Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,519)

Search Parameters:
Keywords = geometry mechanical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2976 KiB  
Article
Biomechanical Modeling and Simulation of the Knee Joint: Integration of AnyBody and Abaqus
by Catarina Rocha, João Lobo, Marco Parente and Dulce Oliveira
Biomechanics 2025, 5(3), 57; https://doi.org/10.3390/biomechanics5030057 (registering DOI) - 2 Aug 2025
Abstract
Background: The knee joint performs a vital function in human movement, supporting significant loads and ensuring stability during daily activities. Methods: The objective of this study was to develop and validate a subject-specific framework to model knee flexion–extension by integrating 3D gait data [...] Read more.
Background: The knee joint performs a vital function in human movement, supporting significant loads and ensuring stability during daily activities. Methods: The objective of this study was to develop and validate a subject-specific framework to model knee flexion–extension by integrating 3D gait data with individualized musculoskeletal (MS) and finite element (FE) models. In this proof of concept, gait data were collected from a 52-year-old woman using Xsens inertial sensors. The MS model was based on the same subject to define realistic loading, while the 3D knee FE model, built from another individual’s MRI, included all major anatomical structures, as subject-specific morphing was not possible due to unavailable scans. Results: The FE simulation showed principal stresses from –28.67 to +44.95 MPa, with compressive stresses between 2 and 8 MPa predominating in the tibial plateaus, consistent with normal gait. In the ACL, peak stress of 1.45 MPa occurred near the femoral insertion, decreasing non-uniformly with a compressive dip around –3.0 MPa. Displacement reached 0.99 mm in the distal tibia and decreased proximally. ACL displacement ranged from 0.45 to 0.80 mm, following a non-linear pattern likely due to ligament geometry and local constraints. Conclusions: These results support the model’s ability to replicate realistic, patient-specific joint mechanics. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 (registering DOI) - 1 Aug 2025
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

18 pages, 5167 KiB  
Article
Comparative Study of Local Stress Approaches for Fatigue Strength Assessment of Longitudinal Web Connections
by Ji Hoon Kim, Jae Sung Lee and Myung Hyun Kim
J. Mar. Sci. Eng. 2025, 13(8), 1491; https://doi.org/10.3390/jmse13081491 (registering DOI) - 1 Aug 2025
Abstract
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data [...] Read more.
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data and comparative studies for actual ship structure details. This study addresses this limitation by evaluating the fatigue strength of longi-web connections in hull structures using local stress approaches, including hot spot stress, effective notch stress, notch stress intensity factor, and structural stress methods. Finite element analyses were conducted, and the predicted fatigue lives and failure locations were compared with experimental results. Although there are some differences between each method, all methods are valid and reasonable for predicting the primary failure locations and evaluating fatigue life. These findings provide a basis for considering suitable fatigue assessment methods for welded ship structures with respect to joint geometry and failure mechanisms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 10606 KiB  
Review
A Review of On-Surface Synthesis and Characterization of Macrocycles
by Chao Yan, Yiwen Wang, Jiahui Li, Xiaorui Chen, Xin Zhang, Jianzhi Gao and Minghu Pan
Nanomaterials 2025, 15(15), 1184; https://doi.org/10.3390/nano15151184 - 1 Aug 2025
Viewed by 153
Abstract
Macrocyclic organic nanostructures have emerged as crucial components of functional supramolecular materials owing to their unique structural and chemical features, such as their distinctive “infinite” cyclic topology and tunable topology-dependent properties, attracting significant recent attention. However, the controlled synthesis of macrocyclic compounds with [...] Read more.
Macrocyclic organic nanostructures have emerged as crucial components of functional supramolecular materials owing to their unique structural and chemical features, such as their distinctive “infinite” cyclic topology and tunable topology-dependent properties, attracting significant recent attention. However, the controlled synthesis of macrocyclic compounds with well-defined compositions and geometries remains a formidable challenge. On-surface synthesis, capable of constructing nanostructures with atomic precision on various substrates, has become a frontier technique for exploring novel macrocyclic architectures. This review summarizes the recent advances in the on-surface synthesis of macrocycles. It focuses on analyzing the synthetic mechanisms and conformational characterization of macrocycles formed through diverse bonding interactions, including both covalent and non-covalent linkages. This review elucidates the intricate interplay between the thermodynamic and kinetic factors governing macrocyclic structure formation across these bonding types and clarifies the critical influence of the reaction temperature and external conditions on the cyclization efficiency. Ultimately, this study offers design strategies for the precise on-surface synthesis of larger and more flexible macrocyclic compounds. Full article
(This article belongs to the Special Issue Recent Advances in Surface and Interface Nanosystems)
Show Figures

Figure 1

15 pages, 3096 KiB  
Article
An Experimental Study on the Impact of Roughness Orientation on the Friction Coefficient in EHL Contact
by Matthieu Cordier, Yasser Diab, Jérôme Cavoret, Fida Majdoub, Christophe Changenet and Fabrice Ville
Lubricants 2025, 13(8), 340; https://doi.org/10.3390/lubricants13080340 (registering DOI) - 31 Jul 2025
Viewed by 129
Abstract
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a [...] Read more.
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a twin-disc machine. Three pairs of discs of identical material (nitrided steel) and geometry were tested: a smooth pair (the root mean square surface roughness Sq = 0.07 µm), a pair with transverse roughness and another with longitudinal roughness. The two rough pairs have similar roughness amplitudes (Sq = 0.5 µm). A comparison of the friction generated by these different pairs was carried out to highlight the effect of the roughness orientation under different operating conditions (oil injection temperature from 60 to 80 °C, Hertzian pressure from 1.2 to 1.5 GPa and mean rolling speed from 5 to 30 m/s). Throughout all the tests conducted in this study, longitudinal roughness resulted in higher friction than transverse, with an increase of up to 30%. Moreover, longitudinal roughness is more sensitive to variations in operating conditions. Finally, in all tests, the asperities of longitudinal roughness were found to influence the friction behaviour, unlike transverse roughness. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

28 pages, 2174 KiB  
Article
Validating Lava Tube Stability Through Finite Element Analysis of Real-Scene 3D Models
by Jiawang Wang, Zhizhong Kang, Chenming Ye, Haiting Yang and Xiaoman Qi
Electronics 2025, 14(15), 3062; https://doi.org/10.3390/electronics14153062 (registering DOI) - 31 Jul 2025
Viewed by 175
Abstract
The structural stability of lava tubes is a critical factor for their potential use in lunar base construction. Previous studies could not reflect the details of lava tube boundaries and perform accurate mechanical analysis. To this end, this study proposes a robust method [...] Read more.
The structural stability of lava tubes is a critical factor for their potential use in lunar base construction. Previous studies could not reflect the details of lava tube boundaries and perform accurate mechanical analysis. To this end, this study proposes a robust method to construct a high-precision, real-scene 3D model based on ground lava tube point cloud data. By employing finite element analysis, this study investigated the impact of real-world cross-sectional geometry, particularly the aspect ratio, on structural stability under surface pressure simulating meteorite impacts. A high-precision 3D reconstruction was achieved using UAV-mounted LiDAR and SLAM-based positioning systems, enabling accurate geometric capture of lava tube profiles. The original point cloud data were processed to extract cross-sections, which were then classified by their aspect ratios for analysis. Experimental results confirmed that the aspect ratio is a significant factor in determining stability. Crucially, unlike the monotonic trends often suggested by idealized models, analysis of real-world geometries revealed that the greatest deformation and structural vulnerability occur in sections with an aspect ratio between 0.5 and 0.6. For small lava tubes buried 3 m deep, the ground pressure they can withstand does not exceed 6 GPa. This process helps identify areas with weaker load-bearing capacity. The analysis demonstrated that a realistic 3D modeling approach provides a more accurate and reliable assessment of lava tube stability. This framework is vital for future evaluations of lunar lava tubes as safe habitats and highlights that complex, real-world geometry can lead to non-intuitive structural weaknesses not predicted by simplified models. Full article
Show Figures

Figure 1

19 pages, 7574 KiB  
Article
Effect of Natural Fiber Characteristics on Properties of Cementitious Composites: A Comparison of Recycled Pulp from Beverage Cartons, Bamboo, and Eucalyptus Fibers
by Phouthanouthong Xaysombath, Nattakan Soykeabkaew, Darunee Wattanasiriwech and Suthee Wattanasiriwech
Constr. Mater. 2025, 5(3), 50; https://doi.org/10.3390/constrmater5030050 (registering DOI) - 31 Jul 2025
Viewed by 90
Abstract
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF [...] Read more.
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF was rounded in shape and had the highest aspect ratio, while the ribbon-shaped EF exhibited the highest tensile strength index. The RPBC fibers were fibrillated and the shortest, with a ribbon shape. Flexural strength results showed that RPBCC achieved a maximum strength that was 47.6% higher than the control specimen (0% fiber), outperforming both BF- and EF-reinforced counterparts. This superior performance is attributed to the higher fibrillation level of the ribbon-shaped RPBC fibers, which promoted better fiber–matrix bonding. As the fiber content increased, the bulk density of EFC and BFC decreased linearly, while RPBC composites showed only a modest decrease in density. Porosity steadily increased in EFC and BFC, whereas a non-linear trend was observed in RPBCC, likely due to its unique morphology and fibrillation. Conversely, EFC exhibited significantly higher maximum fracture toughness (3600 J/m2 at 10 wt.%) compared to PBFCC (1600 J/m2 at 14 wt.%) and BFC (1400 J/m2 at 14 wt.%). This enhancement is attributed to extensive fiber pullout mechanisms and increased energy absorption during crack propagation. Overall, all composite types demonstrated flexural strength values above 4 MPa, placing them in the Grade I category. Those reinforced with 10–14% RPBC exhibited strengths of 11–12 MPa, categorizing them as Grade II according to ASTM C1186-02. Full article
Show Figures

Figure 1

19 pages, 4676 KiB  
Article
Self-Healing 3D-Printed Polyurethane Nanocomposites Based on Graphene
by Justyna Gołąbek, Natalia Sulewska and Michał Strankowski
Micromachines 2025, 16(8), 889; https://doi.org/10.3390/mi16080889 - 30 Jul 2025
Viewed by 99
Abstract
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These [...] Read more.
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These new materials were synthesized via a two-step process and characterized by their thermal, mechanical, chemical, and self-healing properties. The mechanical analysis revealed that all nanocomposites exhibited high self-healing efficiencies (88–91%). The PU containing 2% graphene stands out as it exhibits the highest initial mechanical strength of ~5 MPa compared to approximately 2MP for a pristine PU while maintaining excellent self-healing efficiency (88%). A cut on the PU nanocomposite with 2% graphene can be completely healed after being heated at 80 °C for 1 h, which shows that it has a fast recovery time. Moreover, 3D printing was also successfully used to assess their processability and its effect on self-healing behavior. Three-dimensional printing did not negatively affect the material regeneration properties; thus, the material can be used in a variety of applications as expected in terms of dimensions and geometry. Full article
Show Figures

Figure 1

15 pages, 2079 KiB  
Article
Incorporation of Encapsulated Omega-3 in 3D-Printed Food Gels: A Study on Rheology, Extrusion, and Print Performance in Dual Ink Printing
by Adrián Matas-Gil, Francisco de-la-Haba, Marta Igual, Purificación García-Segovia and Javier Martínez-Monzó
Foods 2025, 14(15), 2681; https://doi.org/10.3390/foods14152681 - 30 Jul 2025
Viewed by 175
Abstract
The integration of functional ingredients into 3D food printing formulations presents both opportunities and challenges, particularly regarding the printability and structural integrity of the final product. This study investigates the effect of incorporating omega-3 fatty acids encapsulated in pea protein into a model [...] Read more.
The integration of functional ingredients into 3D food printing formulations presents both opportunities and challenges, particularly regarding the printability and structural integrity of the final product. This study investigates the effect of incorporating omega-3 fatty acids encapsulated in pea protein into a model food gel composed of gelatin and iota-carrageenan. Four formulations with varying concentrations of encapsulated omega-3 (0%, 3%, 3.75%, and 6%) were evaluated for their rheological, textural, and printability properties. Rheological analysis revealed a progressive increase in storage modulus (G′) from 1200 Pa (0%) to 2000 Pa (6%), indicating enhanced elastic behavior. Extrusion analysis showed a reduction in maximum extrusion force from 325 N (0%) to 250 N (6%), and an increase in buffer time from 390 s to 500 s. Print fidelity at time 0 showed minimal deviation in the checkerboard geometry (area deviation: −12%), while the concentric cylinder showed the highest stability over 60 min (height deviation: 9%). These findings highlight the potential of using encapsulated bioactive compounds in 3D food printing to develop functional foods with tailored nutritional and mechanical properties. Full article
Show Figures

Figure 1

21 pages, 4865 KiB  
Article
Impact of Laser Power and Scanning Speed on Single-Walled Support Structures in Powder Bed Fusion of AISI 316L
by Dan Alexander Gallego, Henrique Rodrigues Oliveira, Tiago Cunha, Jeferson Trevizan Pacheco, Oksana Kovalenko and Neri Volpato
J. Manuf. Mater. Process. 2025, 9(8), 254; https://doi.org/10.3390/jmmp9080254 - 30 Jul 2025
Viewed by 184
Abstract
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing [...] Read more.
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing processes, L-PBF stands out, paving the way for the execution of part designs with geometries previously considered unfeasible. Despite offering several advantages, parts with overhang features require the use of support structures to provide dimensional stability of the part. Support structures achieve this by resisting residual stresses generated during processing and assisting heat dissipation. Although the scientific community acknowledges the role of support structures in the success of L-PBF manufacturing, they have remained relatively underexplored in the literature. In this context, the present work investigated the impact of laser power and scanning speed on the dimensioning, integrity and tensile strength of single-walled block type support structures manufactured in AISI 316L stainless steel. The method proposed in this work is divided in two stages: processing parameter exploration, and mechanical characterization. The results indicated that support structures become more robust and resistant as laser power increases, and the opposite effect is observed with an increment in scanning speed. In addition, defects were detected at the interfaces between the bulk and support regions, which were crucial for the failure of the tensile test specimens. For a layer thickness corresponding to 0.060 mm, it was verified that the combination of laser power and scanning speed of 150 W and 500 mm/s resulted in the highest tensile resistance while respecting the dimensional deviation requirement. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

11 pages, 2733 KiB  
Article
Laser Texturing of Tungsten Carbide (WC-Co): Effects on Adhesion and Stress Relief in CVD Diamond Films
by Argemiro Pentian Junior, José Vieira da Silva Neto, Javier Sierra Gómez, Evaldo José Corat and Vladimir Jesus Trava-Airoldi
Surfaces 2025, 8(3), 54; https://doi.org/10.3390/surfaces8030054 - 30 Jul 2025
Viewed by 170
Abstract
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by [...] Read more.
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by chemical treatment (Murakami’s solution + aqua regia) to remove surface cobalt. Diamond films were grown via HFCVD and characterized by Raman spectroscopy, EDS, and Rockwell indentation. The results demonstrate that pyramidal texturing increased the surface area by a factor of 58, promoting effective mechanical interlocking and reducing compressive stresses to −1.4 GPa. Indentation tests revealed suppression of interfacial cracks, with propagation paths deflected toward textured regions. The pyramidal geometry exhibited superior cutting post-deposition cooling time for stress relief from 3 to 1 h. These findings highlight the potential of laser texturing for high-performance machining tool applications. Full article
Show Figures

Figure 1

36 pages, 4967 KiB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 327
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

18 pages, 3353 KiB  
Article
Implementation of an Academic Learning Module for CNC Manufacturing Technology of the Part ”Double Fixing Fork”
by Georgiana-Alexandra Moroşanu, Florin-Ioan Moroșanu, Florin Susac, Virgil-Gabriel Teodor, Viorel Păunoiu and Nicuşor Baroiu
Inventions 2025, 10(4), 63; https://doi.org/10.3390/inventions10040063 - 29 Jul 2025
Viewed by 131
Abstract
The paper presents the CNC manufacturing technology of the ”Double fixing fork” part as a module with educational purpose, being designed as a training support for students and other parties, facilitating the practical learning of CNC processing technology. Its technological manufacturing process involved [...] Read more.
The paper presents the CNC manufacturing technology of the ”Double fixing fork” part as a module with educational purpose, being designed as a training support for students and other parties, facilitating the practical learning of CNC processing technology. Its technological manufacturing process involved a careful analysis of the geometry, material, tolerances, as well as functional requirements to ensure precision and reliability in operation. The material from which the part was made is a polymer material (PEHD 1000) selected both for its mechanical characteristics and for its compatibility with processing technologies. The results demonstrated high precision and adaptability, reduced execution times and the possibility of achieving complex geometries in a relatively short time. The developed module supports skill development in CNC programming and operation and is suitable for replication in other academic environments. Programming allowed for more precise control of the cutting tool trajectory and processing parameters. The paper represents an important contribution to the training of future specialists, paying special attention to the growing interdisciplinarity in manufacturing technology and the development of technical skills necessary for future engineers in the numerically controlled machinery sector. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

13 pages, 5152 KiB  
Article
FEM-Based Design and Micromachining of a Ratchet Click Mechanism in Mechanical Watch Movements
by Alessandro Metelli, Giuseppe Soardi, Andrea Abeni and Aldo Attanasio
Micromachines 2025, 16(8), 875; https://doi.org/10.3390/mi16080875 - 29 Jul 2025
Viewed by 199
Abstract
The ratchet click mechanism in mechanical watch movements is a micro-component essential to prevent the unwinding of the caliber mainspring, providing secure energy storage during recharging. Despite its geometrical simplicity, the ratchet click undergoes to a complex distribution of stress, elevated strains, and [...] Read more.
The ratchet click mechanism in mechanical watch movements is a micro-component essential to prevent the unwinding of the caliber mainspring, providing secure energy storage during recharging. Despite its geometrical simplicity, the ratchet click undergoes to a complex distribution of stress, elevated strains, and cyclical mechanical deformations, affecting its long-term reliability. Despite being a crucial element in all mechanical watch movements, the non-return system appears to have been overlooked in scientific literature, with no studies available on its design, modeling, and micromachining. In this work, we introduce a novel Finite Element Method (FEM) -based design strategy for the ratchet click, systematically refining its geometry and dimensional parameters to minimize peak stress and improve durability. A mechanical simulation model was created to simulate the boundary conditions, contact interactions, and stress distributions on the part. If compared with the standard component, the optimized design exhibits a decrease in peak stress values. The mechanism was micro-machined, and it was experimentally tested to validate the numerical model outputs. The integrated digital–physical approach not only underscores the scientific contribution of coupling advanced simulation with experimental validation of complex micromechanisms but also provides a generalizable method for enhancing performance of micro-mechanical components while preserving their historical design heritage. Full article
Show Figures

Figure 1

20 pages, 6495 KiB  
Article
Fractal Characterization of Pore Structures in Marine–Continental Transitional Shale Gas Reservoirs: A Case Study of the Shanxi Formation in the Ordos Basin
by Jiao Zhang, Wei Dang, Qin Zhang, Xiaofeng Wang, Guichao Du, Changan Shan, Yunze Lei, Lindong Shangguan, Yankai Xue and Xin Zhang
Energies 2025, 18(15), 4013; https://doi.org/10.3390/en18154013 - 28 Jul 2025
Viewed by 304
Abstract
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, [...] Read more.
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, high-pressure mercury intrusion, N2 adsorption, and CO2 adsorption techniques, combined with fractal geometry modeling, were employed to characterize the pore structure of the Shanxi Formation marine–continental transitional shale. The shale exhibits generally high TOC content and abundant clay minerals, indicating strong hydrocarbon-generation potential. The pore size distribution is multi-modal: micropores and mesopores dominate, contributing the majority of the specific surface area and pore volume, whereas macropores display a single-peak distribution. Fractal analysis reveals that micropores have high fractal dimensions and structural regularity, mesopores exhibit dual-fractal characteristics, and macropores show large variations in fractal dimension. Characteristics of pore structure is primarily controlled by TOC content and mineral composition. These findings provide a quantitative basis for evaluating shale reservoir quality, understanding gas storage mechanisms, and optimizing strategies for sustainable of oil and gas development in marine–continental transitional shales. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

Back to TopTop