When the Last Line Fails: Characterization of Colistin-Resistant Acinetobacter baumannii Reveals High Virulence and Limited Clonal Dissemination in Greek Hospitals
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Selection Process
2.2. Antimicrobial Susceptibility Testing
2.3. Detection of Colistin Resistance Genes
2.4. Detection of Virulence Genes
2.5. Assessment of Biofilm-Formation Ability
2.6. Detection of Hemolytic Activity
2.7. Detection of Twitching and Swarming Motility
2.8. Pulsed-Field Gel Electrophoresis (PFGE)
3. Results
3.1. Isolate Collection
3.2. Antimicrobial Susceptibility Testing
3.3. Molecular Detection of Colistin Resistance and Virulence-Associated Genes
3.4. Phenotypic Characterization of Biofilm Formation, Hemolysis, and Motility
3.5. Genetic Diversity of Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whiteway, C.; Breine, A.; Philippe, C.; Van der Henst, C. Acinetobacter baumannii . Trends Microbiol. 2022, 30, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO News Release. Saudi Med. J. 2013, 34, 248–353. [Google Scholar]
- Vrysis, C.; Kontogiannis, D.S.; Ntourakis, D.; Kakoullis, S.A.; Falagas, M.E. Risk factors for colistin-resistant, extensively drug-resistant (XDR) and pandrug-resistant (PDR) Acinetobacter baumannii infections: A review. Expert Rev. Anti-Infect. Ther. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control; World Health Organization. Antimicrobial Resistance Surveillance in Europe 2023; 2021 data; European Centre for Disease Prevention and Control and World Health Organization: Solna, Sweden, 2023. [Google Scholar]
- Clausell, A.; Garcia-Subirats, M.; Pujol, M.; Busquets, M.A.; Rabanal, F.; Cajal, Y. Gram-negative outer and inner membrane models: Insertion of cyclic cationic lipopeptides. J. Phys. Chem. B 2007, 111, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Olaitan, A.O.; Morand, S.; Rolain, J.-M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [PubMed]
- Khuntayaporn, P.; Thirapanmethee, K.; Chomnawang, M.T. An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Front. Cell Infect. Microbiol. 2022, 12, 882236. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hussein, N.H.; Al-Kadmy, I.M.S.; Taha, B.M.; Hussein, J.D. Mobilized colistin resistance (mcr) genes from 1 to 10: A comprehensive review. Mol. Biol. Rep. 2021, 48, 2897–2907. [Google Scholar] [CrossRef] [PubMed]
- Hameed, F.; Khan, M.A.; Muhammad, H.; Sarwar, T.; Bilal, H.; Rehman, T.U. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: First report from Pakistan. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190237. [Google Scholar] [CrossRef] [PubMed]
- Al-Kadmy, I.M.; Ibrahim, S.A.; Al-Saryi, N.; Aziz, S.N.; Besinis, A.; Hetta, H.F. Prevalence of Genes Involved in Colistin Resistance in Acinetobacter baumannii: First Report from Iraq. Microb. Drug Resist. 2020, 26, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Kareem, S.M. Emergence of mcr- and fosA3-mediated colistin and fosfomycin resistance among carbapenem-resistant Acinetobacter baumannii in Iraq. Meta Gene 2020, 25, 100708. [Google Scholar] [CrossRef]
- Fan, R.; Li, C.; Duan, R.; Qin, S.; Liang, J.; Xiao, M.; Lv, D.; Jing, H.; Wang, X. Retrospective Screening and Analysis of mcr-1 and blaNDM in Gram-Negative Bacteria in China, 2010–2019. Front. Microbiol. 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Martins-Sorenson, N.; Snesrud, E.; Xavier, D.E.; Cacci, L.C.; Iavarone, A.T.; McGann, P.; Riley, L.W.; Moreira, B.M. A novel plasmid-encoded mcr-4.3 gene in a colistin-resistant Acinetobacter baumannii clinical strain. J. Antimicrob. Chemother. 2020, 75, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Mea, H.J.; Yong, P.V.C.; Wong, E.H. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiol. Res. 2021, 247, 126722. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.C.L.; Antani, J.D.; Lele, P.P.; Chen, J.; Nan, B.; Kühn, M.J.; Persat, A.; Bru, J.-L.; Høyland-Kroghsbo, N.M.; Siryaporn, A.; et al. Roadmap on emerging concepts in the physical biology of bacterial biofilms: From surface sensing to community formation. Phys. Biol. 2021, 18, 051501. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Shiau, A.; Wu, C. The inhibitory effect of Staphylococcus epidermidis slime on the phagocytosis of murine peritoneal macrophages Is interferon-independent. Microbiol. Immunol. 1998, 42, 33–40. [Google Scholar] [CrossRef] [PubMed]
- DASilva, A.M.C.; Júnior, S.D.C.; Lima, J.L.; Filho, J.L.B.D.F.; Cavalcanti, I.M.; Maciel, M.A.V. Investigation of the association of virulence genes and biofilm production with infection and bacterial colonization processes in multidrug-resistant Acinetobacter spp. An. Acad. Bras. Cienc. 2021, 93, e20210245. [Google Scholar] [CrossRef]
- Rumbo-Feal, S.; Gómez, M.J.; Gayoso, C.; Álvarez-Fraga, L.; Cabral, M.P.; Aransay, A.M.; Rodríguez-Ezpeleta, N.; Fullaondo, A.; Valle, J.; Tomás, M.; et al. Whole Transcriptome Analysis of Acinetobacter baumannii Assessed by RNA-Sequencing Reveals Different mRNA Expression Profiles in Biofilm Compared to Planktonic Cells. PLoS ONE 2013, 8, e72968. [Google Scholar] [CrossRef] [PubMed]
- Thummeepak, R.; Kongthai, P.; Leungtongkam, U.; Sitthisak, S. Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int. Microbiol. 2016, 19, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, Q.; Zhou, H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics 2023, 12, 1749. [Google Scholar] [CrossRef] [PubMed]
- Stahl, J.; Bergmann, H.; Göttig, S.; Ebersberger, I.; Averhoff, B.; Cascales, E. Acinetobacter baumannii virulence is mediated by the concerted action of three phospholipases D. PLoS ONE 2015, 10, e0138360. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, A.C.; Hood, I.; Boyd, K.L.; Olson, P.D.; Morrison, J.M.; Carson, S.; Sayood, K.; Iwen, P.C.; Skaar, E.P.; Dunman, P.M. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect. Immun. 2010, 78, 1952–1962. [Google Scholar] [CrossRef] [PubMed]
- Boone, R.L.; Whitehead, B.; Avery, T.M.; Lu, J.; Francis, J.D.; Guevara, M.A.; Moore, R.E.; Chambers, S.A.; Doster, R.S.; Manning, S.D.; et al. Analysis of virulence phenotypes and antibiotic resistance in clinical strains of Acinetobacter baumannii isolated in Nashville, Tennessee. BMC Microbiol. 2021, 21, 12. [Google Scholar] [CrossRef] [PubMed]
- Baumann, P.; Doudoroff, M.; Stanier, R.Y. A study of the Moraxella group II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 1968, 95, 1520–1541. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.-J.; Khan, F.; Tabassum, N.; Kim, Y.-M. Motility of Acinetobacter baumannii: Regulatory systems and controlling strategies. Appl. Microbiol. Biotechnol. 2024, 108, 3. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.M.; Tracy, E.N.; Carruthers, M.D.; Rather, P.N.; Actis, L.A.; Munson, R.S.; Taylor, R. Acinetobacter baumannii strain M2 produces type IV Pili which play a role in natural transformation and twitching motility but not surface-associated motility. mBio 2013, 4, e00360-13. [Google Scholar] [CrossRef] [PubMed]
- Vesel, N.; Blokesch, M.; Silhavy, T.J. Pilus production in Acinetobacter baumannii is growth phase dependent and essential for natural transformation. J. Bacteriol. 2021, 203, e00034-21. [Google Scholar] [CrossRef] [PubMed]
- Armalytė, J.; Čepauskas, A.; Šakalytė, G.; Martinkus, J.; Skerniškytė, J.; Martens, C.; Sužiedėlienė, E.; Garcia-Pino, A.; Jurėnas, D. A polyamine acetyltransferase regulates the motility and biofilm formation of Acinetobacter baumannii. Nat. Commun. 2023, 14, 3531. [Google Scholar] [CrossRef] [PubMed]
- Orf, K.; Cunnington, A.J. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection. Front. Microbiol. 2015, 6, 666. [Google Scholar] [CrossRef] [PubMed]
- Dahdouh, E.; Hajjar, M.; Suarez, M.; Daoud, Z. Acinetobacter baumannii isolated from lebanese patients: Phenotypes and genotypes of resistance, clonality, and determinants of pathogenicity. Front. Cell Infect. Microbiol. 2016, 6, 163. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Zhou, H.; Li, H.; Gao, Y.; Lu, Z.; Hu, K.; Xu, B. Optimization of pulse-field gel electrophoresis for subtyping of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2013, 10, 2720–2731. [Google Scholar] [CrossRef] [PubMed]
- Sacco, F.; Visca, P.; Runci, F.; Antonelli, G.; Raponi, G. Susceptibility testing of colistin for Acinetobacter baumannii: How far are we from the truth? Antibiotics 2021, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Ezadi, F.; Ardebili, A.; Mirnejad, R. Antimicrobial susceptibility testing for polymyxins: Challenges, issues, and recommendations. J. Clin. Microbiol. 2018, 57, e01390-18. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.-L.; Bousquet-Melou, A.; Damborg, P.; Ferran, A.A.; Mevius, D.; Pelligand, L.; Veldman, K.T.; Lees, P. En Route towards European Clinical breakpoints for veterinary antimicrobial susceptibility testing: A position paper explaining the VetCAST approach. Front. Microbiol. 2017, 8, 2344. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef] [PubMed]
- Borowiak, M.; Baumann, B.; Fischer, J.; Thomas, K.; Deneke, C.; Hammerl, J.A.; Szabo, I.; Malorny, B. Development of a Novel mcr-6 to mcr-9 Multiplex PCR and Assessment of mcr-1 to mcr-9 Occurrence in Colistin-Resistant Salmonella enterica Isolates From Environment, Feed, Animals and Food (2011–2018) in Germany. Front. Microbiol. 2020, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, K.; Chaurasiya, A.; Banerjee, T.; Singh, R.; Yadav, G.; Kumar, A. Comparative study of phenotypic and genotypic expression of virulence factors in colonizing and pathogenic carbapenem resistant Acinetobacter baumannii (CRAB). BMC Microbiol. 2025, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, F.A.; Almaary, K.S.; Dawoud, T.M.; El-Tayeb, M.A.; Elbadawi, Y.B.; Mubarak, A.S.; Somily, A.M. Molecular characterization of putative antibiotic resistance determinant and virulence factors genes of Acinetobacter baumannii strains isolated from intensive care unit patients in Riyadh, Saudi Arabia. J. Infect. Public Health 2025, 18, 102695. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011, 47, 2437. [Google Scholar] [CrossRef]
- Borges, S.; Silva, J.; Teixeira, P. Survival and biofilm formation by Group B streptococci in simulated vaginal fluid at different pHs. Anton. Leeuw. Int. J. G 2012, 101, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Komodromos, D.; Kotzamanidis, C.; Giantzi, V.; Pappa, S.; Papa, A.; Zdragas, A.; Angelidis, A.; Sergelidis, D. Prevalence, Infectious Characteristics and Genetic Diversity of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus (MRSA) in Two Raw-Meat Processing Establishments in Northern Greece. Pathogens 2022, 11, 1370. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Shrestha, S.; Basyal, D.; Tiwari, A.; Sah, R.; Sah, A.K.; Yadav, B.; Willcox, M.; Mishra, S.K.; Zheng, K. Characterization and Biofilm Inhibition of Multidrug-Resistant Acinetobacter baumannii Isolates. Int. J. Microbiol. 2024, 2024, 5749982. [Google Scholar] [CrossRef] [PubMed]
- Seifert, H.; Dolzani, L.; Bressan, R.; van der Reijden, T.; van Strijen, B.; Stefanik, D.; Heersma, H.; Dijkshoorn, L. Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J. Clin. Microbiol. 2005, 43, 4328–4335. [Google Scholar] [CrossRef] [PubMed]
- Ozoaduche, C.L.; Posta, K.; Libisch, B.; Olasz, F. Acquired antibiotic resistance of Pseudomonas spp., Escherichia coli and Acinetobacter spp. in the Western Balkans and Hungary with a One Health outlook. AIMS Microbiol. 2025, 11, 436–461. [Google Scholar] [CrossRef] [PubMed]
- Bouali, A.; Bendjama, E.; Cherak, Z.; Mennaai, M.; Kassah-Laouar, A.; Rolain, J.-M.; Loucif, L. Distribution of carbapenemase-producing and colistin resistant Acinetobacter baumannii isolates in Batna hospitals, Algeria. BMC Infect. Dis. 2025, 25, 825. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.; Osama, D.; Abdelsalam, N.A.; Shata, A.H.; Mouftah, S.F.; Elhadidy, M. Comparative genomics of Acinetobacter baumannii from Egyptian healthcare settings reveals high-risk clones and resistance gene mobilization. BMC Infect. Dis. 2025, 25, 803. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, E.; Sotelo, J.; Pérez-Vázquez, M.; Iniesta, Á.; Cañada-García, J.E.; Valiente, O.; Aracil, B.; Arana, D.M.; Oteo-Iglesias, J. Emergence of NDM-1- and OXA-23-Co-Producing Acinetobacter baumannii ST1 Isolates from a Burn Unit in Spain. Microorganisms 2025, 13, 1149. [Google Scholar] [CrossRef] [PubMed]
- Ungthammakhun, C.; Vasikasin, V.; Simsiriporn, W.; Juntanawiwat, P.; Changpradub, D. Authors’ reply: Effect of colistin combined with sulbactam: 9 g versus 12 g per day on mortality in the treatment of carbapenems resistant Acinetobacter baumannii pneumonia: A randomized controlled trial. Int. J. Infect. Dis. 2025, 153, 107796. [Google Scholar] [CrossRef] [PubMed]
- Spiliopoulou, A.; Giannopoulou, I.; Assimakopoulos, S.F.; Jelastopulu, E.; Bartzavali, C.; Marangos, M.; Paliogianni, F.; Kolonitsiou, F. Laboratory Surveillance of Acinetobacter spp. Bloodstream Infections in a Tertiary University Hospital during a 9-Year Period. Trop. Med. Infect. Dis. 2023, 8, 503. [Google Scholar] [CrossRef] [PubMed]
- Mascellino, M.T.; Angelis, M.; De Oliva, A. Multi-Drug Resistant Gram-Negative Bacteria: Antibiotic-Resistance and New Treatment Strategies. Diagn. Pathol. Open Access 2017, 2, 1000e106. [Google Scholar] [CrossRef]
- Jia, H.; Tong, Q.; Wang, L.; Wu, Y.; Li, X.; Li, S.; Kong, Y.; Zhang, Y.; Furlan, J.P.R.; Khine, N.O.; et al. Silent circulation of plasmid-borne tet(X6) and blaOXA-58 genes in a community-acquired Acinetobacter baumannii strain. Drug Resist. Updat. 2025, 79, 101194. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Swetha, R.G.; Bakthavatchalam, Y.D.; Abirami Vasudevan, K.; Shankar, B.A.; Kirubananthan, A.; Walia, K.; Ramaiah, S.; Biswas, I.; Veeraraghavan, B.; et al. Genomic investigation unveils colistin resistance mechanism in carbapenem-resistant Acinetobacter baumannii clinical isolates. Microbiol. Spectr. 2024, 12, e0251123. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Jung, D.E.; Shin, W.S.; Oh, M.H. Colistin Resistance Mechanism and Management Strategies of Colistin-Resistant Acinetobacter baumannii Infections. Pathogens 2024, 13, 1049. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, M.; D’aNdrea, M.M.; Pelegrin, A.C.; Perrot, N.; Mirande, C.; Blanc, B.; Legakis, N.; Goossens, H.; Rossolini, G.M.; van Belkum, A. Abundance of Colistin-Resistant, OXA-23- and ArmA-Producing Acinetobacter baumannii Belonging to International Clone 2 in Greece. Front. Microbiol. 2020, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, O.; Sarrou, S.; Papagiannitsis, C.C.; Georgiadou, S.; Mantzarlis, K.; Zakynthinos, E.; Dalekos, G.N.; Petinaki, E. Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: Mechanisms of resistance, molecular identification and epidemiological data. BMC Infect. Dis. 2015, 15, 559. [Google Scholar] [CrossRef] [PubMed]
- Kakavan, M.; Gholami, M.; Ahanjan, M.; Ebrahimzadeh, M.A.; Salehian, M.; Roozbahani, F.; Goli, H.R. Expression of bap gene in multidrug-resistant and biofilm-producing Acinetobacter baumannii clinical isolates. BMC Microbiol. 2025, 25, 108. [Google Scholar] [CrossRef] [PubMed]
- Goh, H.M.S.; Beatson, S.A.; Totsika, M.; Moriel, D.G.; Phan, M.-D.; Szubert, J.; Runnegar, N.; Sidjabat, H.E.; Paterson, D.L.; Nimmo, G.R.; et al. Molecular analysis of the Acinetobacter baumannii biofilm-associated protein. Appl. Environ. Microbiol. 2013, 79, 6535–6543. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.L.; Tsyganov, K.; Kostoulias, X.P.; Bulach, D.M.; Powell, D.; Creek, D.J.; Boyce, J.D.; Paulsen, I.T.; Peleg, A.Y. Global gene expression profile of Acinetobacter baumannii during bacteremia. J. Infect. Dis. 2017, 215, S52–S57. [Google Scholar] [CrossRef] [PubMed]
- Antunes, L.C.S.; Imperi, F.; Carattoli, A.; Visca, P.; Adler, B. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS ONE 2011, 6, e22674. [Google Scholar] [CrossRef] [PubMed]
- Koulourida, V.; Martziou, E.; Tsergouli, K.; Papa, A. Trends in the molecular epidemiology of carbapenem resistant Acinetobacter baumannii in a tertiary Greek hospital. Hippokratia 2011, 15, 343–345. [Google Scholar] [PubMed]
- Maniatis, A.N.; Pournaras, S.; Orkopoulou, S.; Tassios, P.T.; Legakis, N.J.; Avlami, A. Multiresistant Acinetobacter baumannii isolates in intensive care units in Greece. Clin. Microbiol. Infect. 2003, 9, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Gogou, V.; Pournaras, S.; Giannouli, M.; Voulgari, E.; Piperaki, E.-T.; Zarrilli, R.; Tsakris, A. Evolution of multidrug-resistant Acinetobacter baumannii clonal lineages: A 10 year study in Greece (2000-09). J. Antimicrob. Chemother. 2011, 66, 2767–2772. [Google Scholar] [CrossRef] [PubMed]
- D’Agata, E.M.; Thayer, V.; Schaffner, W. An Outbreak of Acinetobacter baumannii: The Importance of Cross-Transmission. Infect. Control Hosp. Epidemiol. 2000, 21, 588–591. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Sequence (5′ → 3′) | Amplicon Size (bp) | References | |
---|---|---|---|---|
mcr-1 | FW | AGTCCGTTTGTTCTTGTGGC | 320 | [39] |
RV | AGATCCTTGGTCTCGGCTTG | |||
mcr-2 | FW | AAGTGTGTTGGTCGCAGTT-3′ | 715 | [39] |
RV | TCTAGCCCGACAAGCATACC-3′ | |||
mcr-3 | FW | AAATAAAAATTGTTCCGCTTATG | 929 | [39] |
RV | AATGGAGATCCCCGTTTTT | |||
mcr-4 | FW | TCACTTTCATCACTGCGTTG | 1116 | [39] |
RV | TTGGTCCATGACTACCAATG | |||
mcr-5 | FW | ATGCGGTTGTCTGCATTTATC | 1644 | [39] |
RV | TCATTGTGGTTGTCCTTTTCTG | |||
mcr-6 | FW | AGCTATGTCAATCCCGTGAT | 252 | [40] |
RV | ATTGGCTAGGTTGTCAATC | |||
mcr-7 | FW | GCCCTTCTTTTCGTTGTT | 551 | [40] |
RV | GGTTGGTCTCTTTCTCGT | |||
mcr-8 | FW | TCAACAATTCTACAAAGCGTG | 856 | [40] |
RV | AATGCTGCGCGAATGAAG | |||
mcr-9 | FW | TTCCCTTTGTTCTGGTTG | 1011 | [40] |
RV | GCAGGTAATAAGTCGGTC | |||
csuE | FW | TCAGACCGGAGAAAAACTTAACG | 320 | [41] |
RV | GCCGGAAGCCGTATGTAGAA | |||
bap | FW | AATGCACCGGTACTTGATCC | 715 | [41] |
RV | TATTGCCTGCAGGGTCAGTT | |||
ompA | FW | ATGAAAAAGACAGCTATCGCGATTGCA | 929 | [41] |
RV | CACCAAAAGCACCAGCGCCCAGTTG | |||
bauA | FW | ACCACTTGCACCGTTGGTAT | 1644 | [41] |
RV | GCAAGTTGCAACATCGAGCA | |||
basD | FW | CTCTTGCATGGCAACACCAC | 252 | [42] |
RV | CCAACGAGACCGCTTATGGT | |||
omp33–36 | FW | ATTAGCCATGACCGGTGCTC | 551 | [42] |
RV | CCACCCCAAACATGGTCGTA | |||
pglC | FW | TGGATGAGTTAGCTGC | 856 | [42] |
RV | TTTTACAAATAGTTAAGC | |||
pld | FW | CCGTCAATTACGCCAAGCTG | 1011 | [42] |
RV | CTGACGCTACCTGACGGTTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakalpakidis, D.; Papadopoulos, T.; Paraskeva, M.; Tsitlakidou, M.-E.; Vagdatli, E.; Katsifa, H.; Beloukas, A.; Kotzamanidis, C.; Kottaridi, C. When the Last Line Fails: Characterization of Colistin-Resistant Acinetobacter baumannii Reveals High Virulence and Limited Clonal Dissemination in Greek Hospitals. Pathogens 2025, 14, 730. https://doi.org/10.3390/pathogens14080730
Karakalpakidis D, Papadopoulos T, Paraskeva M, Tsitlakidou M-E, Vagdatli E, Katsifa H, Beloukas A, Kotzamanidis C, Kottaridi C. When the Last Line Fails: Characterization of Colistin-Resistant Acinetobacter baumannii Reveals High Virulence and Limited Clonal Dissemination in Greek Hospitals. Pathogens. 2025; 14(8):730. https://doi.org/10.3390/pathogens14080730
Chicago/Turabian StyleKarakalpakidis, Dimitrios, Theofilos Papadopoulos, Michalis Paraskeva, Michaela-Eftychia Tsitlakidou, Eleni Vagdatli, Helen Katsifa, Apostolos Beloukas, Charalampos Kotzamanidis, and Christine Kottaridi. 2025. "When the Last Line Fails: Characterization of Colistin-Resistant Acinetobacter baumannii Reveals High Virulence and Limited Clonal Dissemination in Greek Hospitals" Pathogens 14, no. 8: 730. https://doi.org/10.3390/pathogens14080730
APA StyleKarakalpakidis, D., Papadopoulos, T., Paraskeva, M., Tsitlakidou, M.-E., Vagdatli, E., Katsifa, H., Beloukas, A., Kotzamanidis, C., & Kottaridi, C. (2025). When the Last Line Fails: Characterization of Colistin-Resistant Acinetobacter baumannii Reveals High Virulence and Limited Clonal Dissemination in Greek Hospitals. Pathogens, 14(8), 730. https://doi.org/10.3390/pathogens14080730