Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (685)

Search Parameters:
Keywords = gas chromatograph

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 - 4 Aug 2025
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

69 pages, 837 KiB  
Review
Analytical Approaches Using GC-MS for the Detection of Pollutants in Wastewater Towards Environmental and Human Health Benefits: A Comprehensive Review
by Gonçalo Catarro, Rodrigo Pelixo, Mariana Feijó, Tiago Rosado, Sílvia Socorro, André R. T. S. Araújo and Eugenia Gallardo
Chemosensors 2025, 13(7), 253; https://doi.org/10.3390/chemosensors13070253 - 12 Jul 2025
Viewed by 513
Abstract
The analysis of wastewater is essential in environmental chemistry, particularly for monitoring emerging contaminants and assessing ecological impacts. In this context, hyphenated chromatographic techniques are widely used, with liquid chromatography being one of the most common. However, gas chromatography coupled with mass spectrometry [...] Read more.
The analysis of wastewater is essential in environmental chemistry, particularly for monitoring emerging contaminants and assessing ecological impacts. In this context, hyphenated chromatographic techniques are widely used, with liquid chromatography being one of the most common. However, gas chromatography coupled with mass spectrometry (GC-MS) remains a valuable tool in this field due to its sensitivity, selectivity, and widespread availability in most laboratories. This review examines the application of validated methods for wastewater analysis using GC-MS (MS), highlighting its relevance in identifying micropollutants such as pharmaceuticals, drugs of abuse, pesticides, hormones, and industrial by-products. The validation of analytical methods is crucial to ensuring the reliability and reproducibility of data and the accurate monitoring of contaminants. Key parameters, including sample volume, recovery efficiency, and detection and quantification limits, are discussed, evaluating different approaches to optimising the identification of different classes of contaminants. Additionally, this study explores advances in sample preparation techniques, such as solid-phase microextraction (SPME), dispersive liquid–liquid microextraction (DLLME), and solid-phase extraction (SPE), which enhance efficiency and minimise interferences in the analysis. Finally, future perspectives are discussed, including the integration of emerging technologies such as high-resolution mass spectrometry, the miniaturisation of GC systems, and the development of faster and more sustainable analytical methods. Full article
Show Figures

Figure 1

11 pages, 2312 KiB  
Article
The Fundamentals of the NP-Gram Method for the Characterisation of Pyrolysis Oils Based on the Estimated Boiling Points of Pyrolysis Products from Polypropylene
by Mihai Brebu and Katsuhide Murata
Polymers 2025, 17(13), 1855; https://doi.org/10.3390/polym17131855 - 2 Jul 2025
Viewed by 243
Abstract
The pyrolysis of polymers is a thermal processing method largely used to convert polymeric waste into valuable products such as oils and carbonaceous residues. The NP-gram method (NP standing for normal paraffins) is useful for the global characterisation of pyrolysis oils with complex [...] Read more.
The pyrolysis of polymers is a thermal processing method largely used to convert polymeric waste into valuable products such as oils and carbonaceous residues. The NP-gram method (NP standing for normal paraffins) is useful for the global characterisation of pyrolysis oils with complex composition. Here, we present the fundamental of this method, which is based on the concept of “carbon number”, in conjunction with the boiling point and the chromatographic retention time of chemical compounds. Polypropylene was selected as the model polymer due to its simple mechanism of thermal degradation. The boiling points of the main compounds in polypropylene pyrolysis oil were estimated based on the equations of Egloff and Wiener. A good correspondence was obtained for the estimated boiling points and the position of the compounds in the gas chromatogram. A distinction was made between the number of carbon atoms in the molecule and the corresponding carbon number used in characterisation of pyrolysis oils by NP-gram. Correlation with the chromatographic retention index was also discussed. The application of the NP-gram method for different polymers was also presented. Full article
Show Figures

Graphical abstract

23 pages, 1137 KiB  
Review
Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies
by Sara Sofia Pinheiro, Francisco Campos, Maria João Cabrita and Marco Gomes da Silva
Molecules 2025, 30(13), 2825; https://doi.org/10.3390/molecules30132825 - 30 Jun 2025
Viewed by 427
Abstract
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling [...] Read more.
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling wines, understanding the biochemical mechanisms related to aroma development has become increasingly relevant. This review provides a comprehensive overview of the secondary fermentation process, with particular emphasis on yeast selection, types of closure, and the impact of aging on the volatile composition. Special attention is also given to the analytical strategies employed for the identification and quantification of target compounds in sparkling wine matrices. Due to the presence of volatile compounds at trace levels, effective extraction and pre-concentration techniques are essential. Extraction methods such as solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and thin-film SPME (TF-SPME) are discussed, as well as chromatographic techniques, such as gas chromatography (GC) and liquid chromatography (LC). Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Figure 1

17 pages, 5119 KiB  
Article
Anode-Supported SOFCs with a Bi2O3-Doped NiO–ScSZ Anode and ScSZ Electrolyte: Low-Temperature Co-Sintering and High Performance
by Shang Peng, Zhao Liu, Pairuzha Xiaokaiti, Tiancheng Fang, Jiwei Wang, Guoqing Guan and Abuliti Abudula
ChemEngineering 2025, 9(4), 66; https://doi.org/10.3390/chemengineering9040066 - 24 Jun 2025
Viewed by 397
Abstract
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O [...] Read more.
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O3 effectively promoted the sintering of both the anode support and electrolyte layer, resulting in a dense, gas-tight electrolyte and a mechanically robust porous anode support. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed the formation of phase-pure, highly crystalline ScSZ with an optimized microstructure. Electrochemical performance measurements demonstrated that the fabricated cells achieved excellent power density, reaching a peak value of 0.861 W cm−2 at 800 °C under humidified hydrogen fuel conditions. The cells maintained stable performance under dry methane operation, with a maximum power density of 0.624 W cm−2 at 800 °C, indicating resistance to carbon deposition. Gas chromatographic analyses further revealed that the Bi2O3-doped NiO-ScSZ anode facilitated earlier and more stable electrochemical oxidation of methane-derived species compared with the conventional NiO-YSZ system, even under conditions of an elevated methane partial pressure. These findings demonstrate that Bi2O3 co-doping, combined with low-temperature co-sintering, provides an effective approach for fabricating high-performance intermediate-temperature SOFCs with enhanced structural integrity and electrochemical stability. The developed methodology presents a promising pathway toward achieving cost-effective and durable SOFC technologies. Full article
Show Figures

Figure 1

25 pages, 1376 KiB  
Review
Applications of Gas Chromatography and Gas Chromatography-Mass Spectrometry for the Determination of Illegal Drugs Used in Drink Spiking
by Hesham Kisher, Oliver Gould and Kevin C. Honeychurch
Chemosensors 2025, 13(6), 205; https://doi.org/10.3390/chemosensors13060205 - 5 Jun 2025
Viewed by 1646
Abstract
Drink spiking is a significant public safety issue, often linked to crimes such as theft and sexual assault. The detection of drugs used in these incidents is challenging due to the low concentrations (<ng) and complex matrices involved. This review explores the application [...] Read more.
Drink spiking is a significant public safety issue, often linked to crimes such as theft and sexual assault. The detection of drugs used in these incidents is challenging due to the low concentrations (<ng) and complex matrices involved. This review explores the application of gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) to identify drugs in spiked beverages. GC-MS offers high sensitivity and specificity, and is capable of detecting drugs at ng/mL levels and distinguishing between compounds with similar structures. This review highlights the advantages of GC-MS, including its ability to simultaneously analyze multiple substances and provide detailed molecular information. Various methods for detecting gamma-hydroxybutyrate (GHB), benzodiazepines, and other drugs in beverages are discussed, emphasizing the importance of derivatization to enhance their volatility and the method’s chromatographic performance. The paper also addresses the challenges of analyzing complex beverage matrices and the need for continuous improvement in detection techniques to keep pace with the evolving drug market. Overall, GC and GC-MS are powerful tools for forensic analysis in drink spiking cases, offering reliable and accurate results, which are essential for legal and investigative processes. Full article
Show Figures

Graphical abstract

20 pages, 1188 KiB  
Article
Assessing Nitrosamine Migration from Drinking Water Contact Materials Using a Validated LLE-GC-MS Method
by Beatriz Antunes, Andreia Videira, Ana Penetra, Vitor V. Cardoso, Rui N. Carneiro and Cristina M. M. Almeida
Molecules 2025, 30(11), 2403; https://doi.org/10.3390/molecules30112403 - 30 May 2025
Viewed by 522
Abstract
Nitrosamines (NAs) are toxic compounds associated with disinfection processes. Human exposure can occur through the hydraulic hoses and seals that are in contact with drinking water. This study develops and validates a chromatographic method to quantify 11 NAs in water leachates from four [...] Read more.
Nitrosamines (NAs) are toxic compounds associated with disinfection processes. Human exposure can occur through the hydraulic hoses and seals that are in contact with drinking water. This study develops and validates a chromatographic method to quantify 11 NAs in water leachates from four organic materials. The method is based on liquid–liquid extraction (LLE) followed by gas chromatography coupled with mass spectrometry (GC-MS). The method was validated by the application of several statistical tests, namely, linearity/working range, precision, trueness, and recovery tests. The GC-MS method showed a good linear range for all NAs with coefficients of determination (r2) higher than 0.9989, coefficients of variation of the method (CVm) lower than 2.5%, and PG < F (0.05; 1; N-3). The working range varies between 10 µg/L and 386.7 µg/L. The GC-MS method showed good precision under repeatability and reproducibility conditions with a relative standard deviation (RSD) lower than 12% and 10%, respectively. The GC-MS showed good trueness with a relative error lower than 20%. Matrix effects were significant, with recovery (Rec) values between 47% and 125% and an RSD lower than 20%. The limit of detection (LOD) and quantification (LOQ) ranged between 0.71 µg/L and 8.9 µg/L and between 2.3 µg/L and 29.8 µg/L, respectively. The method quantification limits (MQL) ranged from 0.0045 µg/L to 0.0378 µg/L. The sum of the MQL (0.2 µg/L) is lower than the reference limit of 0.3 µg/L for NAs in the leachates from the migration tests. Four organic materials were subjected to migration tests with demineralized and chlorinated water to assess their suitability for the water supply system. These materials met the NA specifications for use in the water network. Full article
Show Figures

Graphical abstract

18 pages, 2663 KiB  
Article
A Comprehensive Characterization of the Differences in Meat Quality, Nonvolatile and Volatile Flavor Substances Between Taoyuan Black and Duroc Pigs
by Hanjing Shi, Sisi Chen, Wenyue Zhou, Junfei Xu, Zekun Yang, Liu Guo, Qilong Li, Qiuping Guo, Yehui Duan, Jianzhong Li and Fengna Li
Foods 2025, 14(11), 1935; https://doi.org/10.3390/foods14111935 - 29 May 2025
Cited by 2 | Viewed by 539
Abstract
To compare the differences in meat quality between obese-type Chinese pig breeds and lean-type foreign pig breeds, we selected Taoyuan Black (TB) pigs and Duroc pigs at 180 and 210 days of age and analyzed their meat quality, chemical composition, and flavor compounds [...] Read more.
To compare the differences in meat quality between obese-type Chinese pig breeds and lean-type foreign pig breeds, we selected Taoyuan Black (TB) pigs and Duroc pigs at 180 and 210 days of age and analyzed their meat quality, chemical composition, and flavor compounds using an electronic tongue, chromatographic techniques, and two-dimensional gas chromatography-time-of-flight-mass-spectrometry (GC×GC-TOF-MS). A total of 16 main fatty acids, 18 main free amino acids, and 249 flavor compounds were identified. The results showed that TB pigs exhibited redder meat color, higher intramuscular fat, and lower shear force than Duroc pigs (p < 0.05). TB pigs displayed higher levels of flavor nucleotides, free amino acids, and monounsaturated fatty acids (p < 0.05). Furthermore, pigs at 180 days exhibited lower dripping loss and more flavor compounds than those at 210 days (p < 0.05). Electronic tongue analysis revealed higher umami values in TB pigs at 180 days of age. Among the flavor compounds in pork, the four compounds that contributed most significantly to flavor across all species were 2-nonenal, 2-octenal, heptanal, 2,3-butanedione, and 2-pentylfuran. These findings provide fundamental data and insight into pig production. Full article
Show Figures

Figure 1

18 pages, 3655 KiB  
Article
Steroidomics via Gas Chromatography–Mass Spectrometry (GC-MS): A Comprehensive Analytical Approach for the Detection of Inborn Errors of Metabolism
by Francesco Chiara, Sarah Allegra, Simona Liuzzi, Maria Paola Puccinelli, Giulio Mengozzi and Silvia De Francia
Life 2025, 15(6), 829; https://doi.org/10.3390/life15060829 - 22 May 2025
Viewed by 760
Abstract
Background: Urinary steroid profiling plays a key role in the diagnosis of inherited and acquired endocrine disorders. Despite the proven diagnostic value of gas chromatography–mass spectrometry (GC-MS), standardized and clinically validated protocols for extended steroid panels remain limited. Methods: We developed and validated [...] Read more.
Background: Urinary steroid profiling plays a key role in the diagnosis of inherited and acquired endocrine disorders. Despite the proven diagnostic value of gas chromatography–mass spectrometry (GC-MS), standardized and clinically validated protocols for extended steroid panels remain limited. Methods: We developed and validated a GC-MS method for the quantification of 32 urinary steroid metabolites, including androgens, estrogens, progestins, glucocorticoids, and mineralocorticoids. Sample preparation involved solid-phase extraction, enzymatic hydrolysis, and dual derivatization, followed by chromatographic separation and mass detection under full scan mode. Validation followed ICH M10 guidelines. Results: The method demonstrated high selectivity, accuracy (within ±15%), and precision (CV% < 15%) across three QC levels. Limits of Quantification were estimated using the Hubaux–Vos approach and were suitable for detecting both physiological and pathological steroid concentrations. Robustness and matrix effect tests confirmed the method’s reliability and reproducibility. Conclusions: This GC-MS protocol enables comprehensive urinary steroid profiling and calculation of diagnostic ratios for inborn errors of steroid metabolism and endocrine disorders. The method is suitable for clinical application and future integration into personalized medicine workflows. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

25 pages, 4234 KiB  
Article
Candidate Pheromone Receptors of the Red-Belted Clearwing Moth Synanthedon myopaeformis Bind Pear Ester and Other Semiochemicals
by Alberto Maria Cattaneo and William B. Walker
Agriculture 2025, 15(10), 1112; https://doi.org/10.3390/agriculture15101112 - 21 May 2025
Viewed by 672
Abstract
The red-belted clearwing moth Synanthedon myophaeformis is a deleterious pest of apple orchards, wherein the larvae bore tree bark, resulting in reduced fitness and ultimately death. The main control strategies of this pest still rely on the use of pesticides, while alternative agronomic [...] Read more.
The red-belted clearwing moth Synanthedon myophaeformis is a deleterious pest of apple orchards, wherein the larvae bore tree bark, resulting in reduced fitness and ultimately death. The main control strategies of this pest still rely on the use of pesticides, while alternative agronomic methods for its control coexist, with the application of the main pheromone (Z,Z)-3,13-octadecadien-1-yl acetate. Until now, the molecular bases of the chemosensory systems of the red-belted clearwing moth have been less explored. With the aim to identify novel ligands that may interfere with the behaviour of S. myophaeformis, in this study, we have isolated and functionally characterised some key odorant receptors (ORs) of this moth by selecting paralogues from two main subgroups of the Lepidopteran pheromone receptor (PR) clade: the OR3 subgroup (OR3.1 to OR3.4) and the OR22 subgroup (OR22.1 to OR22.4). We generated transgenic D. melanogaster expressing SmyoORs in ab3A neurons, which we approached by single sensillum recording (SSR). Among these ORs, we deorphanized SmyoOR3.4 to ligands that we have previously identified for orthologues of the codling moth Cydia pomonella, including the pear ester ethyl-(E,Z)-2,4-decadienoate, its methyl ester analogue methyl-(E,Z)-2,4-decadienote, and the unsaturated aldehyde (Z)-6-undecenal. With this approach, we also identified a wide pattern of activation of SmyoOR22.4 to several apple-emitted ligands. Despite the fact that combining SSR with gas chromatography (GC-SSR) did not unveil the activation of the SmyoORs to compounds present in the headspace from apples, GC-SSR unveiled the enhancement of the SmyoOR3.4 spiking at nanogram doses of both pear ester, methyl ester, and (Z)-6-undecenal. For the first time, this study deorphanized ORs from the red-belted clearwing moth and identified ligands as possible semiochemicals to add to the ongoing strategies for the control of this pest. Full article
Show Figures

Figure 1

15 pages, 1801 KiB  
Article
Breath Insights: Advancing Lung Cancer Early-Stage Detection Through AI Algorithms in Non-Invasive VOC Profiling Trials
by Bernardo S. Raimundo, Pedro M. Leitão, Manuel Vinhas, Maria V. Pires, Laura B. Quintas, Catarina Carvalheiro, Rita Barata, Joana Ip, Ricardo Coelho, Sofia Granadeiro, Tânia S. Simões, João Gonçalves, Renato Baião, Carla Rocha, Sandra Alves, Paulo Fidalgo, Alípio Araújo, Cláudia Matos, Susana Simões, Paula Alves, Patrícia Garrido, Marcos Pantarotto, Luís Carreiro, Rogério Matos, Cristina Bárbara, Jorge Cruz, Nuno Gil, Fernando Luis-Ferreira and Pedro D. Vazadd Show full author list remove Hide full author list
Cancers 2025, 17(10), 1685; https://doi.org/10.3390/cancers17101685 - 16 May 2025
Viewed by 1230
Abstract
Background: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Effective screening strategies for early diagnosis that could improve disease prognosis are lacking. Non-invasive breath analysis of volatile organic compounds (VOC) is a potential method for earlier LC detection. This study [...] Read more.
Background: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Effective screening strategies for early diagnosis that could improve disease prognosis are lacking. Non-invasive breath analysis of volatile organic compounds (VOC) is a potential method for earlier LC detection. This study explores the association of VOC profiles with artificial intelligence (AI) to achieve a sensitive, specific, and fast method for LC detection. Patients and methods: Exhaled breath air samples were collected from 123 healthy individuals and 73 LC patients at two clinical sites. The enrolled patients had LC diagnosed with different stages. Breath samples were collected before undergoing any treatment, including surgery, and analyzed using gas chromatography coupled to ion-mobility spectrometry (GC-IMS). AI methods classified the overall chromatographic profiles. Results: GC-IMS is highly sensitive, yielding detailed chromatographic profiles. AI methods ranked the sets of exhaled breath profiles across both groups through training and validation steps, while qualitative information was deliberately not taking part nor influencing the results. The K-nearest neighbor (KNN) algorithm classified the groups with an accuracy of 90% (sensitivity = 87%, specificity = 92%). Narrowing the LC group to those only in early-stage IA, the accuracy was 90% (sensitivity = 90%, specificity = 93%). Conclusions: Evaluation of the global exhaled breath profiles using AI algorithms enabled LC detection and demonstrated that qualitative information may not be required, thus easing the frustration that many studies have experienced so far. The results show that this approach coupled with screening protocols may improve earlier detection of LC and hence its prognosis. Full article
(This article belongs to the Special Issue Screening, Diagnosis and Staging of Lung Cancer)
Show Figures

Figure 1

16 pages, 3021 KiB  
Article
Repurposing Portable Gas Chromatograph–Mass Spectrometers for Detecting Volatile Organic Compound Biomarkers in Urine Headspace
by Mark Woollam, Serenidy Eckerle, Eray Schulz, Sahanaa Nishkaran, Sara Button and Mangilal Agarwal
Separations 2025, 12(5), 118; https://doi.org/10.3390/separations12050118 - 7 May 2025
Viewed by 1472
Abstract
Volatile organic compounds (VOCs) in urine headspace are potential biomarkers for different medical conditions, as canines can detect human diseases simply by smelling VOCs. Because dogs can detect disease-specific VOCs, gas chromatography–mass spectrometry (GC–MS) systems may be able to differentiate medical conditions with [...] Read more.
Volatile organic compounds (VOCs) in urine headspace are potential biomarkers for different medical conditions, as canines can detect human diseases simply by smelling VOCs. Because dogs can detect disease-specific VOCs, gas chromatography–mass spectrometry (GC–MS) systems may be able to differentiate medical conditions with enhanced accuracy and precision, given they have unprecedented efficiency in separating, quantifying, and identifying VOCs in urine. Advancements in instrumentation have permitted the development of portable GC–MS systems that analyze VOCs at the point of care, but these are designed for environmental monitoring, emergency response, and manufacturing/processing. The purpose of this study is to repurpose the HAPSITE® ER portable GC–MS for identifying urinary VOC biomarkers. Method development focused on optimizing sample preparation, off-column conditions, and instrumental parameters that may affect performance. Once standardized, the method was used to analyze a urine standard (n = 10) to characterize intra-day reproducibility. To characterize inter-day performance, n = 3 samples each from three volunteers (and the standard) were analyzed each day for a total of four days (n = 48 samples). Results showed the method could detect VOC signals with adequate reproducibility and distinguish VOC profiles from different volunteers with 100% accuracy. Full article
(This article belongs to the Special Issue Chromatographic Analysis of Biomarkers)
Show Figures

Figure 1

19 pages, 3617 KiB  
Article
Quality Control of Fried Pepper Oils Based on GC-MS Fingerprints and Chemometrics
by Jianlong Li, Yu Zhang, Qiang Cui, Zhiqing Zhang and Xiaoyan Hou
Foods 2025, 14(9), 1624; https://doi.org/10.3390/foods14091624 - 4 May 2025
Viewed by 573
Abstract
Zanthoxylum bungeanum Maxim. (huajiao) and Zanthoxylum armatum DC. (tengjiao), also known as Sichuan pepper, is a popular spice owing to its unique aroma and taste. Fried pepper oils are liquid condiments with unique flavors extracted from the pericarps of huajiao and tengjiao. To [...] Read more.
Zanthoxylum bungeanum Maxim. (huajiao) and Zanthoxylum armatum DC. (tengjiao), also known as Sichuan pepper, is a popular spice owing to its unique aroma and taste. Fried pepper oils are liquid condiments with unique flavors extracted from the pericarps of huajiao and tengjiao. To investigate the volatile profiles of the two different fried pepper oils, solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC-MS) was employed. The results revealed that D-limonene, linalyl acetate, linalool, myrcene, and ocimene significantly contributed to the overall flavor of huajiao oils. In addition, linalool, D-limonene, sabinene, myrcene, and linalyl acetate were identified as the main odorants in tengjiao oils. Finally, a characteristic chromatogram for the volatile compounds of each oil was established through the Similarity Evaluation System for the Chromatographic Fingerprint of Traditional Chinese Medicine, and the similarity thresholds of huajiao oils and tengjiao oils were 0.984 and 0.998, respectively. Linalool, sabinene, and linalyl acetate were markers for distinguishing between ZAOV samples and ZAOC samples. And germacrene D, linalool, sabinene, linalyl acetate, and β-myrcene were markers for distinguishing ZBOV samples from ZBOC samples. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

16 pages, 2649 KiB  
Article
Electrophysiological Mechanism and Identification of Effective Compounds of Ginger (Zingiber officinale Roscoe) Shoot Volatiles Against Aphis gossypii Glover (Hemiptera: Aphididae)
by Jiawei Ma, Ye Tian, Xuli Liu, Shengyou Fang, Chong Sun, Junliang Yin, Yongxing Zhu and Yiqing Liu
Horticulturae 2025, 11(5), 490; https://doi.org/10.3390/horticulturae11050490 - 30 Apr 2025
Viewed by 390
Abstract
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic [...] Read more.
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic and insecticidal properties; however, the underlying mechanisms remain poorly understood. This study evaluated the repellent activity of ginger shoot extract (GSE) across four solvent phases—petroleum ether, trichloromethane, ethyl acetate, and methanol—against A. gossypii. The results demonstrated that GSE exhibited significant repellent effects, with the methanol phase showing the most pronounced activity. Twelve fractions were chromatographically separated from the methanol phase, and electroantennography (EAG) analysis revealed that fraction 4 induced strong EAG responses in both winged and wingless aphids. Further identification of active compounds in fraction 4 by gas chromatography–mass spectrometry (GC–MS) indicated the presence of terpenes, aromatics, alkanes, esters, and phenols as major constituents. Subsequent EAG analysis identified several key compounds—octahydro-pentalene (C1), (Z)-cyclooctene (C2), dimethylstyrene (C3), tetramethyl-heptadecane (C5), tetrahydro-naphthalene (C6), and heptacosane (C9)—as responsible for eliciting EAG responses in both aphid forms. Additionally, results from Y-tube olfactometer assays showed that (Z)-cyclooctene and heptacosane were significantly attractive, while octahydro-pentalene acted as a strong repellent to both winged and wingless aphids. These findings offer valuable insights for the development of synthetic attractants and repellents for A. gossypii and provide a theoretical foundation for utilizing ginger in the creation of botanical pesticides targeting this pest. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds of Horticultural Plants)
Show Figures

Figure 1

23 pages, 11324 KiB  
Article
Study on the Multi-Stage Evolution of Thermal Runaway and the Flammability Threshold of Gas Generation in Lithium Iron Phosphate Batteries Based on SOC Gradient
by Changbao Qi, Hewu Wang, Minghai Li, Cheng Li, Yalun Li, Ningning Wei and Huipeng Zhang
Micromachines 2025, 16(5), 544; https://doi.org/10.3390/mi16050544 - 30 Apr 2025
Cited by 1 | Viewed by 612
Abstract
Lithium batteries are widely used in fields such as engineering micro-machines, robotics, and transportation. However, safety issues caused by battery thermal runaway limit their further promotion. This study used a sealed heating pressure chamber (SHPC) to perform “heat-wait-seek (HWS)” stepwise heating on a [...] Read more.
Lithium batteries are widely used in fields such as engineering micro-machines, robotics, and transportation. However, safety issues caused by battery thermal runaway limit their further promotion. This study used a sealed heating pressure chamber (SHPC) to perform “heat-wait-seek (HWS)” stepwise heating on a 50 Ah lithium iron phosphate (LiFePO4) battery to trigger thermal runaway. It was found that the state of charge (SOC) has a significant impact on the safety of the battery. There was no significant correlation between the valve opening temperature (T1) and the temperature at which the battery’s thermal runaway rapidly self-heats (T2) and SOC. However, as SOC increased, the maximum temperature (T3) of the battery’s thermal runaway increased, reaching up to 357.4 °C. The mass loss rate due to thermal runaway increased with SOC. The critical point of the battery’s safety valve was essentially independent of SOC and was mainly influenced by temperature. After thermal runaway, the mixed gas was passed through a gas chromatograph (GC) to detect its composition. When the SOC was below 50%, the total gas production from thermal runaway increased slowly (0.68–0.90 mol). Above 50% SOC, the total gas production from the battery increased sharply (at 75% SOC, 1.17504 mol; at 100% SOC, 2.33047 mol). Among these gases, the amount of H2 increased sharply with SOC (from 0.01 mol at 0% SOC to 0.93 mol at 100% SOC), while the amount of CO2 remained almost constant. Considering the inerting effect of CO2 in the gas produced during thermal runaway of LiFePO4 batteries, the lower flammability limit of the mixed gas increased as SOC decreased (from 6.91% at 100% SOC to 55.43% at 0% SOC). The risk of explosion during thermal runaway of high SOC batteries significantly increased. Notably, within the SOC range of 25% to 100%, the flammable range remained stable at 34–43%, but at 0% SOC, it sharply dropped to 0.5%. Therefore, batteries that are deeply discharged have higher safety. Full article
(This article belongs to the Special Issue Nanotechnology in Li-Ion Batteries and Beyond)
Show Figures

Figure 1

Back to TopTop