the films was basically linear with the sputtering power and deposi-
tion time, and the film roughness fluctuated between 0.15 nm and 0.35 nm. The TbDyFe
film prepared under a sputtering power of 100 W and a deposition time of 3 h possessed
a coercivity of 48 Oe and a remanence ratio of 0.53, demonstrating attractive magnetic
sensitivity.
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