Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,498)

Search Parameters:
Keywords = gene ontology analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2666 KiB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 (registering DOI) - 4 Aug 2025
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

19 pages, 7841 KiB  
Article
Co-Expression Network Analysis Suggests PacC Transcriptional Factor Involved in Botryosphaeria dothidea Pathogenicity in Chinese Hickory
by Dong Liang, Yiru Jiang, Wei Ai, Yu Zhang, Chengxing Mao, Tianlin Ma and Chuanqing Zhang
J. Fungi 2025, 11(8), 580; https://doi.org/10.3390/jof11080580 - 4 Aug 2025
Abstract
Botryosphaeria dothidea is the causative agent of Chinese hickory trunk canker, which poses significant threat to the production of Chinese hickory (Carya cathayensis Sarg.). Previous studies reported that endophytic–pathogenic phase transition, also referred to as latent infection, plays an important role in [...] Read more.
Botryosphaeria dothidea is the causative agent of Chinese hickory trunk canker, which poses significant threat to the production of Chinese hickory (Carya cathayensis Sarg.). Previous studies reported that endophytic–pathogenic phase transition, also referred to as latent infection, plays an important role in the interaction of Botryosphaeria dothidea with various host plants, including Chinese hickory. However, the mechanism underlying this phase transition is not well understood. Here, we employed RNA-Seq to investigate transcriptional changes in B. dothidea during its phase transition upon interaction with Chinese hickory. A co-expression network was generated based on 6391 differentially expressed genes (DEGs) identified from different infection stages and temperature treatments. One co-expressed module was found that highly correlated with temperature treatments which simulated conditions of B. dothidea latent infection in the field. Subsequently, 53 hub genes were detected, and gene ontology (GO) enrichment analysis revealed three categories of enriched GO terms: transmembrane transport or activity, ion homeostasis or transport, and carbohydrate metabolism. One PacC transcriptional factor (BDLA_00001555, an ambient pH regulator), and one endo-β-1,3-glucanase (BDLA_00010249) were specifically upregulated under temperature treatments that corresponded with the activation stage of B. dothidea’s pathogenic state. The knockout mutant strain of BDLA_00001555 demonstrated defective capability upon the activation of the pathogenic state. This confirmed that BDLA_00001555, the PacC transcriptional factor, plays an important role in the latent infection phase of B. dothidea. Our findings provide insights into the pathogenic mechanism of Chinese hickory trunk canker disease. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics, 2nd Edition)
Show Figures

Figure 1

22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Viewed by 281
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 - 1 Aug 2025
Viewed by 161
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

33 pages, 2838 KiB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Viewed by 297
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Graphical abstract

21 pages, 763 KiB  
Review
Pathway Analysis Interpretation in the Multi-Omic Era
by William G. Ryan V., Smita Sahay, John Vergis, Corey Weistuch, Jarek Meller and Robert E. McCullumsmith
BioTech 2025, 14(3), 58; https://doi.org/10.3390/biotech14030058 - 29 Jul 2025
Viewed by 201
Abstract
In bioinformatics, pathway analyses are used to interpret biological data by mapping measured molecules with known pathways to discover their functional processes and relationships. Pathway analysis has become an essential tool for interpreting large-scale omics data, translating complex gene sets into actionable experimental [...] Read more.
In bioinformatics, pathway analyses are used to interpret biological data by mapping measured molecules with known pathways to discover their functional processes and relationships. Pathway analysis has become an essential tool for interpreting large-scale omics data, translating complex gene sets into actionable experimental insights. However, issues inherent to pathway databases and misinterpretations of pathway relevance often result in “pathway fails,” where findings, though statistically significant, lack biological applicability. For example, the Tumor Necrosis Factor (TNF) pathway was originally annotated based on its association with observed tumor necrosis, while it is multifunctional across diverse physiological processes in the body. This review broadly evaluates pathway analysis interpretation, including embedding-based, semantic similarity-based, and network-based approaches to clarify their ideal use-case scenarios. Each method for interpretation is assessed for its strengths, such as high-quality visualizations and ease of use, as well as its limitations, including data redundancy and database compatibility challenges. Despite advancements in the field, the principle of “garbage in, garbage out” (GIGO) shows that input quality and method choice are critical for reliable and biologically meaningful results. Methodological standardization, scalability improvements, and integration with diverse data sources remain areas for further development. By providing critical guidance with contextual examples such as TNF, we aim to help researchers align their objectives with the appropriate method. Advancing pathway analysis interpretation will further enhance the utility of pathway analysis, ultimately propelling progress in systems biology and personalized medicine. Full article
(This article belongs to the Topic Computational Intelligence and Bioinformatics (CIB))
Show Figures

Graphical abstract

21 pages, 7017 KiB  
Article
Chronic Heat Stress Caused Lipid Metabolism Disorder and Tissue Injury in the Liver of Huso dauricus via Oxidative-Stress-Mediated Ferroptosis
by Yining Zhang, Yutao Li, Ruoyu Wang, Sihan Wang, Bo Sun, Dingchen Cao, Zhipeng Sun, Weihua Lv, Bo Ma and Ying Zhang
Antioxidants 2025, 14(8), 926; https://doi.org/10.3390/antiox14080926 - 29 Jul 2025
Viewed by 181
Abstract
High-temperature stress has become an important factor that has restricted the aquaculture industry. Huso dauricus is a high-economic-value fish that has faced the threat of thermal stress. Based on this point, our investigation aimed to explore the detailed mechanism of the negative impacts [...] Read more.
High-temperature stress has become an important factor that has restricted the aquaculture industry. Huso dauricus is a high-economic-value fish that has faced the threat of thermal stress. Based on this point, our investigation aimed to explore the detailed mechanism of the negative impacts of heat stress on the liver metabolism functions in Huso dauricus. In this study, we set one control group (19 °C) and four high-temperature treatment groups (22 °C, 25 °C, 28 °C, 31 °C) with 40 fish in each group for continuous 53-day heat exposure. Histological analysis, biochemical detection, and transcriptome technology were used to explore the effects of heat stress on the liver structure and functions of juvenile Huso dauricus. It suggested heat-stress-induced obvious liver injury and reactive oxygen species accumulation in Huso dauricus with a time/temperature-dependent manner. Serum total protein, transaminase, and alkaline phosphatase activities showed significant changes under heat stress (p < 0.05). In addition, 6433 differentially expressed genes (DEGs) were identified based on the RNA-seq project. Gene Ontology enrichment analysis showed that various DEGs could be mapped to the lipid-metabolism-related terms. KEGG enrichment and immunohistochemistry analysis showed that ferroptosis and FoxO signaling pathways were significantly enriched (p < 0.05). These results demonstrated that thermal stress induced oxidative stress damage in the liver of juvenile Huso dauricus, which triggered lipid metabolism disorder and hepatocyte ferroptosis to disrupt normal liver functions. In conclusion, chronic thermal stress can cause antioxidant capacity imbalance in the liver of Huso dauricus to mediate the ferroptosis process, which would finally disturb the lipid metabolism homeostasis. In further research, it will be necessary to verify the detailed cellular signaling pathways that are involved in the heat-stress-induced liver function disorder response based on the in vitro experiment, while the multi-organ crosswalk mode under the thermal stress status is also essential for understanding the comprehensive mechanism of heat-stress-mediated negative effects on fish species. Full article
Show Figures

Figure 1

18 pages, 2990 KiB  
Article
Early Dysregulation of RNA Splicing and Translation Processes Are Key Markers from Mild Cognitive Impairment to Alzheimer’s Disease: An In Silico Transcriptomic Analysis
by Simone D’Angiolini, Agnese Gugliandolo, Gabriella Calì and Luigi Chiricosta
Int. J. Mol. Sci. 2025, 26(15), 7303; https://doi.org/10.3390/ijms26157303 - 28 Jul 2025
Viewed by 234
Abstract
About one billion people worldwide are affected by neurologic disorders. Among the various neurologic disorders, one of the most common is Alzheimer’s disease (AD). AD is a neurodegenerative disorder that progressively affects cognitive functions, disrupting the daily lives of millions of individuals. Mild [...] Read more.
About one billion people worldwide are affected by neurologic disorders. Among the various neurologic disorders, one of the most common is Alzheimer’s disease (AD). AD is a neurodegenerative disorder that progressively affects cognitive functions, disrupting the daily lives of millions of individuals. Mild cognitive impairment (MCI) is often considered a prodromal stage of Alzheimer’s disease. In this article, we retrieved data from the online available dataset GSE63060, which includes transcriptomic data of 329 blood samples, of which there are 104 cognitively normal controls, 80 MCI patients, and 145 AD patients. We used transcriptomic data related to all three groups to perform an over-representation analysis of the gene ontologies followed by a network analysis. The aim of our study is to pinpoint alterations, detectable through a non-invasive method, in biological processes affected in MCI that persist during AD. Our goal is to uncover transcriptomic changes that could support earlier diagnosis and the development of more effective therapeutic strategies, starting from the early stages of the disease, to slow down or mitigate its progression. Our work provides a consistent picture of the transcriptomic unbalance of many genes strongly involved in ribosomal formation and biogenesis and splicing processes both in patients with MCI and with AD. Full article
(This article belongs to the Special Issue Research in Alzheimer’s Disease: Advances and Perspectives)
Show Figures

Figure 1

25 pages, 8335 KiB  
Article
Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways
by Woo-Gyun Choi, Seok-Jae Ko, Jung-Ha Shim, Chang-Hwan Bae, Seungtae Kim, Jae-Woo Park and Byung-Joo Kim
Pharmaceuticals 2025, 18(8), 1123; https://doi.org/10.3390/ph18081123 - 27 Jul 2025
Viewed by 427
Abstract
Background/Objectives: Banhasasim-tang (BHSST) is a traditional herbal formula commonly used to treat gastrointestinal (GI) disorders and has been considered a potential therapeutic option for irritable bowel syndrome (IBS). This study aimed to explore the molecular targets and underlying mechanisms of BHSST in IBS [...] Read more.
Background/Objectives: Banhasasim-tang (BHSST) is a traditional herbal formula commonly used to treat gastrointestinal (GI) disorders and has been considered a potential therapeutic option for irritable bowel syndrome (IBS). This study aimed to explore the molecular targets and underlying mechanisms of BHSST in IBS using a combination of network pharmacology, molecular docking, molecular dynamics simulations, and in vivo validation. Methods: Active compounds in BHSST were screened based on drug-likeness and oral bioavailability. Potential targets were predicted using ChEMBL, and IBS-related targets were obtained from GeneCards and DisGeNET. A compound–target–disease network was constructed and analyzed via Gene Ontology and KEGG pathway enrichment. Compound–target interactions were further assessed using molecular docking and molecular dynamics simulations. The in vivo effects of eudesm-4(14)-en-11-ol, elemol, and BHSST were evaluated in a zymosan-induced IBS mouse model. Results: Twelve BHSST-related targets were associated with IBS, with enrichment analysis identifying TNF signaling and apoptosis as key pathways. In silico simulations suggested stable binding of eudesm-4(14)-en-11-ol to TNF-α and kanzonol T to PIK3CD, whereas elemol showed weak interaction with PRKCD. In vivo, eudesm-4(14)-en-11-ol improved colon length, weight, stool consistency, TNF-α levels, and pain-related behaviors—effects comparable to those of BHSST. Elemol, however, showed no therapeutic benefit. Conclusions: These findings provide preliminary mechanistic insight into the anti-inflammatory potential of BHSST in IBS. The integrated in silico and in vivo approaches support the contribution of specific components, such as eudesm-4(14)-en-11-ol, to its observed effects, warranting further investigation. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

19 pages, 1738 KiB  
Article
Dysregulated miRNAs Targeting Adiponectin Signaling in Colorectal Cancer
by Momchil Barbolov, Svetla Slavova, Neda Nedeva, Krasimir Ivanov, Nikola Kolev, Katarzyna Komosinska-Vassev, Diana Ivanova, Deyana Vankova and Yoana Kiselova-Kaneva
Int. J. Mol. Sci. 2025, 26(15), 7196; https://doi.org/10.3390/ijms26157196 - 25 Jul 2025
Viewed by 441
Abstract
Dysregulation in miRNA expression has been reported in a variety of tumors, including colorectal cancer (CRC), where adiponectin regulates a number of processes related to tumorigenesis. The aim of this study was to identify a panel of heavily and consistently altered miRNAs in [...] Read more.
Dysregulation in miRNA expression has been reported in a variety of tumors, including colorectal cancer (CRC), where adiponectin regulates a number of processes related to tumorigenesis. The aim of this study was to identify a panel of heavily and consistently altered miRNAs in CRC that affect adiponectin signaling based on bioinformatics analysis and cross-referencing the available literature. Bioinformatics tools were used to analyze publicly available datasets to identify miRNAs targeting the adiponectin pathway that are substantially dysregulated in CRC. In parallel, a comprehensive literature review was conducted to gather and explore existing knowledge on the relationship between CRC, adiponectin signaling, and miRNA dysregulation. Bioinformatics analysis revealed a set of miRNAs that target adiponectin signaling and are consistently altered in CRC. Several candidate miRNAs, including miR-215-5p, miR-340-5p, miR-181a-5p, miR-150-5p, miR-96-5p, miR-19a-3p, and miR-21-5p, were identified as potential key regulators of the adiponectin cascade, while also being systemically dysregulated in CRC. Through gene ontology enrichment analysis, we further elucidated the biological processes and pathways impacted by these miRNAs, providing insight into their contributions to CRC. The literature review did not identify any previously reported shared connection between these miRNAs, adiponectin signaling, and CRC pathogenesis. Full article
Show Figures

Figure 1

14 pages, 8052 KiB  
Article
Unraveling TNXB Epigenetic Alterations Through Genome-Wide DNA Methylation Analysis and Their Implications for Colorectal Cancer
by Jesús Pilo, Alejandro Rego-Calvo, Libia-Alejandra García-Flores, Isabel Arranz-Salas, Ana Isabel Alvarez-Mancha, Andrea G. Izquierdo, Ana B. Crujeiras, Julia Alcaide, Maria Ortega-Castan, Hatim Boughanem and Manuel Macías-González
Int. J. Mol. Sci. 2025, 26(15), 7197; https://doi.org/10.3390/ijms26157197 - 25 Jul 2025
Viewed by 165
Abstract
Aberrant DNA methylation has been shown to be a fingerprint characteristic in human colorectal tumors. In this study, we hypothesize that investigating global DNA methylation could offer potential candidates for clinical application in CRC. The epigenome-wide association analysis was conducted in both the [...] Read more.
Aberrant DNA methylation has been shown to be a fingerprint characteristic in human colorectal tumors. In this study, we hypothesize that investigating global DNA methylation could offer potential candidates for clinical application in CRC. The epigenome-wide association analysis was conducted in both the tumor area (N = 27) and the adjacent tumor-free (NAT) area (N = 15). We found 78,935 differentially methylated CpG sites (DMCs) (FDR < 0.05), 42,888 hypomethylated and 36,047 hypermethylation showing overall hypomethylation. Gene ontology and KEGG analysis of differentially methylated genes showed significant enrichment in developmental genes, as well as in genes involved in metabolic processes and the cell cycle, such as the TFGβ and cAMP signaling pathways. Through filtered analysis, we identified TNXB as the most epigenetically dysregulated gene, hypomethylated and downregulated in CRC (both with p < 0.001) and associated with poor overall survival. In the functional analysis, TNXB was epigenetically regulated in a dose-dependent manner, suggesting a potential role in CRC. The epigenetic dysregulation and functional role of TNXB in CRC could have clinical implications, serving as indicators of malignant potential, with adverse effects associated with disease origin and progression in CRC. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Figure 1

17 pages, 1840 KiB  
Article
Epigenomic Interactions Between Chronic Pain and Recurrent Pressure Injuries After Spinal Cord Injury
by Letitia Y. Graves, Melissa R. Alcorn, E. Ricky Chan, Katelyn Schwartz, M. Kristi Henzel, Marinella Galea, Anna M. Toth, Christine M. Olney and Kath M. Bogie
Epigenomes 2025, 9(3), 26; https://doi.org/10.3390/epigenomes9030026 - 23 Jul 2025
Viewed by 306
Abstract
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina [...] Read more.
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina genome-wide arrays (EPIC and EPICv2). Comprehensive clinical profiles collected included secondary health complications, in particular current PrI and chronic pain. Relationships between recurrent PrI and chronic pain and whether the co-occurrence of both traits was mediated by changes in DNA methylation were investigated using R packages limma, DMRcate and mCSEA. Results: Three differentially methylated positions (DMPs) (cg09867095, cg26559694, cg24890286) and one region in the micro-imprinted locus for BLCAP/NNAT are associated with chronic pain in persons with SCI. The study cohort was stratified by PrI status to identify any sites associated with chronic pain and while the same three sites and region were replicated in the group with no recurrent PrI, two novel, hypermethylated (cg21756558, cg26217441) sites and one region in the protein-coding gene FDFT1 were identified in the group with recurrent PrI. Gene enrichment and genes associated with specific promoters using MetaScape identified several shared disorders and ontology terms between independent phenotypes of pain and recurrent PrI and interactive sub-groups. Conclusions: DMR analysis using mCSEA identified several shared genes, promoter-associated regions and CGI associated with overall pain and PrI history, as well as sub-groups based on recurrent PrI history. These findings suggest that a much larger gene regulatory network is associated with each phenotype. These findings require further validation. Full article
(This article belongs to the Special Issue Features Papers in Epigenomes 2025)
Show Figures

Figure 1

19 pages, 3910 KiB  
Article
Microbial Dynamics in a Musalais Wine Fermentation: A Metagenomic Study
by Yongzeng Pei, Mengrong Chen and Qiling Chen
Foods 2025, 14(15), 2570; https://doi.org/10.3390/foods14152570 - 22 Jul 2025
Viewed by 223
Abstract
This study provides a comprehensive analysis of the microbial dynamics involved in the fermentation process of traditional Musalais wine, an intangible cultural heritage of Xinjiang. Utilizing metagenomic sequencing, we identified 2894 microbial species, of which 494 persisted throughout the fermentation process. Saccharomyces cerevisiae [...] Read more.
This study provides a comprehensive analysis of the microbial dynamics involved in the fermentation process of traditional Musalais wine, an intangible cultural heritage of Xinjiang. Utilizing metagenomic sequencing, we identified 2894 microbial species, of which 494 persisted throughout the fermentation process. Saccharomyces cerevisiae was the dominant species, with its prevalence increasing from 97.35% in the early phase to 99.38% in the mid phase, before slightly decreasing to 98.79% in the late phase. Additionally, 24 non-Saccharomyces yeast species, including Hanseniaspora uvarum, Lachancea thermotolerans, and Torulaspora delbrueckii, were detected. Common species associated with other fermented foods, including Wickerhamomyces anomalus, Kluyveromyces marxianus, Saccharomyces eubayanus, and Zygosaccharomyces parabailii, were also identified. Notably, species not previously used in food fermentation, such as Saccharomyces jurei, Sodiomyces alkalinus, Vanrija pseudolonga, and Moesziomyces antarcticus, were also identified in this study. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KO) and Gene Ontology (GO) revealed notable variations in metabolic pathways and enriched functional genes. In addition, a total of 82 volatile compounds were detected in the final product, with higher alcohols (60.12%), esters (37.80%), and organic acids (1.80%) being the most prevalent. These results offer important insights into microbial interactions and their influence on Musalais wine quality, laying the groundwork for optimizing the fermentation process. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 7332 KiB  
Article
Chromatin Accessibility Dynamics Reveal Conserved Transcriptional Regulatory Networks During Insect Metamorphosis in Harmonia axyridis and Drosophila melanogaster
by Jiejing Tang, Hang Zhou, Ziqi Cheng, Yang Mei, Yueqi Lu and Xi Chen
Biology 2025, 14(8), 912; https://doi.org/10.3390/biology14080912 - 22 Jul 2025
Viewed by 235
Abstract
Insect metamorphosis is a complex developmental process regulated by hormonal signaling and gene transcription. To elucidate its transcriptional regulatory mechanisms, we examined chromatin accessibility dynamics during metamorphosis in two holometabolous insects, Harmonia axyridis and Drosophila melanogaster, using ATAC-seq. Our analysis revealed distinct [...] Read more.
Insect metamorphosis is a complex developmental process regulated by hormonal signaling and gene transcription. To elucidate its transcriptional regulatory mechanisms, we examined chromatin accessibility dynamics during metamorphosis in two holometabolous insects, Harmonia axyridis and Drosophila melanogaster, using ATAC-seq. Our analysis revealed distinct stage-specific chromatin accessibility patterns, with peak accessibility during the prepupal stage in H. axyridis and the wandering larval to prepupal transition in D. melanogaster. Through analysis of differential accessibility regions (DARs), we identified enrichment of metamorphosis-related processes including cell morphogenesis, tissue remodeling, and hormone signaling pathways via Gene Ontology and KEGG pathway analyses. Integration of chromatin accessibility with gene expression data revealed 608 conserved genes exhibiting coordinated accessibility and expression changes across both species. Additionally, we constructed a regulatory network centered around four key transcription factors (dsx, E93, REPTOR, and Sox14) that form core regulatory modules controlling metamorphosis. This study provides novel insights into the epigenetic landscape of insect metamorphosis and establishes a foundation for understanding the transcriptional regulatory mechanisms governing this critical developmental process. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

19 pages, 1835 KiB  
Article
Transcriptome Analysis Reveals Hyperglycemic Hormone and Excitatory Amino Acid Transporter 3 Are Involved in the Thermal Adaptation of Eriocheir sinensis
by Xi Li, Runlin Zhou, Ruiqi Zhang, Zhen He, Mingzhi Zhang, Ran Li, Tong Hao and Jinsheng Sun
Fishes 2025, 10(7), 361; https://doi.org/10.3390/fishes10070361 - 21 Jul 2025
Viewed by 283
Abstract
Temperature is one of the critical factors influencing the survival, growth, and reproduction of organisms. The molting and developmental mechanisms of crustaceans are highly sensitive to temperature, yet the regulatory mechanisms underlying their thermal adaptation remain unclear. In this work, transcriptome sequencing was [...] Read more.
Temperature is one of the critical factors influencing the survival, growth, and reproduction of organisms. The molting and developmental mechanisms of crustaceans are highly sensitive to temperature, yet the regulatory mechanisms underlying their thermal adaptation remain unclear. In this work, transcriptome sequencing was performed to analyze the gene expression profiles of Eriocheir sinensis under normal temperature (22 °C) and high-temperature (27 °C and 32 °C) conditions. A total of 377 differentially expressed genes (DEGs) were identified, including 149 up-regulated and 227 down-regulated genes. Through Gene Ontology (GO) enrichment analysis of these DEGs, 11 significantly temperature-regulated signaling pathways were identified, including the estrogen and androgen receptor signaling pathways, and two neurotransmission signaling pathways. These findings suggest that temperature may influence sex regulation in E. sinensis, while the dopamine receptor and neuropeptide signaling pathways may play a role in its thermal adaptation. Further validation via RT-qPCR of DEGs involved in neurotransmission signaling pathways revealed that crustacean hyperglycemic hormone (CHH) and excitatory amino acid transporter 3 (EAA3) genes are likely involved in the thermal adaptation of E. sinensis. In addition, the hemolymph glucose levels associated with the elevated temperatures were detected and consistent variations between glucose levels and CHH expressions were found. This indicates that the eyestalk CHH is strongly correlated with the hemolymph glucose levels and likely mediates the response to temperature changes by regulating blood glucose in E. sinensis. The results of this study not only provide key molecular targets for elucidating the mechanisms by which temperature affects molting and development in E. sinensis, but also establish a theoretical foundation for further research into thermal adaptation strategies in crustaceans. Full article
(This article belongs to the Section Aquatic Invertebrates)
Show Figures

Figure 1

Back to TopTop