A Review of On-Surface Synthesis and Characterization of Macrocycles
Abstract
1. Introduction
2. Metal–Ligand Bonding
3. Covalent Bonding
3.1. C–C Coupling
3.2. Post-Coordination C–C Coupling
4. Novel C–M–X Bonds
5. Hydrogen and Halogen Bonding
6. Conclusions
Funding
Conflicts of Interest
References
- Zhang, K.; Tew, G.N. Cyclic Polymers as a Building Block for Cyclic Brush Polymers and Gels. React. Funct. Polym. 2014, 80, 40–47. [Google Scholar] [CrossRef]
- Yamamoto, T. Synthesis of Cyclic Polymers and Topology Effects on Their Diffusion and Thermal Properties. Polym. J. 2013, 45, 711–717. [Google Scholar] [CrossRef]
- Jia, Z.; Monteiro, M.J. Cyclic Polymers: Methods and Strategies. J. Polym. Sci. A Polym. Chem. 2012, 50, 2085–2097. [Google Scholar] [CrossRef]
- Mishra, S.; Catarina, G.; Wu, F.; Ortiz, R.; Jacob, D.; Eimre, K.; Ma, J.; Pignedoli, C.A.; Feng, X.; Ruffieux, P.; et al. Observation of Fractional Edge Excitations in Nanographene Spin Chains. Nature 2021, 598, 287–292. [Google Scholar] [CrossRef]
- Hieulle, J.; Castro, S.; Friedrich, N.; Vegliante, A.; Lara, F.R.; Sanz, S.; Rey, D.; Corso, M.; Frederiksen, T.; Pascual, J.I.; et al. On-Surface Synthesis and Collective Spin Excitations of a Triangulene-Based Nanostar. Angew. Chem. Int. Ed. 2021, 60, 25224–25229. [Google Scholar] [CrossRef]
- Williams, H.M.; Bhaskar, A.; Ramakrishna, G.; Goodson, T.; Imamura, M.; Mawatari, A.; Nakao, K.; Enozawa, H.; Nishinaga, T.; Iyoda, M. Giant Thienylene-Acetylene-Ethylene Macrocycles with Large Two-Photon Absorption Cross Section and Semishape-Persistence. J. Am. Chem. Soc. 2008, 130, 3252–3253. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.; Zhang, B.; Zhong, Y.; Fowler, B.; Xiao, S.; Ng, F.; Steigerwald, M.; Nuckolls, C. Conjugated Macrocycles in Organic Electronics. Acc. Chem. Res. 2019, 52, 1068–1078. [Google Scholar] [CrossRef]
- Marsault, E.; Peterson, M.L. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J. Med. Chem. 2011, 54, 1961–2004. [Google Scholar] [CrossRef]
- Iyoda, M.; Shimizu, H. Multifunctional π-Expanded Oligothiophene Macrocycles. Chem. Soc. Rev. 2015, 44, 6411–6424. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, R.; Qiu, J.; Liu, R.; Xu, W. On-Surface Synthesis of Carbon Nanostructures. Adv. Mater. 2018, 30, 1705630. [Google Scholar] [CrossRef]
- Shen, Q.; Gao, H.-Y.; Fuchs, H. Frontiers of On-Surface Synthesis: From Principles to Applications. Nano Today 2017, 13, 77–96. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Chi, L. On-Surface Synthesis of Graphyne-Based Nanostructures. Adv. Mater. 2019, 31, 1804087. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, J. Confined On-Surface Organic Synthesis: Strategies and Mechanisms. Surf. Sci. Rep. 2019, 74, 97–140. [Google Scholar] [CrossRef]
- Clair, S.; De Oteyza, D.G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019, 119, 4717–4776. [Google Scholar] [CrossRef]
- Perepichka, D.F.; Rosei, F. Extending Polymer Conjugation into the Second Dimension. Science 2009, 323, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Franc, G.; Gourdon, A. Covalent Networks through On-Surface Chemistry in Ultra-High Vacuum: State-of-the-Art and Recent Developments. Phys. Chem. Chem. Phys. 2011, 13, 14283. [Google Scholar] [CrossRef]
- Faury, T.; Clair, S.; Abel, M.; Dumur, F.; Gigmes, D.; Porte, L. Sequential Linking to Control Growth of a Surface Covalent Organic Framework. J. Phys. Chem. C 2012, 116, 4819–4823. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, C.; Han, Y.; Zhu, J.; Kuttner, J.; Hilt, G.; Gottfried, J.M. Surface-Assisted Formation, Assembly, and Dynamics of Planar Organometallic Macrocycles and Zigzag Shaped Polymer Chains with C–Cu–C Bonds. ACS Nano 2014, 8, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Wang, T.; Dai, J.; Kuttner, J.; Hilt, G.; Gottfried, J.M.; Zhu, J. On-Surface Pseudo-High-Dilution Synthesis of Macrocycles: Principle and Mechanism. ACS Nano 2017, 11, 5070–5079. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Y.; Meihaus, K.R.; Zhang, S.; Ge, X.; Zhang, W.; Faller, R.; Long, J.R.; Zhu, G. Selective Scandium Ion Capture through Coordination Templating in a Covalent Organic Framework. Nat. Chem. 2023, 15, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Scriven, L.M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H.L. An Sp-Hybridized Molecular Carbon Allotrope, Cyclo[18]Carbon. Science 2019, 365, 1299–1301. [Google Scholar] [CrossRef]
- Pavliček, N.; Schuler, B.; Collazos, S.; Moll, N.; Pérez, D.; Guitián, E.; Meyer, G.; Peña, D.; Gross, L. On-Surface Generation and Imaging of Arynes by Atomic Force Microscopy. Nat. Chem. 2015, 7, 623–628. [Google Scholar] [CrossRef]
- Zhong, Q.; Ihle, A.; Ahles, S.; Wegner, H.A.; Schirmeisen, A.; Ebeling, D. Constructing Covalent Organic Nanoarchitectures Molecule by Molecule via Scanning Probe Manipulation. Nat. Chem. 2021, 13, 1133–1139. [Google Scholar] [CrossRef]
- De Oteyza, D.G.; Gorman, P.; Chen, Y.-C.; Wickenburg, S.; Riss, A.; Mowbray, D.J.; Etkin, G.; Pedramrazi, Z.; Tsai, H.-Z.; Rubio, A.; et al. Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions. Science 2013, 340, 1434–1437. [Google Scholar] [CrossRef]
- Giovannantonio, M.D.; Garah, M.E.; Lipton, D.J.; Meunier, V.; Cardenas, L.; Fagot Revurat, Y.; Cossaro, A.; Verdini, A.; Perepichka, D.F.; Rosei, F.; et al. Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization. ACS Nano 2013, 7, 8190–8198. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Zhang, Z.; Fei, X.; Zhao, W.; Zhang, R.; Lin, T.; Zhao, D.; Ju, H.; Xu, H.; Fan, J.; et al. Selective On-Surface Covalent Coupling Based on Metal-Organic Coordination Template. Nat. Commun. 2019, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shang, J.; Wang, Y.; Wu, K.; Kuttner, J.; Hilt, G.; Hieringer, W.; Gottfried, J.M. On-Surface Synthesis and Characterization of Honeycombene Oligophenylene Macrocycles. ACS Nano 2017, 11, 134–143. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, L.; Zhang, Z.; Qin, T.; Hu, J.; Ying, L.; Zhu, J.; Wang, T.; Miao, X. On-Surface Synthesis of Organometallic Nanorings Linked by Unconventional Intermediates of the Ullmann Reaction. Chem. Sci. 2025, 16, 9348–9356. [Google Scholar] [CrossRef]
- Zheng, Q.-N.; Liu, X.-H.; Chen, T.; Yan, H.-J.; Cook, T.; Wang, D.; Stang, P.J.; Wan, L.-J. Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation. J. Am. Chem. Soc. 2015, 137, 6128–6131. [Google Scholar] [CrossRef]
- Frezza, F.; Matěj, A.; Sánchez, G.A.; Carrera, M.; Mutombo, P.; Kumar, M.; Curiel, D.; Jelínek, P. On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework. J. Am. Chem. Soc. 2024, 146, 3531–3538. [Google Scholar] [CrossRef]
- Laurent, B.A.; Grayson, S.M. Synthetic Approaches for the Preparation of Cyclic Polymers. Chem. Soc. Rev. 2009, 38, 2202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, Q.; Ding, H.; Chen, X.; Yang, H.; Li, B.; Liu, X.; Lin, H.; Li, Q.; Gao, J.; et al. On-Surface Synthesis of Thiophene-Containing Large-Sized Organometallic Macrocycles on the Ag(111) Surface. J. Phys. Chem. C 2021, 125, 11454–11461. [Google Scholar] [CrossRef]
- Krug, C.K.; Nieckarz, D.; Fan, Q.; Szabelski, P.; Gottfried, J.M. The Macrocycle versus Chain Competition in On‐Surface Polymerization: Insights from Reactions of 1,3‐Dibromoazulene on Cu(111). Chem. Eur. J. 2020, 26, 7647–7656. [Google Scholar] [CrossRef]
- Iyoda, M.; Yamakawa, J.; Rahman, M.J. Conjugated Macrocycles: Concepts and Applications. Angew. Chem. Int. Ed. 2011, 123, 10708–10740. [Google Scholar] [CrossRef]
- Iwamoto, T.; Watanabe, Y.; Sakamoto, Y.; Suzuki, T.; Yamago, S. Selective and Random Syntheses of [n]Cycloparaphenylenes (n = 8–13) and Size Dependence of Their Electronic Properties. J. Am. Chem. Soc. 2011, 133, 8354–8361. [Google Scholar] [CrossRef]
- Nakao, K.; Nishimura, M.; Tamachi, T.; Kuwatani, Y.; Miyasaka, H.; Nishinaga, T.; Iyoda, M. Giant Macrocycles Composed of Thiophene, Acetylene, and Ethylene Building Blocks. J. Am. Chem. Soc. 2006, 128, 16740–16747. [Google Scholar] [CrossRef]
- Martí, C.V.; Pandey, M.D.; Burguete, M.I.; Luis, S.V. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem. Rev. 2015, 115, 8736–8834. [Google Scholar] [CrossRef]
- Bols, P.S.; Anderson, H.L. Template-Directed Synthesis of Molecular Nanorings and Cages. Acc. Chem. Res. 2018, 51, 2083–2092. [Google Scholar] [CrossRef]
- Aggarwal, A.V.; Thiessen, A.; Idelson, A.; Kalle, D.; Würsch, D.; Stangl, T.; Steiner, F.; Jester, S.-S.; Vogelsang, J.; Höger, S.; et al. Fluctuating Exciton Localization in Giant π-Conjugated Spoked-Wheel Macrocycles. Nat. Chem. 2013, 5, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Peeks, M.D.; Claridge, T.D.W.; Anderson, H.L. Aromatic and Antiaromatic Ring Currents in a Molecular Nanoring. Nature 2017, 541, 200–203. [Google Scholar] [CrossRef]
- Eder, S.; Yoo, D.J.; Nogala, W.; Pletzer, M.; Santana Bonilla, A.; White, A.J.P.; Jelfs, K.E.; Heeney, M.; Choi, J.W.; Glöcklhofer, F. Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High-Performance Organic Sodium-Ion Battery Anodes. Angew. Chem. 2020, 132, 13058–13064. [Google Scholar] [CrossRef]
- Kopp, S.M.; Gotfredsen, H.; Deng, J.-R.; Claridge, T.D.W.; Anderson, H.L. Global Aromaticity in a Partially Fused 8-Porphyrin Nanoring. J. Am. Chem. Soc. 2020, 142, 19393–19401. [Google Scholar] [CrossRef] [PubMed]
- Judd, C.J.; Nizovtsev, A.S.; Plougmann, R.; Kondratuk, D.V.; Anderson, H.L.; Besley, E.; Saywell, A. Molecular Quantum Rings Formed from a π-Conjugated Macrocycle. Phys. Rev. Lett. 2020, 125, 206803. [Google Scholar] [CrossRef]
- Fan, C.; Sun, B.; Li, Z.; Shi, J.; Lin, T.; Fan, J.; Shi, Z. On-Surface Synthesis of Giant Conjugated Macrocycles. Angew. Chem. Int. Ed. 2021, 60, 13896–13899. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Lyu, C.-K.; Chen, C.; Xie, H.; Zhang, J.; Lam, J.W.Y.; Tang, B.Z.; Lin, N. On-Surface Synthesis and Spontaneous Segregation of Conjugated Tetraphenylethylene Macrocycles. Commun. Chem. 2022, 5, 174. [Google Scholar] [CrossRef]
- Lee, E.C.; Kim, D.; Jurečka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K.S. Understanding of Assembly Phenomena by Aromatic−Aromatic Interactions: Benzene Dimer and the Substituted Systems. J. Phys. Chem. A 2007, 111, 3446–3457. [Google Scholar] [CrossRef]
- Ullmann, F. Ueber Symmetrische Biphenylderivate. Justus Liebigs Ann. Chem. 1904, 332, 38–81. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Zhang, C. On-Surface Ullmann-Type Coupling Reactions of Aryl Halide Precursors with Multiple Substituted Sites. Nanomaterials 2025, 15, 646. [Google Scholar] [CrossRef]
- Han, D.; Zhu, J. Surface-Assisted Fabrication of Low-Dimensional Carbon-Based Nanoarchitectures. J. Phys. Condens. Matter 2021, 33, 343001. [Google Scholar] [CrossRef]
- Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. Controlling On-Surface Polymerization by Hierarchical and Substrate-Directed Growth. Nat. Chem. 2012, 4, 215–220. [Google Scholar] [CrossRef]
- Hla, S.-W.; Bartels, L.; Meyer, G.; Rieder, K.-H. Inducing All Steps of a Chemical Reaction with the Scanning Tunneling Microscope Tip: Towards Single Molecule Engineering. Phys. Rev. Lett. 2000, 85, 2777–2780. [Google Scholar] [CrossRef]
- Nacci, C.; Schied, M.; Civita, D.; Magnano, E.; Nappini, S.; Píš, I.; Grill, L. Thermal- vs Light-Induced On-Surface Polymerization. J. Phys. Chem. C 2021, 125, 22554–22561. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shi, X.; Wang, S.; Van Hove, M.A.; Lin, N. Single-Molecule Resolution of an Organometallic Intermediate in a Surface-Supported Ullmann Coupling Reaction. J. Am. Chem. Soc. 2011, 133, 13264–13267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Perepichka, D.F.; Khaliullin, R.Z. Adatoms in the Surface-Confined Ullmann Coupling of Phenyl Groups. J. Phys. Chem. Lett. 2021, 12, 11061–11069. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen Bonding and Other σ-Hole Interactions: A Perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef]
- Yoon, J.K.; Son, W.; Chung, K.-H.; Kim, H.; Han, S.; Kahng, S.-J. Visualizing Halogen Bonds in Planar Supramolecular Systems. J. Phys. Chem. C 2011, 115, 2297–2301. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, C.; Han, Y.; Zhu, J.; Hieringer, W.; Kuttner, J.; Hilt, G.; Gottfried, J.M. Surface-Assisted Organic Synthesis of Hyperbenzene Nanotroughs. Angew. Chem. Int. Ed. 2013, 52, 4668–4672. [Google Scholar] [CrossRef]
- Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; et al. Atomically Precise Bottom-up Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473. [Google Scholar] [CrossRef]
- Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M.V.; Hecht, S. Nano-Architectures by Covalent Assembly of Molecular Building Blocks. Nat. Nanotechnol. 2007, 2, 687–691. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures. ACS Nano 2016, 10, 7023–7030. [Google Scholar] [CrossRef]
- Ruffieux, P.; Wang, S.; Yang, B.; Sánchez, S.C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C.A.; Passerone, D.; et al. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature 2016, 531, 489–492. [Google Scholar] [CrossRef]
- Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.; Costache, M.V.; Paradinas, M.; Panighel, M.; Ceballos, G.; Valenzuela, S.O.; Peña, D.; et al. Bottom-up Synthesis of Multifunctional Nanoporous Graphene. Science 2018, 360, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, W.; Lin, N. Resolving Band-Structure Evolution and Defect-Induced States of Single Conjugated Oligomers by Scanning Tunneling Microscopy and Tight-Binding Calculations. Phys. Rev. Lett. 2011, 106, 206803. [Google Scholar] [CrossRef]
- Tezuka, Y.; Komiya, R. Metathesis Polymer Cyclization with Telechelic Poly(THF) Having Allyl Groups. Macromolecules 2002, 35, 8667–8669. [Google Scholar] [CrossRef]
- Oike, H.; Imaizumi, H.; Mouri, T.; Yoshioka, Y.; Uchibori, A.; Tezuka, Y. Designing Unusual Polymer Topologies by Electrostatic Self-Assembly and Covalent Fixation. J. Am. Chem. Soc. 2000, 122, 9592–9599. [Google Scholar] [CrossRef]
- Liu, M.; Li, S.; Zhou, J.; Zha, Z.; Pan, J.; Li, X.; Zhang, J.; Liu, Z.; Li, Y.; Qiu, X. High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction. ACS Nano 2018, 12, 12612–12618. [Google Scholar] [CrossRef] [PubMed]
- Krug, C.K.; Fan, Q.; Fillsack, F.; Glowatzki, J.; Trebel, N.; Heuplick, L.J.; Koehler, T.; Gottfried, J.M. Organometallic Ring vs. Chain Formation beyond Kinetic Control: Steering Their Equilibrium in Two-Dimensional Confinement. Chem. Commun. 2018, 54, 9741–9744. [Google Scholar] [CrossRef]
- Fan, Q.; Dai, J.; Wang, T.; Kuttner, J.; Hilt, G.; Gottfried, J.M.; Zhu, J. Confined Synthesis of Organometallic Chains and Macrocycles by Cu–O Surface Templating. ACS Nano 2016, 10, 3747–3754. [Google Scholar] [CrossRef]
- Zhang, W.; Moore, J.S. Shape-Persistent Macrocycles: Structures and Synthetic Approaches from Arylene and Ethynylene Building Blocks. Angew. Chem. Int. Ed. 2006, 45, 4416–4439. [Google Scholar] [CrossRef]
- Rodgers, S.J.; Ng, C.Y.; Raymond, K.N. High-Dilution Synthesis of Macrocyclic Polycatecholates. J. Am. Chem. Soc. 1985, 107, 4094–4095. [Google Scholar] [CrossRef]
- Feng, J.; Xi, L.-L.; Lu, C.-J.; Liu, R.-R. Transition-Metal-Catalyzed Enantioselective C–N Cross-Coupling. Chem. Soc. Rev. 2024, 53, 9560–9581. [Google Scholar] [CrossRef]
- Delaney, C.P.; Lin, E.; Huang, Q.; Yu, I.F.; Rao, G.; Tao, L.; Jed, A.; Fantasia, S.M.; Püntener, K.A.; Britt, R.D.; et al. Cross-Coupling by a Noncanonical Mechanism Involving the Addition of Aryl Halide to Cu(II). Science 2023, 381, 1079–1085. [Google Scholar] [CrossRef]
- Akhtar, R.; Zahoor, A.F.; Irfan, M.; Bokhari, T.H.; ul Haq, A. Recent Green Synthetic Approaches toward Ullmann Reaction: A Review. Chem. Pap. 2022, 76, 7275–7293. [Google Scholar] [CrossRef]
- Fritton, M.; Duncan, D.A.; Deimel, P.S.; Rastgoo, L.A.; Allegretti, F.; Barth, J.V.; Heckl, W.M.; Björk, J.; Lackinger, M. The Role of Kinetics versus Thermodynamics in Surface-Assisted Ullmann Coupling on Gold and Silver Surfaces. J. Am. Chem. Soc. 2019, 141, 4824–4832. [Google Scholar] [CrossRef]
- Berdonces, L.A.; Schulz, F.; Aguilar, G.F.; Lawrence, J.; Mohammed, M.S.G.; Muntwiler, M.; Lobo, C.J.; Liljeroth, P.; de Oteyza, D.G. Order from a Mess: The Growth of 5-Armchair Graphene Nanoribbons. ACS Nano 2021, 15, 16552–16561. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, L.; Dai, J.; Wang, T.; Ju, H.; Zhao, J.; Kuttner, J.; Hilt, G.; Gottfried, J.M.; Zhu, J. Surface Adatom Mediated Structural Transformation in Bromoarene Monolayers: Precursor Phases in Surface Ullmann Reaction. ACS Nano 2018, 12, 2267–2274. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, T.; Liu, L.; Zhao, J.; Zhu, J.; Gottfried, J.M. Tribromobenzene on Cu(111): Temperature-Dependent Formation of Halogen-Bonded, Organometallic, and Covalent Nanostructures. J. Chem. Phys. 2015, 142, 101906. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, C.; Liu, L.; Han, Y.; Zhao, J.; Zhu, J.; Kuttner, J.; Hilt, G.; Gottfried, J.M. Covalent, Organometallic, and Halogen-Bonded Nanomeshes from Tetrabromo-Terphenyl by Surface-Assisted Synthesis on Cu(111). J. Phys. Chem. C 2014, 118, 13018–13025. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, Y.; Ma, D. Cu-Mediated Ullmann-Type Cross-Coupling and Industrial Applications in Route Design, Process Development, and Scale-up of Pharmaceutical and Agrochemical Processes. Org. Process Res. Dev. 2022, 26, 1690–1750. [Google Scholar] [CrossRef]
- Perveen, S.; Zhang, S.; Wang, L.; Song, P.; Ouyang, Y.; Jiao, J.; Duan, X.-H.; Li, P. Synthesis of Axially Chiral Biaryls via Enantioselective Ullmann Coupling of Ortho-Chlorinated Aryl Aldehydes Enabled by a Chiral 2,2′-Bipyridine Ligand. Angew. Chem. Int. Ed. 2022, 61, e202212108. [Google Scholar] [CrossRef]
- Giri, R.; Brusoe, A.; Troshin, K.; Wang, J.Y.; Font, M.; Hartwig, J.F. Mechanism of the Ullmann Biaryl Ether Synthesis Catalyzed by Complexes of Anionic Ligands: Evidence for the Reaction of Iodoarenes with Ligated Anionic CuI Intermediates. J. Am. Chem. Soc. 2018, 140, 793–806. [Google Scholar] [CrossRef]
- Xiang, F.; Gemeinhardt, A.; Schneider, M.A. Competition between Dehydrogenative Organometallic Bonding and Covalent Coupling of an Unfunctionalized Porphyrin on Cu(111). ACS Nano 2018, 12, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Grill, L.; Hecht, S. Covalent On-Surface Polymerization. Nat. Chem. 2020, 12, 115–130. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, J.; Zheng, F.; Zhu, Z.; Yan, Y.; Sun, Q. Steering On-Surface Polymerization through Coordination with a Bidentate Ligand. Chem. Commun. 2023, 59, 8067–8070. [Google Scholar] [CrossRef]
- Xu, J.; Xing, S.; Hu, J.; Shi, Z. Stepwise On-Surface Synthesis of Nitrogen-Doped Porous Carbon Nanoribbons. Commun. Chem. 2024, 7, 40. [Google Scholar] [CrossRef]
- Wang, T.; Berdonces, L.A.; Friedrich, N.; Vilas, V.M.; Calupitan, J.P.; Pascual, J.I.; Peña, D.; Casanova, D.; Corso, M.; de Oteyza, D.G. Aza-Triangulene: On-Surface Synthesis and Electronic and Magnetic Properties. J. Am. Chem. Soc. 2022, 144, 4522–4529. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.-C.C.; Gräfenstein, J.; Budnjo, A.; Laurila, J.L.; Bergquist, J.; Karim, A.; Kleinmaier, R.; Brath, U.; Erdélyi, M. Symmetric Halogen Bonding Is Preferred in Solution. J. Am. Chem. Soc. 2012, 134, 5706–5715. [Google Scholar] [CrossRef] [PubMed]
- Pfrunder, M.C.; Micallef, A.S.; Rintoul, L.; Arnold, D.P.; Davy, K.J.P.; McMurtrie, J. Exploitation of the Menshutkin Reaction for the Controlled Assembly of Halogen Bonded Architectures Incorporating 1,2-Diiodotetrafluorobenzene and 1,3,5-Triiodotrifluorobenzene. Cryst. Growth Des. 2012, 12, 714–724. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Wang, Y.; Li, J.; Chen, X.; Zhang, X.; Gao, J.; Pan, M. A Review of On-Surface Synthesis and Characterization of Macrocycles. Nanomaterials 2025, 15, 1184. https://doi.org/10.3390/nano15151184
Yan C, Wang Y, Li J, Chen X, Zhang X, Gao J, Pan M. A Review of On-Surface Synthesis and Characterization of Macrocycles. Nanomaterials. 2025; 15(15):1184. https://doi.org/10.3390/nano15151184
Chicago/Turabian StyleYan, Chao, Yiwen Wang, Jiahui Li, Xiaorui Chen, Xin Zhang, Jianzhi Gao, and Minghu Pan. 2025. "A Review of On-Surface Synthesis and Characterization of Macrocycles" Nanomaterials 15, no. 15: 1184. https://doi.org/10.3390/nano15151184
APA StyleYan, C., Wang, Y., Li, J., Chen, X., Zhang, X., Gao, J., & Pan, M. (2025). A Review of On-Surface Synthesis and Characterization of Macrocycles. Nanomaterials, 15(15), 1184. https://doi.org/10.3390/nano15151184