Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,233)

Search Parameters:
Keywords = genome damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2443 KiB  
Article
Contralateral Structure and Molecular Response to Severe Unilateral Brain Injury
by Xixian Liao, Xiaojian Xu, Ming Li, Runfa Tian, Yuan Zhuang and Guoyi Gao
Brain Sci. 2025, 15(8), 837; https://doi.org/10.3390/brainsci15080837 (registering DOI) - 5 Aug 2025
Abstract
Background: Severe damage to one side of the brain often leads to adverse consequences and can also cause widespread changes throughout the brain, especially in the contralateral area. Studying molecular changes in the contralateral cerebral hemisphere, especially with regard to genetic regulation, [...] Read more.
Background: Severe damage to one side of the brain often leads to adverse consequences and can also cause widespread changes throughout the brain, especially in the contralateral area. Studying molecular changes in the contralateral cerebral hemisphere, especially with regard to genetic regulation, can help discover potential treatment strategies to promote recovery after severe brain trauma on one side. Methods: In our study, the right motor cortex was surgically removed to simulate severe unilateral brain injury, and changes in glial cells and synaptic structure in the contralateral cortex were subsequently assessed through immunohistological, morphological, and Western blot analyses. We conducted transcriptomic studies to explore changes in gene expression levels associated with the inflammatory response. Results: Seven days after corticotomy, levels of reactive astrocytes and hypertrophic microglia increased significantly in the experimental group, while synapsin-1 and PSD-95 levels in the contralateral motor cortex increased. These molecular changes are associated with structural changes, including destruction of dendritic structures and the encapsulation of astrocytes by synapses. Genome-wide transcriptome analysis showed a significant increase in gene pathways involved in inflammatory responses, synaptic activity, and nerve fiber regeneration in the contralateral cortex after corticorectomy. Key transcription factors such as NF-κB1, Rela, STAT3 and Jun were identified as potential regulators of these contralateral changes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) confirmed that the mRNA expression levels of Cacna1c, Tgfb1 and Slc2a1 genes related to STAT3, JUN, and NF-κB regulation significantly increased in the contralateral cortex of the experimental group. Conclusions: After unilateral brain damage occurs, changes in the contralateral cerebral hemisphere are closely related to processes involving inflammation and synaptic function. Full article
Show Figures

Figure 1

14 pages, 1320 KiB  
Review
Elucidating the Role of CNOT2 in Regulating Cancer Cell Growth via the Modulation of p53 and c-Myc Expression
by Jihyun Lee, Ju-Ha Kim, Yu Jin Lee, Je Joung Oh, Yeo Jeong Han and Ji Hoon Jung
Curr. Issues Mol. Biol. 2025, 47(8), 615; https://doi.org/10.3390/cimb47080615 - 4 Aug 2025
Abstract
CNOT2, a central component of the CCR4-NOT transcription complex subunit 2, plays a pivotal role in the regulation of gene expression and metabolism. CNOT2 is involved in various cellular processes, including transcriptional regulation, mRNA deadenylation, and the modulation of mRNA stability. CNOT2 [...] Read more.
CNOT2, a central component of the CCR4-NOT transcription complex subunit 2, plays a pivotal role in the regulation of gene expression and metabolism. CNOT2 is involved in various cellular processes, including transcriptional regulation, mRNA deadenylation, and the modulation of mRNA stability. CNOT2 specifically contributes to the structural integrity and enzymatic activity of the CCR4-NOT complex with transcription factors and RNA-binding proteins. Recent studies have elucidated its involvement in cellular differentiation, immune response modulation, and the maintenance of genomic stability. Abnormal regulation of CNOT2 has been implicated in a spectrum of pathological conditions, including oncogenesis, neurodegenerative disorders, and metabolic dysfunctions. This review comprehensively examines the interplay between CNOT2 and p53, elucidating their collaborative and antagonistic interactions in various cellular contexts. CNOT2 is primarily involved in transcriptional regulation, mRNA deadenylation, and the modulation of mRNA stability, thereby influencing diverse biological processes such as cell proliferation, apoptosis, and differentiation. Conversely, p53 is renowned for its role in maintaining genomic integrity, inducing cell cycle arrest, apoptosis, and senescence in response to cellular stress and DNA damage. Emerging evidence suggests that CNOT2 can modulate p53 activity through multiple mechanisms, including the regulation of p53 mRNA stability and the modulation of p53 target gene expression. The dysregulation of CNOT2 and p53 interactions has been implicated in the pathogenesis and progression of various cancers, highlighting their potential as therapeutic targets. Additionally, CNOT2 regulates c-Myc, a well-known oncogene, in cancer cells. This review shows the essential roles of CNOT2 in maintaining cancer cellular homeostasis and explores its interactions within the CCR4-NOT complex that influence transcriptional and post-transcriptional regulation. Furthermore, we investigate the potential of CNOT2 as a biomarker and therapeutic target across various disease states, highlighting its significance in disease progression and treatment responsiveness. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

14 pages, 4690 KiB  
Article
Systematic Analysis of Dof Gene Family in Prunus persica Unveils Candidate Regulators for Enhancing Cold Tolerance
by Zheng Chen, Xiaojun Wang, Juan Yan, Zhixiang Cai, Binbin Zhang, Jianlan Xu, Ruijuan Ma, Mingliang Yu and Zhijun Shen
Int. J. Mol. Sci. 2025, 26(15), 7509; https://doi.org/10.3390/ijms26157509 (registering DOI) - 4 Aug 2025
Abstract
Late-spring frost events severely damage low-chill peach blossoms, causing significant yield losses. Although 5-aminolevulinic acid (ALA) enhances cold tolerance through the PpC3H37-PpWRKY18 module, the regulatory mechanism of ALA on PpC3H37 remains to be elucidated. Using yeast one-hybrid screening with the PpC3H37 promoter as [...] Read more.
Late-spring frost events severely damage low-chill peach blossoms, causing significant yield losses. Although 5-aminolevulinic acid (ALA) enhances cold tolerance through the PpC3H37-PpWRKY18 module, the regulatory mechanism of ALA on PpC3H37 remains to be elucidated. Using yeast one-hybrid screening with the PpC3H37 promoter as bait, we identified PpDof9 as a key interacting transcription factor. A genome-wide analysis revealed 25 PpDof genes in peaches (Prunus persica). These genes exhibited variable physicochemical properties, with most proteins predicted as nuclear-localized. Subcellular localization experiments in tobacco revealed that PpDof9 was localized to the nucleus, consistent with predictions. A synteny analysis indicated nine segmental duplication pairs and tandem duplications on chromosomes 5 and 6, suggesting duplication events drove family expansion. A conserved motif analysis confirmed universal presence of the Dof domain (Motif 1). Promoter cis-element screening identified low-temperature responsive (LTR) elements in 12 PpDofs, including PpDof1, PpDof8, PpDof9, and PpDof25. The quantitative real-time PCR (qRT-PCR) results showed that PpDof1, PpDof8, PpDof9, PpDof15, PpDof16, and PpDof25 were significantly upregulated under low-temperature stress, and this upregulation was further enhanced by ALA pretreatment. Our findings demonstrate ALA-mediated modulation of specific PpDof TFs in cold response and provide candidates (PpDof1, PpDof9, PpDof8, PpDof25) for enhancing floral frost tolerance in peaches. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

39 pages, 2336 KiB  
Review
Omics-Mediated Treatment for Advanced Prostate Cancer: Moving Towards Precision Oncology
by Yasra Fatima, Kirubel Nigusu Jobre, Enrique Gomez-Gomez, Bartosz Małkiewicz, Antonia Vlahou, Marika Mokou, Harald Mischak, Maria Frantzi and Vera Jankowski
Int. J. Mol. Sci. 2025, 26(15), 7475; https://doi.org/10.3390/ijms26157475 - 2 Aug 2025
Viewed by 275
Abstract
Prostate cancer accounts for approximately 1.5 million new diagnoses and 400,000 deaths every year worldwide, and demographic projections indicate a near-doubling of both figures by 2040. Despite existing treatments, 10–20% of patients eventually progress to metastatic castration-resistant disease (mCRPC). The median overall survival [...] Read more.
Prostate cancer accounts for approximately 1.5 million new diagnoses and 400,000 deaths every year worldwide, and demographic projections indicate a near-doubling of both figures by 2040. Despite existing treatments, 10–20% of patients eventually progress to metastatic castration-resistant disease (mCRPC). The median overall survival (OS) after progression to mCPRC drops to 24 months, and efficacy drops severely after each additional line of treatment. Omics platforms have reached advanced levels and enable the acquisition of high-resolution large datasets that can provide insights into the molecular mechanisms underlying PCa pathology. Genomics, especially DDR (DNA damage response) gene alterations, detected via tissue and/or circulating tumor DNA, efficiently guides therapy in advanced prostate cancer. Given recent developments, we have performed a comprehensive literature search to cover recent research and clinical trial reports (over the last five years) that integrate omics along three converging trajectories in therapeutic development: (i) predicting response to approved agents with demonstrated survival benefits, (ii) stratifying patients to receive therapies in clinical trials, (iii) guiding drug development as part of drug repurposing frameworks. Collectively, this review is intended to serve as a comprehensive resource of recent advancements in omics-guided therapies for advanced prostate cancer, a clinical setting with existing clinical needs and poor outcomes. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

18 pages, 1922 KiB  
Article
Genomic and Cytotoxic Damage in Wistar Rats and Their Newborns After Transplacental Exposure to Hibiscus sabdariffa Hydroalcoholic Extract
by Yelin Tobanche Mireles, Ana Lourdes Zamora-Pérez, Marisol Galván Valencia, Susana Vanessa Sánchez de la Rosa, Fuensanta del Rocío Reyes Escobedo and Blanca Patricia Lazalde-Ramos
Int. J. Mol. Sci. 2025, 26(15), 7448; https://doi.org/10.3390/ijms26157448 - 1 Aug 2025
Viewed by 139
Abstract
Hibiscus sabdariffa (Hs) is a tropical plant with a wide range of therapeutic properties; however, few studies have evaluated its potential adverse effects. In the present study, the cytotoxic and genotoxic effects of the hydroalcoholic extract of Hs (EHHs) dried calyces [...] Read more.
Hibiscus sabdariffa (Hs) is a tropical plant with a wide range of therapeutic properties; however, few studies have evaluated its potential adverse effects. In the present study, the cytotoxic and genotoxic effects of the hydroalcoholic extract of Hs (EHHs) dried calyces administered during gestation were assessed in Wistar rats and their newborns using the micronucleus assay in peripheral blood and the quantification of malondialdehyde (MDA) in various tissues. Three different doses of EHHs (500, 1000, and 2000 mg/Kg) were administered orally to five pregnant Wistar rats per group during the final days of gestation (days 16–20). Blood samples were collected every 24 h during the last six days of gestation and from the neonates at birth, along with tissue samples for MDA quantification. EHHs induced myelosuppression in the mothers and genotoxicity in their newborns, as well as cytotoxicity, evidenced by increased MDA levels in serum, liver, and kidneys of the mothers, and in the liver, kidneys, brain, and muscle tissues of the neonates. These findings provide important insights into the safety profile of Hs, and its use is therefore recommended only under the supervision of a qualified healthcare professional. Full article
(This article belongs to the Special Issue Reproductive Toxicity of Chemicals)
Show Figures

Figure 1

13 pages, 1809 KiB  
Perspective
Specific Low/Endogenous Replication Stress Response Protects Genomic Stability via Controlled ROS Production in an Adaptive Way and Is Dysregulated in Transformed Cells
by Bernard S. Lopez
Cells 2025, 14(15), 1183; https://doi.org/10.3390/cells14151183 - 31 Jul 2025
Viewed by 168
Abstract
Cells are assaulted daily by stresses that jeopardize genome integrity. Primary human cells adapt their response to the intensity of replication stress (RS) in a diphasic manner: below a stress threshold, the canonical DNA damage response (cDDR) is not activated, but a noncanonical [...] Read more.
Cells are assaulted daily by stresses that jeopardize genome integrity. Primary human cells adapt their response to the intensity of replication stress (RS) in a diphasic manner: below a stress threshold, the canonical DNA damage response (cDDR) is not activated, but a noncanonical cellular response, low-level stress-DDR (LoL-DDR), has recently been described. LoL-DDR prevents the accumulation of premutagenic oxidized bases (8-oxoguanine) through the production of ROS in an adaptive way. The production of RS-induced ROS (RIR) is tightly controlled: RIR are excluded from the nucleus and are produced by the NADPH oxidases DUOX1/DUOX2, which are controlled by NF-κB and PARP1; then, RIR activate the FOXO1-detoxifying pathway. Increasing the intensity of RS suppresses RIR via p53 and ATM. Notably, LoL-DDR is dysregulated in cancer cell lines, in which RIR are not produced by NADPH oxidases, are not detoxified under high-level stress, and favor the accumulation of 8-oxoguanine. LoL-DDR dysregulation occurred at an early stage of cancer progression in an in vitro model. Since, conversely, ROS trigger RS, this establishes a vicious cycle that continuously jeopardizes genome integrity, fueling tumorigenesis. These data reveal a novel type of ROS-controlled DNA damage response and demonstrate the fine-tuning of the cellular response to stress. The effects on genomic stability and carcinogenesis are discussed here. Full article
Show Figures

Figure 1

19 pages, 4270 KiB  
Article
Viral Inactivation by Light-Emitting Diodes: Action Spectra Reveal Genomic Damage as the Primary Mechanism
by Kazuaki Mawatari, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Yushi Onoda, Kai Ishida, Sae Toda, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley III and Akira Takahashi
Viruses 2025, 17(8), 1065; https://doi.org/10.3390/v17081065 - 30 Jul 2025
Viewed by 247
Abstract
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic [...] Read more.
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic viruses using a system equipped with interchangeable LEDs at 13 different peak wavelengths (250–365 nm). The reduction in viral infectivity induced by UV-LED exposure was strongly related to viral genome damage, whereas no significant degradation of viral structural proteins was detected. Peak virucidal efficiency was observed at 267–270 nm across all tested viruses, representing a slight shift from the traditionally expected 260 nm nucleic acid absorption peak. Enveloped RNA viruses, including influenza A virus, respiratory syncytial virus, and coronavirus, exhibited greater UV sensitivity than nonenveloped viruses such as feline calicivirus and adenovirus. These observations indicate that structural characteristics, such as the presence of an envelope and genome organization, influence UV susceptibility. The wavelength-specific action spectra established in this study provide critical data for optimizing UV-LED disinfection systems to achieve efficient viral inactivation while minimizing energy consumption in healthcare, food safety, and environmental sanitation. Full article
Show Figures

Graphical abstract

19 pages, 1021 KiB  
Article
Causal Inference Approaches Reveal Associations Between LDL Oxidation, NO Metabolism, Telomere Length and DNA Integrity Within the MARK-AGE Study
by Andrei Valeanu, Denisa Margina, María Moreno-Villanueva, María Blasco, Ewa Sikora, Grazyna Mosieniak, Miriam Capri, Nicolle Breusing, Jürgen Bernhardt, Christiane Schön, Olivier Toussaint, Florence Debacq-Chainiaux, Beatrix Grubeck-Loebenstein, Birgit Weinberger, Simone Fiegl, Efstathios S. Gonos, Antti Hervonen, Eline P. Slagboom, Anton de Craen, Martijn E. T. Dollé, Eugène H. J. M. Jansen, Eugenio Mocchegiani, Robertina Giacconi, Francesco Piacenza, Marco Malavolta, Daniela Weber, Wolfgang Stuetz, Tilman Grune, Claudio Franceschi, Alexander Bürkle and Daniela Gradinaruadd Show full author list remove Hide full author list
Antioxidants 2025, 14(8), 933; https://doi.org/10.3390/antiox14080933 - 30 Jul 2025
Viewed by 262
Abstract
Genomic instability markers are important hallmarks of aging, as previously evidenced within the European study of biomarkers of human aging, MARK-AGE; however, establishing the specific metabolic determinants of vascular aging is challenging. The objective of the present study was to evaluate the impact [...] Read more.
Genomic instability markers are important hallmarks of aging, as previously evidenced within the European study of biomarkers of human aging, MARK-AGE; however, establishing the specific metabolic determinants of vascular aging is challenging. The objective of the present study was to evaluate the impact of the susceptibility to oxidation of serum LDL particles (LDLox) and the plasma metabolization products of nitric oxide (NOx) on relevant genomic instability markers. The analysis was performed on a MARK-AGE cohort of 1326 subjects (635 men and 691 women, 35–75 years old) randomly recruited from the general population. The Inverse Probability of Treatment Weighting causal inference algorithm was implemented in order to assess the potential causal relationship between the LDLox and NOx octile-based thresholds and three genomic instability markers measured in mononuclear leukocytes: the percentage of telomeres shorter than 3 kb, the initial DNA integrity, and the DNA damage after irradiation with 3.8 Gy. The results showed statistically significant telomere shortening for LDLox, while NOx yielded a significant impact on DNA integrity. Overall, the effect on the genomic instability markers was higher than for the confirmed vascular aging determinants, such as low HDL cholesterol levels, indicating a meaningful impact even for small changes in LDLox and NOx values. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
Show Figures

Figure 1

59 pages, 3467 KiB  
Review
Are Hippocampal Hypoperfusion and ATP Depletion Prime Movers in the Genesis of Alzheimer’s Disease? A Review of Recent Pertinent Observations from Molecular Biology
by Valerie Walker
Int. J. Mol. Sci. 2025, 26(15), 7328; https://doi.org/10.3390/ijms26157328 - 29 Jul 2025
Viewed by 259
Abstract
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown [...] Read more.
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown and under intense investigation. Localization to the hippocampus can now be explained by anatomical features of the blood vessels supplying this region. Blood supply and hence oxygen delivery to the area are jeopardized by poor flow through narrowed arteries. In genomic and metabolomic studies, the respiratory chain and mitochondrial pathways which generate ATP were leading pathways associated with AD. This review explores the notion that ATP depletion resulting from hippocampal hypoperfusion has a prime role in initiating damage. Sections cover sensing of ATP depletion and protective responses, vulnerable processes with very heavy ATP consumption (the malate shuttle, the glutamate/glutamine/GABA (γ-aminobutyric acid) cycle, and axonal transport), phospholipid disturbances and peroxidation by reactive oxygen species, hippocampal perfusion and the effects of hypertension, chronic hypoxia, and arterial vasospasm, and an overview of recent relevant genomic studies. The findings demonstrate strong scientific arguments for the proposal with increasing supportive evidence. These lines of enquiry should be pursued. Full article
Show Figures

Graphical abstract

15 pages, 1961 KiB  
Article
Age-Dependent Immune Defense Against Beauveria bassiana in Long- and Short-Lived Drosophila Populations
by Elnaz Bagheri, Han Yin, Arnie Lynn C. Bengo, Kshama Ekanath Rai, Taryn Conyers, Robert Courville, Mansour Abdoli, Molly K. Burke and Parvin Shahrestani
J. Fungi 2025, 11(8), 556; https://doi.org/10.3390/jof11080556 - 27 Jul 2025
Viewed by 326
Abstract
Aging in sexually reproducing organisms is shaped by the declining force of natural selection after reproduction begins. In Drosophila melanogaster, experimental evolution shows that altering the age of reproduction shifts the timing of aging. Using the Drosophila experimental evolution population (DEEP) resource, [...] Read more.
Aging in sexually reproducing organisms is shaped by the declining force of natural selection after reproduction begins. In Drosophila melanogaster, experimental evolution shows that altering the age of reproduction shifts the timing of aging. Using the Drosophila experimental evolution population (DEEP) resource, which includes long- and short- lived populations evolved under distinct reproductive schedules, we investigated how immune defense against Beauveria bassiana changes with age and evolved lifespan. We tested survival post-infection at multiple ages and examined genomic differentiation for immune-related genes. Both population types showed age-related declines in immune defense. Long-lived populations consistently exhibited age-specific defense when both long- and short-lived populations were tested. Genomic comparisons revealed thousands of differentiated loci, yet no enrichment for canonical immune genes or overlap with gene sets from studies of direct selection for immunity. These results suggest that enhanced immune defense can evolve alongside extended lifespan, likely via general physiological robustness rather than traditional immune pathways. A more detailed analysis may reveal that selection for lifespan favors tolerance-based mechanisms that reduce infection damage without triggering immune activation, in contrast to direct selection for resistance. Our findings demonstrate the utility of experimentally evolved populations for dissecting the genetic architecture of aging and immune defense to inform strategies to mitigate age-related costs associated with immune activation. Full article
(This article belongs to the Special Issue Advances in Research on Entomopathogenic Fungi)
Show Figures

Figure 1

13 pages, 1171 KiB  
Article
Beyond Protection: The Cytotoxic Effect of Anti-Tat Antibodies in People Living with HIV
by Juan Ernesto Gutiérrez-Sevilla, Jorge Gaona-Bernal, Gracia Viviana González-Enríquez, Martha Escoto-Delgadillo, Guillermo Moisés Zúñiga-González, Belinda Claudia Gómez-Meda, Silvia Gabriela Luévano-Gómez, Alma Minerva Pérez-Ríos, Maribel Ávila-Morán, Víctor Eduardo García-Arias, Jessica Paloma Torres-Ríos, Jhonathan Cárdenas-Bedoya and Blanca Miriam Torres-Mendoza
Int. J. Mol. Sci. 2025, 26(15), 7229; https://doi.org/10.3390/ijms26157229 - 26 Jul 2025
Viewed by 212
Abstract
Although ART leads to viral suppression, people living with HIV (PLWH) still face an increased risk of comorbidities, such as cancer. The HIV-1 Tat protein may contribute to the promotion of chronic inflammation, oxidative stress, and genomic instability. While the presence of anti-Tat [...] Read more.
Although ART leads to viral suppression, people living with HIV (PLWH) still face an increased risk of comorbidities, such as cancer. The HIV-1 Tat protein may contribute to the promotion of chronic inflammation, oxidative stress, and genomic instability. While the presence of anti-Tat antibodies has been associated with slower disease progression, their potential role in modulating DNA damage remains unclear. Assess the effect of anti-Tat antibodies on cytotoxic and DNA damage in PLWH. A cross-sectional study was conducted in 178 PLWH. Serum anti-Tat IgG antibodies were measured using enzyme-linked immunosorbent assay (ELISA). Cytotoxicity and DNA damage were assessed via serum 8-hydroxy-2′-deoxyguanosine (8-OHdG) and nuclear anomalies (Micronucleus cytome assay) in 2000 buccal cells. Statistical significance was considered at p < 0.05. Anti-Tat antibodies were found in 24.2% of participants. Positive individuals had lower CD4+ T cell counts (p = 0.045) and higher levels of pyknosis (p = 0.0001). No differences in 8-OHdG were found, but 8-OHdG correlated positively with CD4+ counts (rho = 0.334, p = 0.006). Pyknosis negatively correlated with CD4+ counts (rho = −0.272, p = 0.027). Anti-Tat antibodies may not prevent DNA damage but could be related to cytotoxic effects in PLWH. Full article
(This article belongs to the Special Issue Advanced Research on HIV Virus and Infection)
Show Figures

Figure 1

17 pages, 3286 KiB  
Article
Molecular Insights into the Superiority of Platelet Lysate over FBS for hASC Expansion and Wound Healing
by Sakurako Kunieda, Michika Fukui, Atsuyuki Kuro, Toshihito Mitsui, Huan Li, Zhongxin Sun, Takayuki Ueda, Shigeru Taketani, Koichiro Higasa and Natsuko Kakudo
Cells 2025, 14(15), 1154; https://doi.org/10.3390/cells14151154 - 25 Jul 2025
Viewed by 342
Abstract
Human adipose-derived stem cells (hASCs) are widely used in regenerative medicine due to their accessibility and high proliferative capacity. Platelet lysate (PL) has recently emerged as a promising alternative to fetal bovine serum (FBS), offering superior cell expansion potential; however, the molecular basis [...] Read more.
Human adipose-derived stem cells (hASCs) are widely used in regenerative medicine due to their accessibility and high proliferative capacity. Platelet lysate (PL) has recently emerged as a promising alternative to fetal bovine serum (FBS), offering superior cell expansion potential; however, the molecular basis for its efficacy remains insufficiently elucidated. In this study, we performed RNA sequencing to compare hASCs cultured with PL or FBS, revealing a significant upregulation of genes related to stress response and cell proliferation under PL conditions. These findings were validated by RT–qPCR and supported by functional assays demonstrating enhanced cellular resilience to oxidative and genotoxic stress, reduced doxorubicin-induced senescence, and improved antiapoptotic properties. In a murine wound model, PL-treated wounds showed accelerated healing, characterized by thicker dermis-like tissue formation and increased angiogenesis. Immunohistochemical analysis further revealed elevated expression of chk1, a DNA damage response kinase encoded by CHEK1, which plays a central role in maintaining genomic integrity during stress-induced repair. Collectively, these results highlight PL not only as a viable substitute for FBS in hASC expansion but also as a bioactive supplement that enhances regenerative efficacy by promoting proliferation, stress resistance, and antiaging functions. Full article
(This article belongs to the Section Cellular Aging)
Show Figures

Figure 1

14 pages, 722 KiB  
Article
When the Last Line Fails: Characterization of Colistin-Resistant Acinetobacter baumannii Reveals High Virulence and Limited Clonal Dissemination in Greek Hospitals
by Dimitrios Karakalpakidis, Theofilos Papadopoulos, Michalis Paraskeva, Michaela-Eftychia Tsitlakidou, Eleni Vagdatli, Helen Katsifa, Apostolos Beloukas, Charalampos Kotzamanidis and Christine Kottaridi
Pathogens 2025, 14(8), 730; https://doi.org/10.3390/pathogens14080730 - 24 Jul 2025
Viewed by 1432
Abstract
Acinetobacter baumannii has emerged as a major pathogen responsible for healthcare-associated infections, particularly in intensive care units, contributing to significant morbidity and mortality due to its multidrug resistance and ability to persist in clinical environments. This study aimed to investigate the phenotypic and [...] Read more.
Acinetobacter baumannii has emerged as a major pathogen responsible for healthcare-associated infections, particularly in intensive care units, contributing to significant morbidity and mortality due to its multidrug resistance and ability to persist in clinical environments. This study aimed to investigate the phenotypic and genomic characteristics of all multidrug-resistant A. baumannii isolates collected between January and June 2022 from two tertiary care hospitals in Thessaloniki, Greece. A total of 40 isolates were included. All isolates exhibited resistance to colistin; however, none harbored the mcr-1 to mcr-9 genes, as confirmed by polymerase chain reaction (PCR). PCR-based screening for virulence-associated genes revealed high prevalence rates of basD (100%), pld (95%), csuE (87.5%), and bap (77.5%). In contrast, ompA and pglC were not detected. Twitching motility ranged from 2 to 50 mm, with 25% of the isolates classified as non-motile and 20% as highly motile. Swarming motility was observed in all strains. Additionally, all isolates demonstrated positive α-hemolysis, suggesting a potential virulence mechanism involving tissue damage and iron acquisition. Pulsed-field gel electrophoresis (PFGE) revealed significant genomic diversity among the isolates, indicating a low likelihood of patient-to-patient or clonal transmission within the hospital setting. These findings highlight the complex relationship between antimicrobial resistance and virulence in clinical A. baumannii isolates and emphasize the urgent need for robust infection control strategies and continued microbiological surveillance. Full article
(This article belongs to the Special Issue Acinetobacter baumannii: An Emerging Pathogen)
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Unclassified Chromosomal Abnormalities as an Indicator of Genomic Damage in Survivors of Hodgkin’s Lymphoma
by Sandra Ramos, Bertha Molina, María del Pilar Navarrete-Meneses, David E. Cervantes-Barragan, Valentín Lozano and Sara Frias
Cancers 2025, 17(15), 2437; https://doi.org/10.3390/cancers17152437 - 23 Jul 2025
Viewed by 269
Abstract
Background/Objectives: Hodgkin’s lymphoma (HL) affects 2–4 individuals per 100,000 annually. Standard treatment includes radiotherapy and ABVD chemotherapy, achieving a 95% survival rate. However, HL survivors face an elevated risk of treatment-related morbidity, particularly the development of secondary malignancies. Previous studies have demonstrated [...] Read more.
Background/Objectives: Hodgkin’s lymphoma (HL) affects 2–4 individuals per 100,000 annually. Standard treatment includes radiotherapy and ABVD chemotherapy, achieving a 95% survival rate. However, HL survivors face an elevated risk of treatment-related morbidity, particularly the development of secondary malignancies. Previous studies have demonstrated that ABVD treatment induces a high frequency of chromosomal aberrations (CAs) in lymphocytes from HL patients, with higher frequencies one year after treatment than during treatment. This study aimed to determine whether HL treatment also induces unclassified chromosomal/nuclear aberrations (UnCAs) in the lymphocytes of HL patients, and whether these alterations may serve as complementary indicators of genomic instability. Methods: Peripheral blood lymphocytes from HL patients were collected at three time points: before treatment (BT), during treatment (DT), and one year after treatment (1yAT) with ABVD chemotherapy and radiotherapy. A minimum of 3000 nuclei were analyzed per patient to identify and quantify UnCAs. These results were compared to UnCA frequencies in healthy individuals. Results: The percentage of cells presenting UnCAs per 3000 nuclei was 23.92% BT, 18.58% DT, and 30.62% 1yAT. All values were significantly higher (p < 0.016) than the 8.16% observed in healthy controls. The increase was primarily driven by free chromatin and micronuclei clusters. UnCA frequency was lower during treatment than one year after, likely due to the elimination of highly damaged cells through apoptosis or lack of proliferative capacity. Over time, however, persistent genomic damage appears to accumulate in surviving cells, becoming more evident post-treatment. A parallel trend was observed between the frequencies of UnCAs free chromatin, micronucleus and micronuclei clusters, and classical CAs, showing a similar pattern of genomic damage induced by therapy. Conclusions: The post-treatment increase in UnCAs indicates ongoing genomic instability, possibly driven by the selective survival of hematopoietic stem cells with higher genomic fitness. Given their persistence and association with therapy-induced damage, free chromatin and micronuclei clusters may serve as early biomarkers for secondary cancer risk in HL survivors. Full article
(This article belongs to the Special Issue The Role of Chromosomal Instability in Cancer: 2nd Edition)
Show Figures

Figure 1

32 pages, 1319 KiB  
Review
Effects of Targeted Radionuclide Therapy on Cancer Cells Beyond the Ablative Radiation Dose
by Guillermina Ferro-Flores, Erika Azorín-Vega, Blanca Ocampo-García, Myrna Luna-Gutiérrez, Pedro Cruz-Nova and Laura Meléndez-Alafort
Int. J. Mol. Sci. 2025, 26(14), 6968; https://doi.org/10.3390/ijms26146968 - 20 Jul 2025
Viewed by 607
Abstract
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal [...] Read more.
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal effects (AEs), radiation-induced genomic instability (RIGI), and adaptive responses, which collectively influence the behavior of cancer cells and the tumor microenvironment (TME). TRT also modulates immune responses, promoting immune-mediated cell death and enhancing the efficacy of combination therapies, such as the use of immune checkpoint inhibitors. The molecular mechanisms underlying TRT involve DNA damage, oxidative stress, and apoptosis, with repair pathways like homologous recombination (HR) and non-homologous end joining (NHEJ) playing critical roles. However, challenges such as tumor heterogeneity, hypoxia, and radioresistance limit the effectiveness of this approach. Advances in theranostics, which integrate diagnostic imaging with TRT, have enabled personalized treatment approaches, while artificial intelligence and improved dosimetry offer potential for treatment optimization. Despite the significant survival benefits of TRT in prostate cancer and neuroendocrine tumors, 30–40% of patients remain unresponsive, which highlights the need for further research into molecular pathways, long-term effects, and combined therapies. This review outlines the dual mechanisms of TRT, direct toxicity and NTEs, and discusses strategies to enhance its efficacy and expand its use in oncology. Full article
(This article belongs to the Special Issue Targeted Therapy of Cancer: Innovative Drugs and Molecular Tools)
Show Figures

Figure 1

Back to TopTop