Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,709)

Search Parameters:
Keywords = gene silence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3329 KB  
Article
Simultaneous Down-Regulation of Intracellular hTERT and GPX4 mRNA Using MnO2-Nanosheet Probes to Induce Cancer Cell Death
by Yixin Miao, Tao Zhou, Qinghong Ji and Min Hong
Sensors 2026, 26(3), 836; https://doi.org/10.3390/s26030836 - 27 Jan 2026
Abstract
Cancer remains a leading global cause of death, with conventional treatments often limited by toxicity and recurrence. Recent advances in gene therapy and nanodrug delivery offer new avenues for precision oncology. Human telomerase reverse transcriptase (hTERT) and glutathione peroxidase 4 (GPX4) are overexpressed [...] Read more.
Cancer remains a leading global cause of death, with conventional treatments often limited by toxicity and recurrence. Recent advances in gene therapy and nanodrug delivery offer new avenues for precision oncology. Human telomerase reverse transcriptase (hTERT) and glutathione peroxidase 4 (GPX4) are overexpressed in many cancers and linked to apoptosis and ferroptosis, respectively. Here, we developed a manganese dioxide nanosheet (MnO2-NS) probe co-loaded with antisense oligonucleotides targeting hTERT and GPX4 mRNA to synergistically down-regulate both genes and induce dual cell death pathways. The probe, assembled via adsorption of fluorescently labeled antisense strands, showed controllable release in the presence of glutathione (GSH). Cellular uptake and antisense release were confirmed in multiple cancer cell lines. The MnO2-NS probe significantly suppressed cell proliferation, outperforming single-target or carrier-only controls. Molecular analyses confirmed reduced hTERT and GPX4 expression, along with GSH depletion, ROS accumulation, and elevated lipid peroxidation—collectively promoting enhanced cancer cell death. In summary, this MnO2-NS-based co-delivery system enables synergistic gene silencing and GSH depletion, enhancing antitumor efficacy and providing a promising strategy for multifunctional nanotherapy. Full article
Show Figures

Figure 1

14 pages, 3418 KB  
Article
Wheat Class I TCP Transcription Factor TaTCP15 Positively Regulates Cutin and Cuticular Wax Biosynthesis
by Linzhu Fang, Xiaoyu Wang, Haoyu Li, Jiao Liu, Pengfei Zhi and Cheng Chang
Biomolecules 2026, 16(2), 192; https://doi.org/10.3390/biom16020192 - 27 Jan 2026
Abstract
Cutin matrices and wax mixtures are major components of lipophilic cuticles, shielding plant tissues from stressful environments. Identifying the key regulators governing biosynthesis of cutin and cuticular wax in bread wheat (Triticum aestivum L.) could contribute to wheat breeding for stress resistance. [...] Read more.
Cutin matrices and wax mixtures are major components of lipophilic cuticles, shielding plant tissues from stressful environments. Identifying the key regulators governing biosynthesis of cutin and cuticular wax in bread wheat (Triticum aestivum L.) could contribute to wheat breeding for stress resistance. In this study, we reported that the wheat class I TCP transcription factor TaTCP15 positively regulates cutin and cuticular wax biosynthesis. The CYP86A family cytochrome P450 enzymes, TaCYP86A2 and TaCYP86A4, were characterized as essential components of wheat cutin biosynthetic machinery. Wheat transcription factor TaSHN1 targets TaCYP86A2, TaCYP86A4, and wax biosynthesis gene TaECR and recruits the mediator subunit TaCDK8 to activate these genes’ transcription. Furthermore, we demonstrated that TaSHN1 gene transcription is directly activated by the transcription factor TaTCP15. Expression of TaSHN1, TaCYP86A2, TaCYP86A4, and TaECR genes, as well as cutin and wax accumulation, was attenuated by silencing of the TaTCP15 gene. Collectively, these findings suggest that wheat class I TCP transcription factor TaTCP15 positively regulates cutin and cuticular wax biosynthesis, probably via directly targeting the TaSHN1 gene and upregulating TaCYP86A2, TaCYP86A4, and TaECR expression, providing valuable information for developing wheat plants with improved cuticle-associated traits. Full article
Show Figures

Figure 1

19 pages, 321 KB  
Review
Spray-Applied RNA Interference Biopesticides: Mechanisms, Technological Advances, and Challenges Toward Sustainable Pest Management
by Xiang Li, Hang Lu, Chenchen Zhao and Qingbo Tang
Horticulturae 2026, 12(2), 137; https://doi.org/10.3390/horticulturae12020137 - 26 Jan 2026
Viewed by 45
Abstract
Spray-induced gene silencing (SIGS) represents a transformative paradigm in sustainable pest management, utilizing the exogenous application of double-stranded RNA (dsRNA) to achieve sequence-specific silencing of essential genes in arthropod pests. Unlike transgenic approaches, sprayable RNA interference (RNAi) biopesticides offer superior versatility across crop [...] Read more.
Spray-induced gene silencing (SIGS) represents a transformative paradigm in sustainable pest management, utilizing the exogenous application of double-stranded RNA (dsRNA) to achieve sequence-specific silencing of essential genes in arthropod pests. Unlike transgenic approaches, sprayable RNA interference (RNAi) biopesticides offer superior versatility across crop systems, flexible application timing, and a more favorable regulatory and public acceptance profile. The 2023 U.S. EPA registration of Ledprona, the first sprayable dsRNA biopesticide targeting Leptinotarsa decemlineata, marks a significant milestone toward the commercialization of non-transformative RNAi technologies. Despite the milestone, large-scale field deployment faces critical bottlenecks, primarily environmental instability, enzymatic degradation by nucleases, and variable cellular uptake across pest taxa. This review critically analyzes the mechanistic basis of spray-applied RNAi and synthesizes the recent technological breakthroughs designed to overcome physiological and environmental barriers. We highlight advanced delivery strategies, including nuclease inhibitor co-application, liposome encapsulation, and nanomaterial-based formulations that enhance persistence on plant foliage and uptake efficiency. Furthermore, we discuss how innovations in microbial fermentation have drastically reduced synthesis costs, rendering industrial-scale production economically viable. Finally, we outline the roadmap for broad adoption, addressing essential factors such as biosafety assessment, environmental fate, resistance management protocols, and the path toward cost-effective manufacturing. Full article
12 pages, 4978 KB  
Article
An Hsp70 Chaperone Is Involved in Meiotic Silencing by Unpaired DNA
by Victor T. Sy, Sterling S. Trawick, Hagen M. Tatarsky and Patrick K. T. Shiu
Epigenomes 2026, 10(1), 7; https://doi.org/10.3390/epigenomes10010007 - 26 Jan 2026
Viewed by 80
Abstract
In the filamentous fungus Neurospora crassa, a gene not having a pairing partner during meiosis is seen as a potential intruder and is targeted by a mechanism called meiotic silencing by unpaired DNA (MSUD). MSUD employs core RNA interference (RNAi) components such [...] Read more.
In the filamentous fungus Neurospora crassa, a gene not having a pairing partner during meiosis is seen as a potential intruder and is targeted by a mechanism called meiotic silencing by unpaired DNA (MSUD). MSUD employs core RNA interference (RNAi) components such as the SMS-2 Argonaute, which uses small interfering RNAs (siRNAs) as guides to seek out mRNAs from unpaired genes for silencing. In Drosophila melanogaster, the heat shock protein 70 (Hsp70) chaperone system facilitates the conformational activation of an Argonaute and allows it to load siRNAs. Here, our results demonstrate that an Hsp70 protein in Neurospora interacts with SMS-2 and mediates the silencing of unpaired genes. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Figure 1

49 pages, 25553 KB  
Hypothesis
Synthetic Integration of an FCS into Coronaviruses—Hype or an Unresolved Biorisk? An Integrative Analysis of DNA Repair, Cancer Research, Drug Development, and Escape Mutant Traits
by Siguna Mueller
Life 2026, 16(2), 199; https://doi.org/10.3390/life16020199 - 25 Jan 2026
Viewed by 164
Abstract
A 19 nt fragment that spans the SARS-CoV-2 furin cleavage site (FCS) is identical to the reverse complement of a proprietary human DNA repair gene sequence. Rather than interpreting this overlap as evidence of a laboratory event, this article uses it as a [...] Read more.
A 19 nt fragment that spans the SARS-CoV-2 furin cleavage site (FCS) is identical to the reverse complement of a proprietary human DNA repair gene sequence. Rather than interpreting this overlap as evidence of a laboratory event, this article uses it as a theoretical springboard to explore underappreciated biorisk concerns, specifically in the context of cancer research. Although they are RNA viruses, coronaviruses are capable of hijacking host DNA damage response (DDR) pathways, exploiting nuclear functions to enhance replication and evade innate immunity. Under selective pressures (antivirals, DDR antagonists, or large-scale siRNA libraries designed to silence critical host genes), escape mutants may arise with fitness advantages. Parallel observations involving in vivo RNA interference via chimeric viruses lend plausibility to some of the key aspects underlying unappreciated biorisks. The mechanistic insights that incorporate DNA repair mechanisms, CoVs in the nucleus, specifics of viruses in cancer research, anticancer drugs, automated gene silencing experiments, and gene sequence overlaps identify gaps in biorisk policies, even those unaccounted for by the potent “Sequences of Concern” paradigm. Key concerning attributes, including genome multifunctionality, such as NLS/FCS in SARS-CoV-2, antisense sequences, and their combination, are further described in more general terms. The article concludes with recommendations pairing modern technical safeguards with enduring ethical principles. Full article
(This article belongs to the Section Microbiology)
14 pages, 3535 KB  
Article
FOXA1 in Ovarian Cancer: A Potential Therapeutic Target to Enhance Immunotherapy Efficacy
by Taewan Kim, Jaesung Ryu, Hyejeong Kong, Beamjun Park, Kwangseock Kim, Eunjung Yang, Taesung Ahn and Seob Jeon
Int. J. Mol. Sci. 2026, 27(3), 1194; https://doi.org/10.3390/ijms27031194 - 24 Jan 2026
Viewed by 131
Abstract
This study aimed to elucidate the oncogenic role of FOXA1(forkhead box A1) in ovarian cancer and to evaluate its potential as both a therapeutic target and a diagnostic biomarker. We further investigated whether FOXA1 inhibition could enhance responsiveness to immune checkpoint blockade and [...] Read more.
This study aimed to elucidate the oncogenic role of FOXA1(forkhead box A1) in ovarian cancer and to evaluate its potential as both a therapeutic target and a diagnostic biomarker. We further investigated whether FOXA1 inhibition could enhance responsiveness to immune checkpoint blockade and overcome chemoresistance. A total of seventy-six ovarian tissue samples were analyzed, including nine normal, thirty-four benign, and thirty-three malignant specimens. IHC (immunohistochemistry) staining was performed to assess FOXA1 expression and its correlation with tumor stage. Functional studies were conducted using FOXA1 siRNA in SK-OV3 and HEYA8 cell lines. Changes in cell proliferation, migration, invasion, and wound-healing ability were evaluated following FOXA1 silencing. Quantitative RT-PCR was used to measure the expression of FOXA1 and EMT (epithelial–mesenchymal transition)-related genes. The effects of FOXA1 inhibition on sensitivity to carboplatin and the immune checkpoint inhibitor atezolizumab were also examined. IHC analysis revealed significant differences in FOXA1 expression among normal, benign, and malignant tissues, with levels correlating with tumor stage. FOXA1 silencing significantly reduced proliferation and decreased migration and invasion by 60–80%, accompanied by marked downregulation of EMT-related genes. Moreover, FOXA1 inhibition enhanced atezolizumab responsiveness and reduced carboplatin resistance in ovarian cancer cells. In summary, FOXA1 acts as an oncogenic driver in ovarian cancer, promoting proliferation, invasion, and EMT activation. Its overexpression correlates with disease progression, supporting its potential as a biomarker and therapeutic target. Targeting FOXA1 could enhance immunotherapy efficacy and help overcome chemoresistance in ovarian cancer. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers: 4th Edition)
Show Figures

Figure 1

20 pages, 8119 KB  
Article
Genome-Wide Identification of Apple Expansins and Functional Evidence for MdEXPA17 in Postharvest Fruit Ripening
by Miaomiao Wang, Nan Jiang, Jiale Wang, Xiaotong Hu, Qizhe Li, Wanyu Xu, Tuanhui Bai, Jian Jiao, Jiangli Shi, Yu Liu, Ran Wan, Kunxi Zhang, Pengbo Hao, Yujie Zhao, Liu Cong, Yawen Shen and Xianbo Zheng
Horticulturae 2026, 12(2), 130; https://doi.org/10.3390/horticulturae12020130 - 24 Jan 2026
Viewed by 141
Abstract
Expansins are crucial cell wall-loosening proteins that play a vital role in various plant developmental processes, including fruit ripening and softening. However, a comprehensive genome-wide analysis of the expansin family in apple (Malus × domestica) and the specific functions of its [...] Read more.
Expansins are crucial cell wall-loosening proteins that play a vital role in various plant developmental processes, including fruit ripening and softening. However, a comprehensive genome-wide analysis of the expansin family in apple (Malus × domestica) and the specific functions of its members in postharvest fruit ripening remain to be explored. In this study, we identified 51 expansin genes in the apple genome and classified them into four subfamilies (EXPA, EXPB, EXLA, and EXLB). Cis-element analysis of the promoters of apple expansin genes showed that these promoters are rich in various hormone-responsive elements, including abscisic acid (ABA)-responsive elements (ABREs) and ethylene-responsive elements (EREs), suggesting potential hormonal regulation of expansin genes. Expression profiling identified six ripening-associated expansin genes. Among them, MdEXPA5, MdEXPA17, and MdEXPA23 were positively regulated by both ethylene and ABA, while being suppressed by the ethylene action inhibitor 1-MCP. Further functional characterization demonstrated that transient overexpression of MdEXPA17 accelerated fruit softening, skin yellowing, ethylene production, and increased total soluble solid (TSS) content. Conversely, silencing of MdEXPA17 significantly delayed these ripening processes. Our study provides a systematic overview of the apple expansin gene family and supports a role for MdEXPA17 in promoting postharvest fruit ripening and softening. These findings offer valuable insights into the molecular mechanisms of apple fruit ripening and provide potential targets for genetic improvement of fruit quality and shelf life. Full article
Show Figures

Figure 1

29 pages, 1410 KB  
Review
Diet-Driven Epigenetic Alterations in Colorectal Cancer: From DNA Methylation and microRNA Expression to Liquid Biopsy Readouts
by Theodora Chindea, Alina-Teodora Nicu, Gheorghe Dănuț Cimponeriu, Bianca Galateanu, Ariana Hudita, Mirela Violeta Șerban, Remus Iulian Nica and Liliana Burlibasa
Biomedicines 2026, 14(2), 267; https://doi.org/10.3390/biomedicines14020267 - 24 Jan 2026
Viewed by 146
Abstract
The escalating incidence of colorectal cancer (CRC), particularly the alarming rise in early-onset cases, necessitates a paradigm shift from a purely genetic perspective to a broader investigation of promising pathways. This review explores the “nutri-epigenetic” interface, positioning liquid biopsy as a critical technology [...] Read more.
The escalating incidence of colorectal cancer (CRC), particularly the alarming rise in early-onset cases, necessitates a paradigm shift from a purely genetic perspective to a broader investigation of promising pathways. This review explores the “nutri-epigenetic” interface, positioning liquid biopsy as a critical technology for translating dietary impacts into actionable clinical biomarkers. We contrast the molecular consequences of the Western dietary pattern, characterized by methyl-donor deficiency and pro-inflammatory metabolites, with the protective mechanisms of the Mediterranean diet. Mechanistically, we detail how Western-style diets drive a specific “epigenetic double-hit”: promoting global DNA hypomethylation (destabilizing LINE-1) while paradoxically inducing promoter hypermethylation of critical tumour suppressors (MLH1, APC, MGMT) and silencing tumour-suppressive microRNAs (miR-34b/c, miR-137) via methylation of their encoding genes. Conversely, we highlight the capacity of Mediterranean bioactive compounds (e.g., resveratrol, curcumin, butyrate) to inhibit DNA methyltransferases and restore epigenetic homeostasis. Bridging molecular biology and clinical utility, we demonstrate how these diet-sensitive signatures, specifically circulating methylated DNA and dysregulated microRNAs, can be captured via liquid biopsy. We propose that these circulating analytes serve as dynamic, accessible biomarkers for monitoring the molecular progression toward a carcinogenic state, thereby establishing a novel framework for personalized risk stratification and validating the efficacy of preventive nutritional strategies. Full article
Show Figures

Figure 1

24 pages, 378 KB  
Review
Durable Management of Plant Viruses: Insights into Host Resistance and Tolerance Mechanisms
by Muhammad Zeshan Ahmed, Chenchen Zhao, Calum Wilson and Meixue Zhou
Biology 2026, 15(2), 205; https://doi.org/10.3390/biology15020205 - 22 Jan 2026
Viewed by 81
Abstract
Plant viruses cause substantial yield and quality losses worldwide, and their rapid evolution can erode deployed host resistance. This review synthesizes current knowledge of antiviral resistance and tolerance mechanisms, using barley yellow dwarf virus (BYDV) in cereals as an illustrative case study. We [...] Read more.
Plant viruses cause substantial yield and quality losses worldwide, and their rapid evolution can erode deployed host resistance. This review synthesizes current knowledge of antiviral resistance and tolerance mechanisms, using barley yellow dwarf virus (BYDV) in cereals as an illustrative case study. We first summarize key layers of plant antiviral immunity, including pre-formed physical and chemical barriers, dominant and recessive resistance genes, RNA silencing, hormone-regulated defense signaling, and degradation pathways such as the ubiquitin–proteasome system and selective autophagy. We then discuss how these mechanisms are exploited in breeding and biotechnology, covering conventional introgression, marker-assisted selection, QTL mapping and pyramiding, induced variation (mutation breeding and TILLING/ecoTILLING), transgenic strategies (pathogen-derived resistance and plantibodies), RNA interference-based approaches, and CRISPR-enabled editing of susceptibility factors. Finally, we highlight emerging nano-enabled tools and propose integrated strategies that combine genetic resistance with surveillance and vector management to improve durability under climate change and ongoing viral diversification. Full article
(This article belongs to the Section Plant Science)
30 pages, 1039 KB  
Review
Molecular Identification and RNA-Based Management of Fungal Plant Pathogens: From PCR to CRISPR/Cas9
by Rizwan Ali Ansari, Younes Rezaee Danesh, Ivana Castello and Alessandro Vitale
Int. J. Mol. Sci. 2026, 27(2), 1073; https://doi.org/10.3390/ijms27021073 - 21 Jan 2026
Viewed by 106
Abstract
Fungal diseases continue to limit global crop production and drive major economic losses. Conventional diagnostic and control approaches depend on time-consuming culture-based methods and broad-spectrum chemicals, which offer limited precision. Advances in molecular identification have changed this landscape. PCR, qPCR, LAMP, sequencing and [...] Read more.
Fungal diseases continue to limit global crop production and drive major economic losses. Conventional diagnostic and control approaches depend on time-consuming culture-based methods and broad-spectrum chemicals, which offer limited precision. Advances in molecular identification have changed this landscape. PCR, qPCR, LAMP, sequencing and portable platforms enable rapid and species-level detection directly from plant tissue. These tools feed into RNA-based control strategies, where knowledge of pathogen genomes and sRNA exchange enables targeted suppression of essential fungal genes. Host-induced and spray-induced gene silencing provide selective control without the long-term environmental costs associated with chemical use. CRISPR/Cas9 based tools now refine both diagnostics and resistance development, and bioinformatics improves target gene selection. Rising integration of artificial intelligence indicates a future in which disease detection, prediction and management connect in near real time. The major challenge lies in limited field validation and the narrow range of fungal species with complete molecular datasets, yet coordinated multi-site trials and expansion of annotated genomic resources can enable wider implementation. The combined use of molecular diagnostics and RNA-based strategies marks a shift from disease reaction to disease prevention and moves crop protection towards a precise, sustainable and responsive management system. This review synthesizes the information related to current molecular identification tools and RNA-based management strategies, and evaluates how their integration supports precise and sustainable approaches for fungal disease control under diverse environmental settings. Full article
(This article belongs to the Special Issue Fungal Genetics and Functional Genomics Research)
Show Figures

Figure 1

24 pages, 3580 KB  
Article
SIAH2–WNK1 Signaling Drives Glycolytic Metabolism and Therapeutic Resistance in Colorectal Cancer
by Kee-Thai Kiu, Cheng-Ying Chu, Yi-Chiao Cheng, Min-Hsuan Yen, Ying-Wei Chen, Narpati Wesa Pikatan, Vijesh Kumar Yadav and Tung-Cheng Chang
Int. J. Mol. Sci. 2026, 27(2), 1065; https://doi.org/10.3390/ijms27021065 - 21 Jan 2026
Viewed by 114
Abstract
Colorectal cancer (CRC) progression and therapy resistance are driven in part by metabolic reprogramming and the persistence of cancer stem-like cells (CSCs). The seven in absentia homolog 2 (SIAH2)/with-no-lysine kinase 1 (WNK1) signaling axis has emerged as a potential regulator of these processes, [...] Read more.
Colorectal cancer (CRC) progression and therapy resistance are driven in part by metabolic reprogramming and the persistence of cancer stem-like cells (CSCs). The seven in absentia homolog 2 (SIAH2)/with-no-lysine kinase 1 (WNK1) signaling axis has emerged as a potential regulator of these processes, yet its functional role in CRC metabolism and tumor–stroma crosstalk remains incompletely understood. Integrated analyses of The Cancer Genome Atlas–Colon Adenocarcinoma (TCGA-COAD) and Gene Expression Omnibus (GEO, GSE17538) datasets revealed significant upregulation of SIAH2 and WNK1 in CRC tissues, with strong positive correlations to glycolysis- and hypoxia-associated genes, including PFKP, LDHA, BPGM, ADH1A, ADH1B, and HIF-1α. Single-cell and clinical profiling further demonstrated preferential enrichment of SIAH2 in undifferentiated, stem-like tumor cell populations. Functional studies across multiple CRC cell lines showed that SIAH2 silencing suppressed proliferation, clonogenic growth, tumor sphere formation, and cell-cycle progression, whereas SIAH2 overexpression exerted opposite effects. Seahorse extracellular flux analyses established that SIAH2 promotes glycolytic capacity and metabolic flexibility. At the protein level, SIAH2 regulated glycolytic enzymes and WNK1/hypoxia-inducible factor-1α (HIF-1α) signaling, effects that were amplified by cancer-associated fibroblast (CAF)-derived conditioned medium. CAF exposure enhanced SIAH2 expression, CSC spheroid growth, and resistance to fluorouracil, leucovorin, and oxaliplatin (FOLFOX) chemotherapy, whereas SIAH2 depletion effectively abrogated these effects. Collectively, these findings identify the SIAH2/WNK1 axis as a central metabolic regulator linking glycolysis, CSC maintenance, and microenvironment-driven therapy resistance in CRC, highlighting its potential as a therapeutic target. Full article
Show Figures

Figure 1

15 pages, 5525 KB  
Article
Multi-Omics Analysis Identifies the Key Defence Pathways in Chinese Cabbage Responding to Black Spot Disease
by Wenyuan Yan, Hong Zhang, Weiqiang Fan, Xiaohui Liu, Zhiyin Huang, Yong Wang, Yerong Zhu, Chaonan Wang and Bin Zhang
Genes 2026, 17(1), 115; https://doi.org/10.3390/genes17010115 - 21 Jan 2026
Viewed by 126
Abstract
Background: Black spot disease severely constrains Chinese cabbage production. Methods: To elucidate the defence mechanisms underlying this response, transcriptomic and metabolomic profiles were analysed in leaves of the Chinese cabbage line 904B at 24 h post-inoculation (hpi) with Alternaria brassicicola. In parallel, [...] Read more.
Background: Black spot disease severely constrains Chinese cabbage production. Methods: To elucidate the defence mechanisms underlying this response, transcriptomic and metabolomic profiles were analysed in leaves of the Chinese cabbage line 904B at 24 h post-inoculation (hpi) with Alternaria brassicicola. In parallel, gene silencing and overexpression were conducted for BraPBL, an RLCK family member in Chinese cabbage. Results: The Chinese cabbage line 904B exhibited marked suppression of cytokinin and auxin signalling, coupled with enhanced expression of genes involved in ethylene and jasmonic acid signalling. Multiple secondary metabolites exhibited differential changes, specifically the sterol compound 4,4-dimethyl-5alpha-cholest-7-en-3beta-ol was significantly upregulated in the treatment group. These metabolites were primarily enriched in the indole alkaloid metabolism and glycerolipid metabolism pathways. Concurrently, BraPBL exhibits increasing expression with prolonged infection. BraPBL overexpression enhances resistance to black spot disease, whereas silencing reduces resistance. Subcellular localization confirmed BraPBL at the plasma membrane. Overexpression of BraPBL upregulates the reactive oxygen species-related gene RBOH and the signal transduction-related gene MEKK1, whilst simultaneously activating the JA pathway. Conclusions: Overall, 904B activates defence-related hormones while suppressing growth and development-related hormones during early infection. Secondary metabolites, particularly the sterol compound 4,4-dimethyl-5alpha-cholest-7-en-3beta-ol, play key roles in defence, and BraPBL functions as a black spot disease–related defence gene in Chinese cabbage. Full article
(This article belongs to the Special Issue Genetic and Breeding Improvement of Horticultural Crops)
Show Figures

Figure 1

19 pages, 2842 KB  
Article
Signaling Pathway Analysis and Downstream Genes Associated with Disease Resistance Mediated by GmSRC7
by Aoga Li, Chongyang Yao, Ting Yan, Xiaomin Hao, Dongying Geng, Qi Zhang, Hui Li, Wenquan Bao and Yue Bai
Plants 2026, 15(2), 318; https://doi.org/10.3390/plants15020318 - 21 Jan 2026
Viewed by 139
Abstract
GmSRC7 is a broad-spectrum antiviral R gene from soybean, but its downstream and functionally related genes remain unclear. Virus-induced gene silencing (VIGS) assays in Nicotiana benthamiana (Nb) showed that suppression of several gene families—WRKY transcription factors, chaperones, ethylene pathway components, MAPK [...] Read more.
GmSRC7 is a broad-spectrum antiviral R gene from soybean, but its downstream and functionally related genes remain unclear. Virus-induced gene silencing (VIGS) assays in Nicotiana benthamiana (Nb) showed that suppression of several gene families—WRKY transcription factors, chaperones, ethylene pathway components, MAPK cascade elements, salicylic acid (SA) signaling genes, calcium-dependent protein kinases, nuclear migration proteins, RNA replication-related genes, and immune regulators—consistently weakened GmSRC7-mediated resistance to Soybean Mosaic Virus (SMV) and Tobacco Mosaic Virus (TMV). Targeted silencing of four regulatory genes—NbEDS1, NbARF1, NbSGT1, and NbCOI1—markedly enhanced GmSRC7-mediated resistance to SMV and TMV in our experiments. Silencing the serine/threonine kinase gene NbPBS1 increased GmSRC7-conferred resistance to SMV but did not significantly alter its resistance to TMV. Transient expression assays showed that NbARF1, NbSGT1, and NbCOI1 antagonize GmSRC7-mediated defense against SMV and TMV, whereas NbPBS1 specifically suppresses anti-SMV activity without affecting TMV resistance. Transient overexpression of SA-degrading enzymes (AtS3H, AtS5H, and NahG) significantly reduced GmSRC7-conferred resistance to SMV, indicating that SA is essential for this R protein-mediated defense. Genes were also grouped by immune pathways and function: co-expression of chaperone family genes inhibited GmSRC7 activity against SMV and TMV, while co-expression of WRKY family genes enhanced anti-SMV activity of GmSRC7. Finally, transient silencing of soybean genes GmEDS1, GmSGT1-1, GmSGT1-2, GmJAR1, and GmSGS3 compromised GmSRC7-mediated resistance to SMV. Full article
(This article belongs to the Special Issue Advances in Plant Molecular Biology and Gene Function)
Show Figures

Figure 1

11 pages, 1968 KB  
Article
ARS2, a Cofactor of CBC, Promotes Meiotic Silencing by Unpaired DNA
by Michael M. Vierling, Victor T. Sy, Logan M. Decker, Hua Xiao, Justine N. Hemaya and Patrick K. T. Shiu
Epigenomes 2026, 10(1), 6; https://doi.org/10.3390/epigenomes10010006 - 21 Jan 2026
Viewed by 88
Abstract
The presence of an extra DNA segment in a genome could indicate a transposon or another repetitive element on the move. In Neurospora crassa, a surveillance mechanism called meiotic silencing by unpaired DNA (MSUD) is maintained to monitor these selfish elements. MSUD [...] Read more.
The presence of an extra DNA segment in a genome could indicate a transposon or another repetitive element on the move. In Neurospora crassa, a surveillance mechanism called meiotic silencing by unpaired DNA (MSUD) is maintained to monitor these selfish elements. MSUD utilizes common RNA interference (RNAi) factors, including the SMS-2 Argonaute, to target mRNAs from genes lacking a pairing partner during meiosis. In eukaryotes, an mRNA transcript is typically bound at the 5′ cap by the cap-binding complex (CBC), which assists in its nuclear export. Previously, we discovered that CBC and its interactor NCBP3 mediate MSUD, possibly by guiding the perinuclear SMS-2 to effectively recognize exported mRNAs. Here, we report that ARS2, a CBC cofactor, is involved in MSUD. ARS2 interacts with both CBC and NCBP3, and it may help bring them together. In addition to its role in silencing, ARS2 also contributes to vegetative growth and sexual sporulation. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Figure 1

14 pages, 776 KB  
Article
Effects of Sublethal Concentrations of Pyridaben on Development, Reproduction, and Vg Gene Expression in Neoseiulus womersleyi
by Juan Wei, Chengcheng Li, Cancan Song, Xinyue Yang, Chunxian Jiang and Qing Li
Insects 2026, 17(1), 116; https://doi.org/10.3390/insects17010116 - 20 Jan 2026
Viewed by 178
Abstract
The predatory mite Neoseiulus womersleyi is a key natural enemy in Integrated Pest Management (IPM), but its efficacy is threatened by non-target effects of acaricides like pyridaben. This study evaluated the transgenerational sublethal effects of pyridaben (LC30 and LC50) on [...] Read more.
The predatory mite Neoseiulus womersleyi is a key natural enemy in Integrated Pest Management (IPM), but its efficacy is threatened by non-target effects of acaricides like pyridaben. This study evaluated the transgenerational sublethal effects of pyridaben (LC30 and LC50) on N. womersleyi and explored the role of vitellogenin (Vg) genes. Using two-sex life table analysis, we found that exposure reduced longevity, fecundity, and oviposition period in F0 females, while prolonging immature development and suppressing population growth parameters (r, λ) in F1. Two Vg genes (NwVg1 and NwVg2) were cloned and characterized; their expression was significantly downregulated by pyridaben. RNAi-mediated silencing of NwVg1 or NwVg2 recapitulated the pyridaben-induced reproductive impairments, confirming their functional role. Our results demonstrate that pyridaben imposes multigenerational costs and that its reproductive toxicity is mediated, at least in part, through the suppression of Vg synthesis. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop