Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (361)

Search Parameters:
Keywords = geo-statistical approaches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1370 KiB  
Article
AIM-Net: A Resource-Efficient Self-Supervised Learning Model for Automated Red Spider Mite Severity Classification in Tea Cultivation
by Malathi Kanagarajan, Mohanasundaram Natarajan, Santhosh Rajendran, Parthasarathy Velusamy, Saravana Kumar Ganesan, Manikandan Bose, Ranjithkumar Sakthivel and Baskaran Stephen Inbaraj
AgriEngineering 2025, 7(8), 247; https://doi.org/10.3390/agriengineering7080247 (registering DOI) - 1 Aug 2025
Abstract
Tea cultivation faces significant threats from red spider mite (RSM: Oligonychus coffeae) infestations, which reduce yields and economic viability in major tea-producing regions. Current automated detection methods rely on supervised deep learning models requiring extensive labeled data, limiting scalability for smallholder farmers. [...] Read more.
Tea cultivation faces significant threats from red spider mite (RSM: Oligonychus coffeae) infestations, which reduce yields and economic viability in major tea-producing regions. Current automated detection methods rely on supervised deep learning models requiring extensive labeled data, limiting scalability for smallholder farmers. This article proposes AIM-Net (AI-based Infestation Mapping Network) by evaluating SwAV (Swapping Assignments between Views), a self-supervised learning framework, for classifying RSM infestation severity (Mild, Moderate, Severe) using a geo-referenced, field-acquired dataset of RSM infested tea-leaves, Cam-RSM. The methodology combines SwAV pre-training on unlabeled data with fine-tuning on labeled subsets, employing multi-crop augmentation and online clustering to learn discriminative features without full supervision. Comparative analysis against a fully supervised ResNet-50 baseline utilized 5-fold cross-validation, assessing accuracy, F1-scores, and computational efficiency. Results demonstrate SwAV’s superiority, achieving 98.7% overall accuracy (vs. 92.1% for ResNet-50) and macro-average F1-scores of 98.3% across classes, with a 62% reduction in labeled data requirements. The model showed particular strength in Mild_RSM-class detection (F1-score: 98.5%) and computational efficiency, enabling deployment on edge devices. Statistical validation confirmed significant improvements (p < 0.001) over baseline approaches. These findings establish self-supervised learning as a transformative tool for precision pest management, offering resource-efficient solutions for early infestation detection while maintaining high accuracy. Full article
32 pages, 15216 KiB  
Article
Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy
by Fabrizio Ungaro, Paola Tarocco and Costanza Calzolari
Geographies 2025, 5(3), 39; https://doi.org/10.3390/geographies5030039 (registering DOI) - 1 Aug 2025
Abstract
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services [...] Read more.
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services (SESs), using available point data and thematic maps; (ii) the definition of appropriate SES indicators; (iii) the assessment and mapping of potential SESs provision for the Emilia-Romagna region (22.510 km2) in NE Italy. Depending on data availability and on the role played by terrain features and soil geography and its complexity, maps of basic soil characteristics (textural fractions, organic C content, and pH) covering the entire regional territory were produced at a 1 ha resolution using digital soil mapping techniques and geostatistical simulations to explicitly consider spatial variability. Soil physical properties such as bulk density, porosity, and hydraulic conductivity at saturation were derived using pedotransfer functions calibrated using local data and integrated with supplementary information such as land capability and remote sensing indices to derive the inputs for SES assessment. Eight SESs were mapped at 1:50,000 reference scale: buffering capacity, carbon sequestration, erosion control, food provision, biomass provision, water regulation, water storage, and habitat for soil biodiversity. The results are discussed and compared for the different pedolandscapes, identifying clear spatial patterns of soil functions and potential SES supply. Full article
Show Figures

Figure 1

38 pages, 6652 KiB  
Review
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
by Aleksandra Kaczmarek and Jan Blachowski
Remote Sens. 2025, 17(15), 2628; https://doi.org/10.3390/rs17152628 - 29 Jul 2025
Viewed by 230
Abstract
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, [...] Read more.
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, leakage, seismic activity, and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage, while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods, distinguishing geodetic surveys and remote sensing techniques. Remote sensing, including active methods such as InSAR and LiDAR, and passive methods of multispectral and hyperspectral imaging, provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS, with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

27 pages, 6584 KiB  
Article
Evaluating Geostatistical and Statistical Merging Methods for Radar–Gauge Rainfall Integration: A Multi-Method Comparative Study
by Xuan-Hien Le, Naoki Koyama, Kei Kikuchi, Yoshihisa Yamanouchi, Akiyoshi Fukaya and Tadashi Yamada
Remote Sens. 2025, 17(15), 2622; https://doi.org/10.3390/rs17152622 - 28 Jul 2025
Viewed by 157
Abstract
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile [...] Read more.
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile Adaptive Gaussian (QAG), Empirical Quantile Mapping (EQM), and radial basis function (RBF)—and three geostatistical approaches—external drift kriging (EDK), Bayesian Kriging (BAK), and Residual Kriging (REK). The evaluation was conducted over the Huong River Basin in Central Vietnam, a region characterized by steep terrain, monsoonal climate, and frequent hydrometeorological extremes. Two observational scenarios were established: Scenario S1 utilized 13 gauges for merging and 7 for independent validation, while Scenario S2 employed all 20 stations. Hourly radar and gauge data from peak rainy months were used for the evaluation. Each method was assessed using continuous metrics (RMSE, MAE, CC, NSE, and KGE), categorical metrics (POD and CSI), and spatial consistency indicators. Results indicate that all merging methods significantly improved the accuracy of rainfall estimates compared to raw radar data. Among them, RBF consistently achieved the highest accuracy, with the lowest RMSE (1.24 mm/h), highest NSE (0.954), and strongest spatial correlation (CC = 0.978) in Scenario S2. RBF also maintained high classification skills across all rainfall categories, including very heavy rain. EDK and BAK performed better with denser gauge input but required recalibration of variogram parameters. EQM and REK yielded moderate performance and had limitations near basin boundaries where gauge coverage was sparse. The results highlight trade-offs between method complexity, spatial accuracy, and robustness. While complex methods like EDK and BAK offer detailed spatial outputs, they require more calibration. Simpler methods are easier to apply across different conditions. RBF emerged as the most practical and transferable option, offering strong generalization, minimal calibration needs, and computational efficiency. These findings provide useful guidance for integrating radar and gauge data in flood-prone, data-scarce regions. Full article
Show Figures

Figure 1

31 pages, 19561 KiB  
Article
Geostatistics Precision Agriculture Modeling on Moisture Root Zone Profiles in Clay Loam and Clay Soils, Using Time Domain Reflectometry Multisensors and Soil Analysis
by Agathos Filintas
Hydrology 2025, 12(7), 183; https://doi.org/10.3390/hydrology12070183 - 7 Jul 2025
Cited by 1 | Viewed by 484
Abstract
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay [...] Read more.
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay loam (CL) and clay (C) soils, for geostatistics modeling (seven models’ evaluation) of time domain reflectometry (TDR) multisensor network measurements. Two different sensor calibration methods (M1 and M2) were trialed, as well as the results of laboratory soil analysis for geospatial two-dimensional (2D) imaging for accurate GIS maps of root zone moisture profiles, granular, and hydraulic profiles in multiple soil layers (0–75 cm depth). Modeling results revealed that the best-fitted semi-variogram models for the granular attributes were circular, exponential, pentaspherical, and spherical, while for hydraulic attributes were found to be exponential, circular, and spherical models. The results showed that kriging modeling, spatial and temporal imaging for accurate profile SWC θvTDR (m3·m−3) maps, the exponential model was identified as the most appropriate with TDR sensors using calibration M1, and the exponential and spherical models were the most appropriate when using calibration M2. The resulting PA profile maps depict spatiotemporal soil water variability with very high resolutions at the centimeter scale. The best validation measures of PA profile SWC θvTDR maps obtained were Nash-Sutcliffe model efficiency NSE = 0.6657, MPE = 0.00013, RMSE = 0.0385, MSPE = −0.0022, RMSSE = 1.6907, ASE = 0.0418, and MSDR = 0.9695. The sensor results using calibration M2 were found to be more valuable in environmental irrigation decision-making for a more accurate and timely decision on actual crop irrigation, with the lowest statistical and geostatistical errors. The best validation measures for accurate profile SWC θvTDR (m3·m−3) maps obtained for clay loam over clay soils. Visualizing the SWC results and their temporal changes via root zone profile geostatistical maps assists farmers and scientists in making informed and timely environmental irrigation decisions, optimizing energy, saving water, increasing water-use efficiency and crop production, reducing costs, and managing water–soil resources sustainably. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

16 pages, 4637 KiB  
Article
Estimating Subsurface Geostatistical Properties from GPR Reflection Data Using a Supervised Deep Learning Approach
by Yu Liu, James Irving and Klaus Holliger
Remote Sens. 2025, 17(13), 2284; https://doi.org/10.3390/rs17132284 - 3 Jul 2025
Viewed by 315
Abstract
The quantitative characterization of near-surface heterogeneity using ground-penetrating radar (GPR) is an important but challenging task. The estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration [...] Read more.
The quantitative characterization of near-surface heterogeneity using ground-penetrating radar (GPR) is an important but challenging task. The estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration of the parameter space and provides some measure of uncertainty with regard to the inferred results. However, the associated computational costs are inherently high. To alleviate this problem, we present an alternative deep-learning-based technique, that, once trained in a supervised context, allows us to perform the same task in a highly efficient manner. The proposed approach uses a convolutional neural network (CNN), which is trained on a vast database of autocorrelations obtained from synthetic GPR images for a comprehensive range of stochastic subsurface models. An important aspect of the training process is that the synthetic GPR data are generated using a computationally efficient approximate solution of the underlying physical problem. This strategy effectively addresses the notorious challenge of insufficient training data, which frequently impedes the application of deep-learning-based methods in applied geophysics. Tests on a wide range of realistic synthetic GPR data generated using a finite-difference time-domain (FDTD) solution of Maxwell’s equations, as well as a comparison with the results of the traditional Monte Carlo approach on a pertinent field dataset, confirm the viability of the proposed method, even in the presence of significant levels of data noise. Our results also demonstrate that typical mismatches between the dominant frequencies of the analyzed and training data can be readily alleviated through simple spectral shifting. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

14 pages, 1051 KiB  
Article
Geo-Statistics and Deep Learning-Based Algorithm Design for Real-Time Bus Geo-Location and Arrival Time Estimation Features with Load Resiliency Capacity
by Smail Tigani
AI 2025, 6(7), 142; https://doi.org/10.3390/ai6070142 - 1 Jul 2025
Viewed by 361
Abstract
This paper introduces a groundbreaking decentralized approach for real-time bus monitoring and geo-location, leveraging advanced geo-statistical and multivariate statistical methods. The proposed long short-term memory (LSTM) model predicts bus arrival times with confidence intervals and reconstructs missing positioning data, offering cities an accurate, [...] Read more.
This paper introduces a groundbreaking decentralized approach for real-time bus monitoring and geo-location, leveraging advanced geo-statistical and multivariate statistical methods. The proposed long short-term memory (LSTM) model predicts bus arrival times with confidence intervals and reconstructs missing positioning data, offering cities an accurate, resource-efficient tracking solution within typical infrastructure limits. By employing decentralized data processing, our system significantly reduces network traffic and computational load, enabling data sharing and sophisticated analysis. Utilizing the Haversine formula, the system estimates pessimistic and optimistic arrival times, providing real-time updates and enhancing the accuracy of bus tracking. Our innovative approach optimizes real-time bus tracking and arrival time estimation, ensuring robust performance under varying traffic conditions. This research demonstrates the potential of integrating advanced statistical techniques with decentralized computing to revolutionize public transit systems. Full article
Show Figures

Figure 1

24 pages, 15580 KiB  
Article
Groundwater Potential Mapping in Semi-Arid Areas Using Integrated Remote Sensing, GIS, and Geostatistics Techniques
by Ahmed El-sayed Mostafa, Mahrous A. M. Ali, Faissal A. Ali, Ragab Rabeiy, Hussein A. Saleem, Mosaad Ali Hussein Ali and Ali Shebl
Water 2025, 17(13), 1909; https://doi.org/10.3390/w17131909 - 27 Jun 2025
Cited by 1 | Viewed by 621 | Correction
Abstract
Groundwater serves as a vital resource for sustainable water supply, particularly in semi-arid regions where surface water availability is limited. This study explores groundwater potential zones in the East Desert, Qift–Qena, Egypt, using a multidisciplinary approach that integrates remote sensing (RS), geographic information [...] Read more.
Groundwater serves as a vital resource for sustainable water supply, particularly in semi-arid regions where surface water availability is limited. This study explores groundwater potential zones in the East Desert, Qift–Qena, Egypt, using a multidisciplinary approach that integrates remote sensing (RS), geographic information systems (GIS), geostatistics, and field validation with water wells to develop a comprehensive groundwater potential mapping framework. Sentinel-2 imagery, ALOS PALSAR DEM, and SMAP datasets were utilized to derive critical thematic layers, including land use/land cover, vegetation indices, soil moisture, drainage density, slope, and elevation. The results of the groundwater potentiality map of the study area from RS reveal four distinct zones: low, moderate, high, and very high. The analysis indicates a notable spatial variability in groundwater potential, with “high” (34.1%) and “low” (33.8%) potential zones dominating the landscape, while “very high” potential areas (4.8%) are relatively scarce. The limited extent of “very high” potential zones, predominantly concentrated along the Nile River valley, underscores the river’s critical role as the primary source of groundwater recharge. Moderate potential zones include places where infiltration is possible but limited, such as gently sloping terrain or regions with slightly broken rock structures, and they account for 27.3%. These layers were combined with geostatistical analysis of data from 310 groundwater wells, which provided information on static water level (SWL) and total dissolved solids (TDS). GIS was employed to assign weights to the thematic layers based on their influence on groundwater recharge and facilitated the spatial integration and visualization of the results. Geostatistical interpolation methods ensured the reliable mapping of subsurface parameters. The assessment utilizing pre-existing well data revealed a significant concordance between the delineated potential zones and the actual availability of groundwater resources. The findings of this study could significantly improve groundwater management in semi-arid/arid zones, offering a strategic response to water scarcity challenges. Full article
Show Figures

Figure 1

26 pages, 4304 KiB  
Article
A Hybrid Regression–Kriging–Machine Learning Framework for Imputing Missing TROPOMI NO2 Data over Taiwan
by Alyssa Valerio, Yi-Chun Chen, Chian-Yi Liu, Yi-Ying Chen and Chuan-Yao Lin
Remote Sens. 2025, 17(12), 2084; https://doi.org/10.3390/rs17122084 - 17 Jun 2025
Viewed by 619
Abstract
This study presents a novel application of a hybrid regression–kriging (RK) and machine learning (ML) framework to impute missing tropospheric NO2 data from the TROPOMI satellite over Taiwan during the winter months of January, February, and December 2022. The proposed approach combines [...] Read more.
This study presents a novel application of a hybrid regression–kriging (RK) and machine learning (ML) framework to impute missing tropospheric NO2 data from the TROPOMI satellite over Taiwan during the winter months of January, February, and December 2022. The proposed approach combines geostatistical interpolation with nonlinear modeling by integrating RK with ML models—specifically comparing gradient boosting regression (GBR), random forest (RF), and K-nearest neighbors (KNN)—to determine the most suitable auxiliary predictor. This structure enables the framework to capture both spatial autocorrelation and complex relationships between NO2 concentrations and environmental drivers. Model performance was evaluated using the coefficient of determination (r2), computed against observed TROPOMI NO2 column values filtered by quality assurance criteria. GBR achieved the highest validation r2 values of 0.83 for January and February, while RF yielded 0.82 and 0.79 in January and December, respectively. These results demonstrate the model’s robustness in capturing intra-seasonal patterns and nonlinear trends in NO2 distribution. In contrast, models using only static land cover inputs performed poorly (r2 < 0.58), emphasizing the limited predictive capacity of such variables in isolation. Interpretability analysis using the SHapley Additive exPlanations (SHAP) method revealed temperature as the most influential meteorological driver of NO2 variation, particularly during winter, while forest cover consistently emerged as a key land-use factor mitigating NO2 levels through dry deposition. By integrating dynamic meteorological variables and static land cover features, the hybrid RK–ML framework enhances the spatial and temporal completeness of satellite-derived air quality datasets. As the first RK–ML application for TROPOMI data in Taiwan, this study establishes a regional benchmark and offers a transferable methodology for satellite data imputation. Future research should explore ensemble-based RK variants, incorporate real-time auxiliary data, and assess transferability across diverse geographic and climatological contexts. Full article
Show Figures

Figure 1

15 pages, 3061 KiB  
Article
Based on the Spatial Multi-Scale Habitat Model, the Response of Habitat Suitability of Purpleback Flying Squid (Sthenoteuthis oualaniensis) to Sea Surface Temperature Variations in the Nansha Offshore Area, South China Sea
by Xue Feng, Xiaofan Hong, Zuozhi Chen and Jiangtao Fan
Biology 2025, 14(6), 684; https://doi.org/10.3390/biology14060684 - 12 Jun 2025
Viewed by 502
Abstract
Overfishing and climate change have led to the depletion of fishery resources in the offshore South China Sea. The purpleback flying squid (Sthenoteuthis oualaniensis) has emerged as a promising alternative due to its ecological and economic value. However, information on its [...] Read more.
Overfishing and climate change have led to the depletion of fishery resources in the offshore South China Sea. The purpleback flying squid (Sthenoteuthis oualaniensis) has emerged as a promising alternative due to its ecological and economic value. However, information on its preferred habitat conditions remains scarce. This study integrates geostatistical and fisheries oceanographic approaches to explore optimal spatial–temporal scales for habitat modeling and to assess habitat changes under warming scenarios. Utilizing fishery data from 2013 to 2017, environmental variables including SST, sea surface temperature anomaly (SSTA), and chlorophyll-a concentration (CHL) were analyzed. Fishing effort data revealed significant seasonal differences, with the highest vessel numbers in summer and the lowest in autumn. Among the six modeling schemes, the combination of 0.5° × 0.5° spatial resolution and seasonal temporal resolution yielded the highest HSI model accuracy (84.02%). Optimal environmental ranges varied by season. Simulations of SST deviations (±0.2 °C, ±0.5 °C, and ±1 °C) showed that extreme warming or cooling could eliminate suitable habitats. These findings highlight the vulnerability of squid habitats to thermal shifts and support adaptive fishery strategies in the South China Sea. Full article
Show Figures

Figure 1

20 pages, 3124 KiB  
Article
A Convergent Approach to Investigate the Environmental Behavior and Importance of a Man-Made Saltwater Wetland
by Luigi Alessandrino, Nicolò Colombani, Alessio Usai and Micòl Mastrocicco
Remote Sens. 2025, 17(12), 2019; https://doi.org/10.3390/rs17122019 - 11 Jun 2025
Viewed by 917
Abstract
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management [...] Read more.
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management of protected wetlands necessitates a multidisciplinary approach, the purpose of this study is to provide a comprehensive picture of the hydrological, hydrochemical, and ecological dynamics of a man-made groundwater dependent ecosystem (GDE) by combining remote sensing, hydrochemical data, geostatistical tools, and ecological indicators. The study area, called “Le Soglitelle”, is located in the Campania plain (Italy), which is close to the Domitian shoreline, covering a surface of 100 ha. The Normalized Difference Water Index (NDWI), a remote sensing-derived index sensitive to surface water presence, from Sentinel-2 was used to detect changes in the percentage of the wetland inundated area over time. Water samples were collected in four campaigns, and hydrochemical indexes were used to investigate the major hydrochemical seasonal processes occurring in the area. Geostatistical tools, such as principal component analysis (PCA) and independent component analysis (ICA), were used to identify the main hydrochemical processes. Moreover, faunal monitoring using waders was employed as an ecological indicator. Seasonal variation in the inundation area ranged from nearly 0% in summer to over 50% in winter, consistent with the severe climatic oscillations indicated by SPEI values. PCA and ICA explained over 78% of the total hydrochemical variability, confirming that the area’s geochemistry is mainly characterized by the saltwater sourced from the artesian wells that feed the wetland. The concentration of the major ions is regulated by two contrasting processes: evapoconcentration in summer and dilution and water mixing (between canals and ponds water) in winter. Cl/Br molar ratio results corroborated this double seasonal trend. The base exchange index highlighted a salinization pathway for the wetland. Bird monitoring exhibited consistency with hydrochemical monitoring, as the seasonal distribution clearly reflects the dual behaviour of this area, which in turn augmented the biodiversity in this GDE. The integration of remote sensing data, multivariate geostatistical analysis, geochemical tools, and faunal indicators represents a novel interdisciplinary framework for assessing GDE seasonal dynamics, offering practical insights for wetland monitoring and management. Full article
Show Figures

Figure 1

16 pages, 9188 KiB  
Technical Note
ensembleDownscaleR: R Package for Bayesian Ensemble Averaging of PM2.5 Geostatistical Downscalers
by Wyatt G. Madden, Meng Qi, Yang Liu and Howard H. Chang
Remote Sens. 2025, 17(11), 1941; https://doi.org/10.3390/rs17111941 - 4 Jun 2025
Viewed by 371
Abstract
Ambient fine particulate matter of size less than 2.5 μm in aerodynamic diameter (PM2.5) is a key ambient air pollutant that has been linked to numerous adverse health outcomes. Reliable estimates of PM2.5 are important for supporting epidemiological and health [...] Read more.
Ambient fine particulate matter of size less than 2.5 μm in aerodynamic diameter (PM2.5) is a key ambient air pollutant that has been linked to numerous adverse health outcomes. Reliable estimates of PM2.5 are important for supporting epidemiological and health impact assessment studies. Precise measurements of PM2.5 are available through networks of monitors; however, these are spatially sparse and temporally incomplete. Chemical transport model (CTM) simulations and satellite-retrieved aerosol optical depth (AOD) measurements are two data sources that have been used to develop prediction models for PM2.5 at fine spatial resolutions with increased spatial coverage. As part of the Multi-Angle Imager for Aerosols (MAIA) project, a geostatistical regression model has been developed to bias-correct AOD, followed by Bayesian ensemble averaging to gap-fill missing AOD values with CTM simulations. Here, we present a suite of statistical software (available in the R package ensembleDownscaleR) to facilitate the adaptation of this modeling approach to other settings and air quality modeling applications. We describe the Bayesian ensemble averaging approach, model specifications, estimation methods, and evaluation via cross-validation that is implemented in the software. We also provide a case study of estimating PM2.5 using 2018 data from the Los Angeles metropolitan area with an accompanying tutorial. All code is fully reproducible and available on GitHub, data are made on Zenodo, and the ensembleDownscaleR package is available for download on GitHub. Full article
Show Figures

Figure 1

21 pages, 4813 KiB  
Article
Spatial–Temporal Variability of Soybean Yield Using Separable Covariance Structure
by Tamara Cantú Maltauro, Miguel Angel Uribe-Opazo, Luciana Pagliosa Carvalho Guedes, Manuel Galea and Orietta Nicolis
Agriculture 2025, 15(11), 1199; https://doi.org/10.3390/agriculture15111199 - 31 May 2025
Viewed by 321
Abstract
(1) Understanding and characterizing the spatial and temporal variability of agricultural data is a key aspect of precision agriculture, particularly in soil management. Modeling the spatiotemporal dependency structure through geostatistical methods is essential for accurately estimating the parameters that define this structure and [...] Read more.
(1) Understanding and characterizing the spatial and temporal variability of agricultural data is a key aspect of precision agriculture, particularly in soil management. Modeling the spatiotemporal dependency structure through geostatistical methods is essential for accurately estimating the parameters that define this structure and for performing Kriging-based interpolation. This study aimed to analyze the spatiotemporal variability of the soybean yield over ten crop years (2012–2013 to 2021–2022) in an agricultural area located in Cascavel, Paraná, Brazil. (2) Spatial analyses were conducted using two approaches: the Gaussian linear spatial model with independent multiple repetitions and the spatiotemporal model with a separable covariance structure. (3) The results showed that the maps generated using the Gaussian linear spatial model with multiple independent repetitions exhibited similar patterns to the individual soybean yield maps for each crop year. However, when comparing the kriged soybean yield maps based on independent multiple repetitions with those derived from the spatiotemporal model with a separable covariance structure, the accuracy indices indicated that the maps were dissimilar. (4) This suggests that incorporating the spatiotemporal structure provides additional information, making it a more comprehensive approach for analyzing soybean yield variability. The best model was chosen through cross-validation and a trace. Thus, incorporating a spatiotemporal model with a separable covariance structure increases the accuracy and interpretability of soybean yield analyses, making it a more effective tool for decision-making in precision agriculture. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

20 pages, 2804 KiB  
Article
The Spatial Dynamics of Japanese Sardine (Sardinops sagax) Fishing Grounds in the Northwest Pacific: A Geostatistical Approach
by Yongzheng Tang, Yuanting Gong, Heng Zhang, Guoqing Zhao and Fenghua Tang
Animals 2025, 15(11), 1597; https://doi.org/10.3390/ani15111597 - 29 May 2025
Viewed by 329
Abstract
The Japanese sardine (Sardinops sagax), a key economic species in the Northwest Pacific Ocean (NWPO), has shown significant increases in both population abundance and catch volume over the past decade. To understand its spatiotemporal dynamics under climate change, this study analyzed [...] Read more.
The Japanese sardine (Sardinops sagax), a key economic species in the Northwest Pacific Ocean (NWPO), has shown significant increases in both population abundance and catch volume over the past decade. To understand its spatiotemporal dynamics under climate change, this study analyzed light purse seine fishery data (2014–2021) from the NWPO. The results showed that the primary fishing season spans March to December, with peak catches concentrated in 40–43° N, 149–155° E. Annual catches grew steadily, accelerating notably in 2021. The fishing grounds’ center shifted northeastward annually and seasonally (southwest-to-northeast trajectory), driven by directional aggregation. Spatial clustering with global positive autocorrelation was observed, weakening as distance thresholds increased. Resource hotspots migrated northeast, narrowing from 40–42° N (2016) to 42–44° N (2017–2021), while coldspots showed complementary fluctuations. Generalized additive model (GAM) analysis revealed that the catch per unit effort (CPUE) of Japanese sardine in the high seas of the NWPO was governed by temporal–spatial drivers and multivariate environmental determinants. Analytical findings substantiate the significant climate-driven impacts on the spatiotemporal distribution and population dynamics of Japanese sardine. The non-stationary interannual and seasonal patterns of fishing grounds highlight the need for adaptive management strategies. Full article
Show Figures

Figure 1

25 pages, 8475 KiB  
Article
Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV Data
by Maurizio Guerra, Maurizio De Molfetta, Antonio Diligenti, Marco Falconi, Vincenzo Fiano, Chiara Fiori, Donatello Fosco, Lucina Luchetti, Bruno Notarnicola, Pietro Alexander Renzulli, Enrico Sacchi, Nino Tarantino, Marcello Tognacci and Antonella Vecchio
Remote Sens. 2025, 17(11), 1890; https://doi.org/10.3390/rs17111890 - 29 May 2025
Viewed by 643
Abstract
The effective management of landfills requires advancements in techniques for rapid data collection and analysis of gas emissions. This work aims to refine methane (CH4) emission data acquired from landfills by applying a robust geostatistical method to drone-collected measurements. Specifically, we [...] Read more.
The effective management of landfills requires advancements in techniques for rapid data collection and analysis of gas emissions. This work aims to refine methane (CH4) emission data acquired from landfills by applying a robust geostatistical method to drone-collected measurements. Specifically, we use UAV-mounted laser spectrophotometer technology (TDLAS-UAV) to gather rapid, high-resolution data, which can sometimes be noisy due to atmospheric variations and sensor drift. For data handling, the key innovation is the application of the local indicator of spatial association (LISA), a technique that typically provides p-values to assess the statistical significance of observed spatial clusters. This approach was applied both on an areal basis and on a linear basis, following the order of data acquisition, and it produced comparable results. Very low p-values are considered indicative of non-random clustering, suggesting the influence of an underlying spatial control factor. These results were subsequently validated through independent flux chamber surveys. This validation confirms the reliability and objectivity of our geostatistical method in improving drone-based methane emission assessments. The research highlights the need to optimize drone flight paths to ensure a uniform spatial distribution of data and reduce edge effects. It notes that many CH4 flux measurements often yield non-detectable results, suggesting a review of detection limits. Future work should refine UAV flight patterns and data processing with semi-controlled experiments—using known methane sources—to determine optimal acquisition parameters, such as flight height, sampling frequency, grid resolution, and wind influence. Full article
(This article belongs to the Special Issue Environmental Monitoring Using UAV and Mobile Mapping Systems)
Show Figures

Figure 1

Back to TopTop