Recent Advances in Surface and Interface Nanosystems

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: 12 September 2025 | Viewed by 840

Special Issue Editor

Special Issue Information

Dear Colleagues,

As is well known, the role of surfaces and interfaces in nanomaterials is crucial for the development of new and advanced materials, with great impact not only on the scientific community but also on social life. The aim of this Special Issue is to collect remarkable contributions on the study and development of surfaces and interfaces in nanosystems. Research will cover many aspects of surfaces, such as their design, modifications, characterizations, and reactivities. At the same time, all phenomena involving solid–solid, solid–liquid, and solid–gas interfaces will be considered.

Nanoparticles, core–shell nanoparticles, nanorods, nanotubes, nanowires, nanoshells, thin films, etc., prepared through the most common chemical and physical methods can be included in nanosystems. Considerable attention will be devoted to the physical–chemical properties of nanosystems investigated via spectroscopic (XPS, AES, EELS, Raman, etc.) and microscopic (SEM, STM, TEM, AFM, etc.) techniques, as well as electrochemical, magnetic, catalysis, and biocompatibility performances.

Dr. Alessio Mezzi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • catalyst surfaces
  • adsorption
  • surface chemical reactions
  • surface characterizations
  • surfaces and interfaces
  • physico-chemical properties of nanosystems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3507 KiB  
Article
Structural and Magnetic Properties of Carbon-Based Nanocomposites Containing Iron Oxides: Effect of Thermal Treatment Atmosphere
by Daniel Hidalgo-Montoya, Mario A. Millán-Franco, John Betancourt, Lorena Marín, Luis A. Rodríguez, Jesús A. Tabares, Milton Manotas-Albor, César Magén, Manuel N. Chaur, Edgar Mosquera-Vargas, Renso Visbal and Malka Mora
Nanomaterials 2025, 15(16), 1241; https://doi.org/10.3390/nano15161241 - 13 Aug 2025
Viewed by 191
Abstract
Carbon-based nanocomposites coated with iron oxides were synthesized using a wet impregnation method with thermally annealed coal and an iron nitrate precursor. The influence of the thermal treatment atmosphere (air, vacuum, or nitrogen) on the morphology, structure, and magnetic properties of the nanocomposites [...] Read more.
Carbon-based nanocomposites coated with iron oxides were synthesized using a wet impregnation method with thermally annealed coal and an iron nitrate precursor. The influence of the thermal treatment atmosphere (air, vacuum, or nitrogen) on the morphology, structure, and magnetic properties of the nanocomposites was examined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. It was found that the vacuum thermal treatment produced carbon-based nanocomposite containing iron oxide with the highest crystallinity, according to XRD analysis, while also inducing the greatest degree of structural defects in the carbon matrix, as evidenced by Raman analysis. Mössbauer spectroscopy confirmed that all thermal treatment methods promote the formation of the hematite phase, which was found to be the only phase formed in the air-treated nanocomposites, whereas traces of magnetite and the formation of Fe(OH)3 were detected in the vacuum- and nitrogen-treated nanocomposites, respectively. Magnetic characterization revealed that all nanocomposites exhibit ferromagnetic-like behavior, attributed to the weak ferromagnetic nature of hematite. The best magnetic response (highest saturation magnetization with the widest hysteresis loop) was observed in the vacuum-treated nanocomposites. These findings collectively demonstrate that the synthesis atmosphere plays a crucial role in tailoring the structural and magnetic characteristics of carbon-based iron oxide nanocomposites, offering pathways for their optimization in applications such as catalysis, environmental remediation, or sensing technologies. Full article
(This article belongs to the Special Issue Recent Advances in Surface and Interface Nanosystems)
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 10606 KiB  
Review
A Review of On-Surface Synthesis and Characterization of Macrocycles
by Chao Yan, Yiwen Wang, Jiahui Li, Xiaorui Chen, Xin Zhang, Jianzhi Gao and Minghu Pan
Nanomaterials 2025, 15(15), 1184; https://doi.org/10.3390/nano15151184 - 1 Aug 2025
Viewed by 438
Abstract
Macrocyclic organic nanostructures have emerged as crucial components of functional supramolecular materials owing to their unique structural and chemical features, such as their distinctive “infinite” cyclic topology and tunable topology-dependent properties, attracting significant recent attention. However, the controlled synthesis of macrocyclic compounds with [...] Read more.
Macrocyclic organic nanostructures have emerged as crucial components of functional supramolecular materials owing to their unique structural and chemical features, such as their distinctive “infinite” cyclic topology and tunable topology-dependent properties, attracting significant recent attention. However, the controlled synthesis of macrocyclic compounds with well-defined compositions and geometries remains a formidable challenge. On-surface synthesis, capable of constructing nanostructures with atomic precision on various substrates, has become a frontier technique for exploring novel macrocyclic architectures. This review summarizes the recent advances in the on-surface synthesis of macrocycles. It focuses on analyzing the synthetic mechanisms and conformational characterization of macrocycles formed through diverse bonding interactions, including both covalent and non-covalent linkages. This review elucidates the intricate interplay between the thermodynamic and kinetic factors governing macrocyclic structure formation across these bonding types and clarifies the critical influence of the reaction temperature and external conditions on the cyclization efficiency. Ultimately, this study offers design strategies for the precise on-surface synthesis of larger and more flexible macrocyclic compounds. Full article
(This article belongs to the Special Issue Recent Advances in Surface and Interface Nanosystems)
Show Figures

Figure 1

Back to TopTop