Analytical Approaches Using GC-MS for the Detection of Pollutants in Wastewater Towards Environmental and Human Health Benefits: A Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Classification of Contaminants
3.1. Pesticides and Polychlorinated Biphenyls
3.2. Therapeutic Drugs
3.3. Personal Care Products
3.4. Preservatives
3.5. Illicit Drugs
3.6. Endocrine Disruptors, Hormones, and Derivatives
3.7. Plasticisers, Polymers, and Siloxanes
3.8. Aromatic Hydrocarbons and Derivatives
3.9. Alkaloids
3.10. Acids, Fatty Acids, and Derivatives
3.11. Industrial Chemicals
4. Comparative Extraction Techniques
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2F-DCK | 2-Fluorodeschloroketamine |
3-MMC | 3-Methylmethcathinone |
3,4-DMMC | 3,4-Dimethylmethacathinone |
BC-MNP-μSPE | Binary-coated magnetic nanoparticle micro-solid-phase extraction |
B-DLLME | Binary dispersive liquid–liquid microextraction |
BPA | Bisphenol A |
BSA | Bovine serum albumin |
BS-DLLME | Binary solvent dispersive liquid–liquid extraction |
BSTFA | Bis(trimethylsilyl)trifluoroacetamide |
CAR/PDMS | Carboxen/polydimethylsiloxane |
CPE | Cloud-point extraction |
D4 | Octamethylcyclotetrasiloxane |
D5 | Decamethylcyclopentasiloxane |
D6 | Dodecamethylcyclohexasiloxane |
DLLME | Dispersive liquid–liquid microextraction |
DMF | N,N-dimethylformamide |
D-µ-SPE | Dispersive micro-solid-phase extraction |
DVB/CAR/PDMS | Divinylbenzene/carboxen/polydimethylsiloxane |
DVB/PDMS | Divinylbenzene/polydimethylsiloxane |
EDCs | Endocrine-disrupting compounds |
EI | Electronic impact |
EU | European Union |
FPSE | Fabric-phase sorptive extraction |
GC | Gas chromatography |
GC×GC-QTOF-MS | Two-dimensional gas chromatography coupled to quadrupole time-of-flight mass spectrometry |
GC-MS | Gas chromatography coupled to mass spectrometry |
GC-MS/MS | Gas chromatography coupled to tandem mass spectrometry |
GC-Orbitrap-MS | Gas chromatography coupled to orbitrap mass spectrometry |
HS-SPME | Headspace solid-phase microextraction |
L3 | Octamethyltrisiloxane |
L4 | Decamethyltetrasiloxane |
L5 | Dodecamethylpentasiloxane |
LC | Liquid chromatography |
LC-MS/MS | Liquid chromatography coupled to tandem mass spectrometry |
LLE | Liquid–liquid extraction |
LOD | Limit of detection |
LOQ | Limit of quantification |
LPME | Liquid-phase microextraction |
MBDB | 3,4-Methylenedioxy-methylbutanamine |
MBTFA | Methyl-bis(trifluoroacetamide) |
MDEA | 3,4-Methylenedioxy-ethylamphetamine |
MDMA | 3,4-methylenedioxymethamphetamine |
µ-SPE | Micro-solid-phase extraction |
µd-SPE | Micro-dispersive solid-phase extraction |
MSA-DLLME | Magnetic stirring-assisted dispersive liquid–liquid microextraction |
MSTFA | N-methyl-N-trimethylsilyl-trifluoroacetamide |
MTBSTFA | N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide |
MWCNTs | Multi-walled carbon nanotubes |
n.s. | Not specified |
OA-MNPs | Oleic acid magnetic nanoparticles |
PCBs | Polychlorinated biphenyls |
PCPs | Personal care products |
PDMS | Polydimethylsiloxane |
PDMS/DVB | Polydimethylsiloxane/divinylbenzene |
PFAs | Perfluoroalkyl alcohols |
PS@MNPs | Polystyrene-coated magnetite nanoparticles |
Py-GC-MS | Pyrolysis gas chromatography coupled to mass spectrometry |
QuEChERS | Quick, Easy, Cheap, Effective, Rugged, and Safe |
RDSE | Rotating-disk sorptive extraction |
(R)-MDMA | (R)-3,4-Methylenedioxymethamphetamine |
(R)-MTPA-Cl | (R)-α-methoxy-α-trifluoromethylphenylacetyl chloride |
(R)-MTP-CI | (R)-α-methoxy-α-(trifluoromethyl) phenylacetyl chloride |
(S)-MDMA | (S)-3,4-Methylenedioxymethamphetamine |
SA-MNPs | Stearic acid magnetic nanoparticles |
SB-μ-SPE | Stir-bar-assisted micro-solid-phase extraction |
SBSE | Stir-bar sorptive extraction |
S-Mg/Al-LDH | Starch-Mg/Al-layered double hydroxide |
SPE | Solid-phase extraction |
SPME | Solid-phase microextraction |
SS-LPME | Switchable solvent liquid-phase microextraction |
STP | Sewage treatment plant |
SVEA-LLE | Small-volume ethyl acetate-based liquid–liquid extraction |
TED-GC-MS | Thermal desorption–gas chromatography coupled to mass spectrometry |
TFA | Trifluoroacetic anhydride |
TF-LPME | Thin-film liquid-phase microextraction |
TFME | Thin-film microextraction |
TMCS | Trimethylchlorosilane |
UAE | Ultrasound-assisted extraction |
USA-DCC-µ-SPE | Ultrasound-assisted dispersive cyclic conjugation-micro-solid-phase extraction |
USA-DLLME | Ultrasound-assisted dispersive liquid–liquid microextraction |
USA-EME | Ultrasound-assisted emulsification microextraction |
VA-SS-LPME | Vortex-assisted switchable solvent liquid-phase microextraction |
WWTPs | Wastewater treatment plants |
References
- Hollender, J.; Schymanski, E.L.; Ahrens, L.; Alygizakis, N.; Béen, F.; Bijlsma, L.; Brunner, A.M.; Celma, A.; Fildier, A.; Fu, Q.; et al. NORMAN Guidance on Suspect and Non-Target Screening in Environmental Monitoring. Environ. Sci. Eur. 2023, 35, 75. [Google Scholar] [CrossRef]
- Wastewater: The Untapped Resource: The United Nations World Water Development Report 2017; United Nations Education, Scientivic and Cultural Organization: London, UK, 2017; ISBN 9789231002014.
- Zhang, Q.; Xu, H.; Song, N.; Liu, S.; Wang, Y.; Ye, F.; Ju, Y.; Jiao, S.; Shi, L. New Insight into Fate and Transport of Organic Compounds from Pollution Sources to Aquatic Environment Using Non-Targeted Screening: A Wastewater Treatment Plant Case Study. Sci. Total Environ. 2023, 863, 161031. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Walker, G.W.; Muir, D.C.G.; Nagatani-Yoshida, K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54, 2575–2584. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs New Advanced Treatment Methods for the Removal of Contaminants of Emerging Concern from Urban Wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Spina, F.; Gea, M.; Bicchi, C.; Cordero, C.; Schilirò, T.; Varese, G.C. Ecofriendly Laccases Treatment to Challenge Micropollutants Issue in Municipal Wastewaters. Environ. Pollut. 2020, 257, 113579. [Google Scholar] [CrossRef] [PubMed]
- Publications Office of the European Union (OP), Luxembourg. Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 Concerning Urban Wastewater Treatment (Recast) (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/dir/2024/3019/oj/eng (accessed on 4 March 2025).
- Farré, M.; Petrovic, M.; Barceló, D. Recently Developed GC/MS and LC/MS Methods for Determining NSAIDs in Water Samples. Anal. Bioanal. Chem. 2007, 387, 1203–1214. [Google Scholar] [CrossRef]
- Castiglioni, S.; Zuccato, E.; Chiabrando, C.; Fanelli, R.; Bagnatl, R. Mass Spectrometric Analysis of Illicit Drugs in Wastewater and Surface Water. Mass. Spectrom. Rev. 2008, 27, 378–394. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Hernando, M.D.; Mezcua, M.; Gómez, M.J.; Malato, O.; Agüera, A.; Fernández-Alba, A.R. Comparative Study of Analytical Methods Involving Gas Chromatography-Mass Spectrometry after Derivatization and Gas Chromatography-Tandem Mass Spectrometry for the Determination of Selected Endocrine Disrupting Compounds in Wastewaters. J. Chromatogr. A 2004, 1047, 129–135. [Google Scholar] [CrossRef]
- Andrés-Costa, M.J.; Andreu, V.; Picó, Y. Liquid Chromatography–Mass Spectrometry as a Tool for Wastewater-Based Epidemiology: Assessing New Psychoactive Substances and Other Human Biomarkers. TrAC Trends Anal. Chem. 2017, 94, 21–38. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, W.; Yu, C.; Zhang, J.; Wen, Y. Recent Advances in Biological Sample Preparation Methods Coupled with Chromatography, Spectrometry and Electrochemistry Analysis Techniques. TrAC Trends Anal. Chem. 2018, 102, 123–146. [Google Scholar] [CrossRef]
- Pelixo, R.; Barroso, M.; Gallardo, E.; Rosado, T. Determination of Arylcyclohexylamines in Biological Specimens: Sensors and Sample Pre-Treatment Approaches. Micromachines 2024, 15, 984. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Duro, A.; Goudou, F.; Carmenate-Rodriguez, C.; Melchor-Rodriguez, K.; Minofar, B.; Gaspard, S.; Jauregui-Haza, U. A Computational Study of Adsorption on Activated Carbons Containing Basic Oxygenated Surface Groups of Two Priority Organochlorine Pesticides from Water. Colloids Surf. A Physicochem. Eng. Asp. 2025, 704, 135449. [Google Scholar] [CrossRef]
- Chen, M.; Shi, L.; Xie, F.; Wang, X.; Nie, C.; Wang, S.; Liu, K.; Yu, J.; Wan, L. Flat Membrane–Based Liquid-Phase Microextraction for the Determination of Basic and Acidic Pesticide Residues in Water Samples. J. Chromatogr. A 2025, 1742, 465659. [Google Scholar] [CrossRef] [PubMed]
- Directive—2020/2184—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj/eng (accessed on 17 April 2025).
- Needham, T.P.; Ghosh, U. Four Decades since the Ban, Old Urban Wastewater Treatment Plant Remains a Dominant Source of PCBs to the Environment. Environ. Pollut. 2019, 246, 390–397. [Google Scholar] [CrossRef]
- Xu, J.; Wei, J.; Wei, X.; Teng, X.; Wang, Z.; Qu, R. Photodegradation of Polychlorinated Biphenyls (PCBs) on Suspended Particles from the Yellow River under Sunlight Irradiation: QSAR Model and Mechanism Analysis. Water Res. 2024, 267, 122547. [Google Scholar] [CrossRef]
- Elangovan, S.; Pandian, S.B.S.; SJ, G.; Joshi, S.J. Polychlorinated Biphenyls (PCBs): Environmental Fate, Challenges and Bioremediation. Microorg. Sustain. 2019, 10, 165–188. [Google Scholar] [CrossRef]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of Pesticides from Water and Wastewater: Chemical, Physical and Biological Treatment Approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Ortega-Zamora, C.; González-Sálamo, J.; Rivero, D.S.; Carrillo, R.; Hernández-Borges, J. Tetrazine-Based Dynamic Covalent Polymers as Degradable Extraction Materials in Sample Preparation. Anal. Chim. Acta 2024, 1318, 342925. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Wu, M.; Song, N.; Ge, F.; Yang, T.; Wang, Y.; Chen, G. Automated Pretreatment of Environmental Water Samples and Non-Targeted Intelligent Screening of Organic Compounds Based on Machine Experiments. Environ. Int. 2024, 193, 109072. [Google Scholar] [CrossRef]
- Chormey, D.S. Validation and Green Profile Assessment of a Binary Solvent Liquid Phase Microextraction Method for the Determination of Chlorbenside and Fenobucarb in Lake and Wastewater Samples by GC–MS. Environ. Sci. Pollut. Res. 2023, 30, 44697–44705. [Google Scholar] [CrossRef]
- Mijangos, L.; Bilbao, D.; Lopez-Herguedas, N.; Ortueta, N.; Olivares, M.; Zuloaga, O.; Etxebarria, N.; Prieto, A. Development of an Analytical Method for the Simultaneous Determination of 50 Semi-Volatile Organic Contaminants in Wastewaters. MethodsX 2023, 11, 102252. [Google Scholar] [CrossRef]
- Merlo, F.; Profumo, A.; Fontàs, C.; Anticó, E. Preparation of New Polymeric Phases for Thin-Film Liquid Phase Microextraction (TF-LPME) of Selected Organic Pollutants. Microchem. J. 2022, 175, 107120. [Google Scholar] [CrossRef]
- Dalglç Bozyiǧit, G.; Flrat Ayylldlz, M.; Chormey, D.S.; Onkal Engin, G.; Baklrdere, S. Dispersive Liquid-Liquid Microextraction Based Preconcentration of Selected Pesticides and Escitalopram Oxalate, Haloperidol, and Olanzapine from Wastewater Samples Prior to Determination by GC-MS. J. AOAC Int. 2021, 104, 91–97. [Google Scholar] [CrossRef]
- Tan, S.C.; Lee, H.K. Fully Automated Graphitic Carbon Nitride-Based Disposable Pipette Extraction-Gas Chromatography-Mass Spectrometric Analysis of Six Polychlorinated Biphenyls in Environmental Waters. J. Chromatogr. A 2021, 1637, 461824. [Google Scholar] [CrossRef]
- Bodur, S.; Özlü, C.; Tışlı, B.; Fırat, M.; Chormey, D.S.; Bakırdere, S. Analytical Protocol for Determination of Endosulfan Beta, Propham, Chlorpyrifos, and Acibenzolar-s-Methyl in Lake Water and Wastewater Samples by Gas Chromatography–Mass Spectrometry after Dispersive Liquid–Liquid Microextraction. Environ. Monit. Assess. 2020, 192, 253. [Google Scholar] [CrossRef]
- Budak, T.B.; Ayyıldız, M.F.; Chormey, D.S.; Bakırdere, S. Combination of Vortex Assisted Binary Solvent Microextraction and QuEChERS for the Determination of Prothiofos, Oxadiargyl, and Gamma-Cyhalothrin in Water and Pineapple Samples by Gas Chromatography Mass Spectrometry. Environ. Monit. Assess. 2020, 192, 273. [Google Scholar] [CrossRef]
- Özcan, R.; Büyükpınar, Ç.; Bakırdere, S. Determination of Fipronil and Bixafen Pesticides Residues Using Gas Chromatography Mass Spectroscopy with Matrix Matching Calibration Strategy after Binary Dispersive Liquid-Liquid Microextraction. J. Environ. Sci. Health Part B 2020, 55, 1041–1047. [Google Scholar] [CrossRef]
- Bozyiğit, G.D.; Ayyıldız, M.F.; Chormey, D.S.; Engin, G.O.; Bakırdere, S. Development of a Sensitive and Accurate Method for the Simultaneous Determination of Selected Insecticides and Herbicide in Tap Water and Wastewater Samples Using Vortex-Assisted Switchable Solvent-Based Liquid-Phase Microextraction Prior to Determination by Gas Chromatography-Mass Spectrometry. Environ. Monit. Assess. 2020, 192, 275. [Google Scholar] [CrossRef] [PubMed]
- Tışlı, B.; Selali Chormey, D.; Fırat Ayyıldız, M.; Bakırdere, S. Experimental Design of Vortex Assisted Switchable Solvent Homogeneous Liquid-Liquid Microextraction for Simultaneous Determination of Four Pesticides in Wastewater. J. AOAC Int. 2020, 103, 1250–1255. [Google Scholar] [CrossRef]
- Bruzzoniti, M.C.; Rivoira, L.; Castiglioni, M.; El Ghadraoui, A.; Ahmali, A.; El Hakim El Mansour, T.; Mandi, L.; Ouazzani, N.; Del Bubba, M. Extraction of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls from Urban and Olive Mill Wastewaters Intended for Reuse in Agricultural Irrigation. J. AOAC Int. 2020, 103, 382–391. [Google Scholar] [CrossRef]
- Durak, B.Y.; Chormey, D.S.; Firat, M.; Bakirdere, S. Validation of Ultrasonic-Assisted Switchable Solvent Liquid Phase Microextraction for Trace Determination of Hormones and Organochlorine Pesticides by GC–MS and Combination with QuEChERS. Food Chem. 2020, 305, 125487. [Google Scholar] [CrossRef] [PubMed]
- Kapukıran, F.; Fırat, M.; Chormey, D.S.; Bakırdere, S.; Özdoğan, N. Accurate and Sensitive Determination Method for Procymidone and Chlorflurenol in Municipal Wastewater, Medical Wastewater and Irrigation Canal Water by GC–MS After Vortex Assisted Switchable Solvent Liquid Phase Microextraction. Bull. Environ. Contam. Toxicol. 2019, 102, 848–853. [Google Scholar] [CrossRef]
- Sari Erkan, H.; Chormey, D.S.; Caglak, A.; Dalgic Bozyigit, G.; Maltepe, E.; Onkal Engin, G.; Bakırdere, S. Binary Dispersive Liquid-Liquid Microextraction Strategy for Accurate and Precise Determination of Micropollutants in Lake, Well and Wastewater Matrices. Bull. Environ. Contam. Toxicol. 2019, 103, 841–847. [Google Scholar] [CrossRef]
- Chormey, D.S.; Akkaya, E.; Erulaş, F.A.; Bakırdere, S. Oleic and Stearic Acid-Coated Magnetite Nanoparticles for Sonication-Assisted Binary Micro-Solid Phase Extraction of Endocrine Disrupting Compounds, and Their Quantification by GC-MS. Microchim. Acta 2019, 186, 849. [Google Scholar] [CrossRef]
- Saber, A.N.; Zhang, H.; Yang, M. Optimization and Validation of Headspace Solid-Phase Microextraction Method Coupled with Gas Chromatography–Triple Quadrupole Tandem Mass Spectrometry for Simultaneous Determination of Volatile and Semi-Volatile Organic Compounds in Coking Wastewater Treatment Plant. Environ. Monit. Assess. 2019, 191, 411. [Google Scholar] [CrossRef]
- Koçoğlu, E.S.; Sözüdoğru, O.; Komesli, O.T.; Yılmaz, A.E.; Bakırdere, S. Simultaneous Determination of Drug Active Compound, Hormones, Pesticides, and Endocrine Disruptor Compounds in Wastewater Samples by GC-MS with Direct Calibration and Matrix Matching Strategies after Preconcentration with Dispersive Liquid-Liquid Microextraction. Environ. Monit. Assess. 2019, 191, 653. [Google Scholar] [CrossRef]
- Faroon, O.; Olson, J. Toxicological Profile for Polychlorinated Biphenyls (PCBs); Agency for Toxic Substances and Disease Registry: Atlanta, Georgia, 2000; p. 443.
- Köck-Schulmeyer, M.; Villagrasa, M.; López de Alda, M.; Céspedes-Sánchez, R.; Ventura, F.; Barceló, D. Occurrence and Behavior of Pesticides in Wastewater Treatment Plants and Their Environmental Impact. Sci. Total Environ. 2013, 458, 466–476. [Google Scholar] [CrossRef]
- Xu, H.; Ding, Z.; Lv, L.; Song, D.; Feng, Y.Q. A Novel Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Method for Determination of Polycyclic Aromatic Hydrocarbons in Aqueous Samples. Anal. Chim. Acta 2009, 636, 28–33. [Google Scholar] [CrossRef]
- Zgoła-Grześkowiak, A.; Grześkowiak, T. Dispersive Liquid-Liquid Microextraction. TrAC—Trends Anal. Chem. 2011, 30, 1382–1399. [Google Scholar]
- Turan, N.B.; Maltepe, E.; Chormey, D.S.; Bakırdere, S. Determination of Fenazaquin in Water and Tomato Matrices by GC-MS after a Combined QuEChERS and Switchable Solvent Liquid Phase Microextraction. Environ Monit Assess 2020, 192, 72. [Google Scholar] [CrossRef]
- Wang, K.; Zhuang, T.; Su, Z.; Chi, M.; Wang, H. Antibiotic Residues in Wastewaters from Sewage Treatment Plants and Pharmaceutical Industries: Occurrence, Removal and Environmental Impacts. Sci. Total Environ. 2021, 788, 147811. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Yao, R.; Zhang, Y.; Ying, M.; Wu, T.; Jiang, W.; Wang, D.; Zhang, X.X. Transformation Mechanisms of Antidepressants in Biological Wastewater Treatment: Removal Kinetic, Transformation Products and Pathways. Chem. Eng. J. 2024, 493, 152557. [Google Scholar] [CrossRef]
- Khasawneh, O.F.S.; Palaniandy, P. Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants. Process Saf. Environ. Prot. 2021, 150, 532–556. [Google Scholar] [CrossRef]
- García-Córcoles, M.T.; Rodríguez-Gómez, R.; de Alarcón-Gómez, B.; Çipa, M.; Martín-Pozo, L.; Kauffmann, J.-M.; Zafra-Gómez, A. Chromatographic Methods for the Determination of Emerging Contaminants in Natural Water and Wastewater Samples: A Review. Crit. Rev. Anal. Chem. 2019, 49, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Bozyiğit, G.D.; Zaman, B.T.; Özdemir, O.K.; Kılınç, Y.; Chormey, D.S.; Bakırdere, S.; Engin, G.O. Removal of Two Antidepressant Active Pharmaceutical Ingredients from Hospital Wastewater by Polystyrene-Coated Magnetite Nanoparticles–Assisted Batch Adsorption Process. Environ. Monit. Assess. 2024, 196, 77. [Google Scholar] [CrossRef]
- Herghelegiu, M.-C.; Ernault, A.; Beldean-Galea, M.S.; Coman, M.-V. HPLC-PDA versus GC-MS in the Analysis of Paracetamol and Non-Steroidal Anti-Inflammatory Drugs in Wastewater. Studia Univ. Babes-Bolyai Chemia 2023, 68, 19–35. [Google Scholar]
- Bozyiğit, G.D.; Ayyıldız, M.F.; Chormey, D.S.; Engin, G.O.; Bakırdere, S. Trace Level Determination of Eleven Nervous System–Active Pharmaceutical Ingredients by Switchable Solvent-Based Liquid-Phase Microextraction and Gas Chromatography–Mass Spectrometry with Matrix Matching Calibration Strategy. Environ. Monit. Assess. 2022, 194, 58. [Google Scholar] [CrossRef]
- Mohd Hanafiah, Z.; Wan Mohtar, W.H.M.; Abd Manan, T.S.B.; Bachi’, N.A.; Abdullah, N.A.; Abd Hamid, H.H.; Beddu, S.; Mohd Kamal, N.L.; Ahmad, A.; Wan Rasdi, N. The Occurrence of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Malaysian Urban Domestic Wastewater. Chemosphere 2022, 287, 132134. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Wu, D.; Cheng, Y.X.; Hu, L.X.; Chen, Q.L.; Wu, H.Y.; Sun, Y.H.; Liu, Y.S.; Ying, G.G. Development and Validation of a Simultaneous Method for the Analysis of Benzothiazoles and Organic Ultraviolet Filters in Various Environmental Matrices by GC–MS/MS. Anal. Bioanal. Chem. 2022, 414, 6541–6555. [Google Scholar] [CrossRef] [PubMed]
- Bozyiğit, G.D.; Zaman, B.T.; Özdemir, O.K.; Kılınç, Y.; Chormey, D.S.; Engin, G.O.; Bakırdere, S. Polystyrene—Coated Magnetite Nanoparticles Based Dispersive Micro—Solid Phase Extraction of Active Pharmaceutical Ingredients of Antidepressant Drugs and Determination by GC-MS. ChemistrySelect 2022, 7, e202104435. [Google Scholar] [CrossRef]
- Dalgıç Bozyiğit, G.; Fırat Ayyıldız, M.; Selali Chormey, D.; Onkal Engin, G.; Bakırdere, S. Accurate Quantification of Nervous System Drugs in Aqueous Samples at Trace Levels by Binary Solvent Dispersive Liquid-Liquid Microextraction-Gas Chromatography Mass Spectrometry. Environ. Toxicol. Chem. 2021, 40, 1570–1575. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, M.V.; Cipriani-Avila, I.; Jara-Negrete, E.; Acosta-López, S.; Acosta, B.; Pérez-González, A.; Molinero, J.; Pinos-Vélez, V. Emerging Contaminants in the Northeast Andean Foothills of Amazonia: The Case of Study of the City of Tena, Napo, Ecuador. Bull. Environ. Contam. Toxicol. 2021, 107, 2–10. [Google Scholar] [CrossRef]
- Mohiuddin, I.; Grover, A.; Aulakh, J.S.; Malik, A.K.; Lee, S.S.; Brown, R.J.C.; Kim, K.H. Starch-Mg/Al Layered Double Hydroxide Composites as an Efficient Solid Phase Extraction Sorbent for Non-Steroidal Anti-Inflammatory Drugs as Environmental Pollutants. J. Hazard. Mater. 2021, 401, 123782. [Google Scholar] [CrossRef]
- Cortés, J.; Villén, J.; Aragón, Á.; Vázquez, A. Determination of Diclofenac in Water Samples from Wastewater Treatment Plants by Large Volume Injection-Gas Chromatography–Mass Spectrometry. LCGC N. Am. 2019, 37, 194–197. [Google Scholar]
- Caban, M.; Lis, H.; Kobylis, P.; Stepnowski, P. The Triple-Sorbents Solid-Phase Extraction for Pharmaceuticals and Estrogens Determination in Wastewater Samples. Microchem. J. 2019, 149, 103965. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, X.T.; Tan, D.Q.; Yan, J.H.; Pei, W.; Wang, Z.; Yang, M.; Wang, D.G. Assessing the Trend of Diabetes Mellitus by Analyzing Metformin as a Biomarker in Wastewater. Sci. Total Environ. 2019, 688, 281–287. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, R.; Grover, A.; Rani, S.; Malik, A.K.; Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extraction/GC-MS Method for Rapid Determination of Broad Polarity Spectrum Multi-Class Emerging Pollutants in Various Aqueous Samples. J. Sep. Sci. 2019, 42, 2407–2417. [Google Scholar] [CrossRef]
- Gonçalves, R.; Ribeiro, C.; Cravo, S.; Cunha, S.C.; Pereira, J.A.; Fernandes, J.O.; Afonso, C.; Tiritan, M.E. Multi-Residue Method for Enantioseparation of Psychoactive Substances and Beta Blockers by Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1125, 121731. [Google Scholar] [CrossRef]
- Arismendi, D.; Becerra-Herrera, M.; Cerrato, I.; Richter, P. Simultaneous Determination of Multiresidue and Multiclass Emerging Contaminants in Waters by Rotating-Disk Sorptive Extraction-Derivatization-Gas Chromatography/Mass Spectrometry. Talanta 2019, 201, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Gumbi, B.P.; Moodley, B.; Birungi, G.; Ndungu, P.G. Target, Suspect and Non-Target Screening of Silylated Derivatives of Polar Compounds Based on Single Ion Monitoring GC-MS. Int. J. Environ. Res. Public Health 2019, 16, 4022. [Google Scholar] [CrossRef]
- Yan, J.H.; Xiao, Y.; Tan, D.Q.; Shao, X.T.; Wang, Z.; Wang, D.G. Wastewater Analysis Reveals Spatial Pattern in Consumption of Anti-Diabetes Drug Metformin in China. Chemosphere 2019, 222, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Yawney, J.; Treacy, S.; Hindmarsh, K.W.; Burczynski, F.J. A General Screening Method for Acidic, Neutral, and Basic Drugs in Whole Blood Using the Oasis MCX Column. J. Anal. Toxicol. 2002, 26, 325–332. [Google Scholar] [CrossRef]
- Biel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Removal of Personal Care Products (PCPs) in Wastewater and Sludge Treatment and Their Occurrence in Receiving Soils. Water Res. 2019, 150, 129–139. [Google Scholar] [CrossRef]
- Wu, J.L.; Lam, N.P.; Martens, D.; Kettrup, A.; Cai, Z. Triclosan Determination in Water Related to Wastewater Treatment. Talanta 2007, 72, 1650–1654. [Google Scholar] [CrossRef]
- Jørgensen, M.B.; Christensen, J.H. Can Analyte Protectants Compensate Wastewater Matrix Induced Enhancement Effects in Gas Chromatography—Mass Spectrometry Analysis? J. Chromatogr. A 2022, 1676, 463280. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Ebrahimpour, K.; Mohammadi, F.; Moazeni, M. Ecotoxicological and Human Health Risk Assessment of Triclosan Antibacterial Agent from Municipal Wastewater Treatment Plants. J. Water Health 2024, 22, 36–51. [Google Scholar] [CrossRef]
- Ajibola, A.S.; Reich, M.; Kümmerer, K. Determination and Risk Assessment of UV Filters and Benzotriazole UV Stabilizers in Wastewater from a Wastewater Treatment Plant in Lüneburg, Germany. Environ. Monit. Assess. 2024, 196, 725. [Google Scholar] [CrossRef]
- Struk-Sokołowska, J.; Kotowska, U.; Gwoździej-Mazur, J.; Polińska, W.; Canales, F.A.; Kaźmierczak, B. Benzotriazoles and Bisphenols in Wastewater from the Food Processing Industry and the Quantitative Changes during Mechanical/Biochemical Treatment Processes. Sci. Total Environ. 2024, 951, 175387. [Google Scholar] [CrossRef] [PubMed]
- Yücel, C.; Ertaş, H.; Ertaş, F.N.; Karapinar, I. Development of a Solid Phase Microextraction Gas Chromatography Tandem Mass Spectrometry Method for the Analysis of UV Filters. Microchem. J. 2024, 200, 110247. [Google Scholar]
- Tüzün, S.C.; Karapinar, I.; Yücel, C.; Nil, F.; Erta¸s, E.; Erta¸s, H.E. Determination of Benzophenone Derivatives in Wastewater by GC–MS/MS Combined with In-port Derivatization. CLEAN–Soil Air Water 2024, 52, 2300145. [Google Scholar] [CrossRef]
- Sanches Filho, P.J.; Coll, J.P.R.; da Silva, G.M.G.; Amaral, M.A.F.; dos Santos Hackbart, H.C.; Fusinato, M.D.; Arsand, D.R.; da Cunha, M.E. Development of a SPE/GC/MS Method for Simultaneous Determination of UV Filters (Oxybenzone and Octocrylene) and Hormones (Estrone, Beta-Estradiol, and Estriol). Microchem. J. 2024, 198, 110143. [Google Scholar]
- Vimalkumar, K.; Mayilsamy, M.; Arun, E.; Gobinath, B.; Prasanth, S.; Nikhil, P.N.; Krishna-Kumar, S.; Srimurali, S.; Mkandawire, M.; Babu-Rajendran, R. Screening of Antimicrobials, Fragrances, UV Stabilizers, Plasticizers and Preservatives in Sewage Treatment Plants (STPs) and Their Risk Assessment in India. Chemosphere 2022, 308, 136452. [Google Scholar] [CrossRef]
- González-Hernández, P.; Pacheco-Fernández, I.; Bernardo, F.; Homem, V.; Pasán, J.; Ayala, J.H.; Ratola, N.; Pino, V. Headspace Solid-Phase Microextraction Based on the Metal-Organic Framework CIM-80(Al) Coating to Determine Volatile Methylsiloxanes and Musk Fragrances in Water Samples Using Gas Chromatography and Mass Spectrometry. Talanta 2021, 232, 122440. [Google Scholar] [CrossRef] [PubMed]
- Tasselli, S.; Guzzella, L. Polycyclic Musk Fragrances (PMFs) in Wastewater and Activated Sludge: Analytical Protocol and Application to a Real Case Study. Environ. Sci. Pollut. Res. Int. 2020, 27, 30977–30986. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Homem, V.; Santos, L. Simultaneous Determination of Synthetic Musks and UV-Filters in Water Matrices by Dispersive Liquid-Liquid Microextraction Followed by Gas Chromatography Tandem Mass-Spectrometry. J. Chromatogr. A 2019, 1590, 47–57. [Google Scholar] [CrossRef]
- Kabir, A.; Mesa, R.; Jurmain, J.; Furton, K.G. Fabric Phase Sorptive Extraction Explained. Separations 2017, 4, 21. [Google Scholar] [CrossRef]
- Kabir, A. Fabric Phase Sorptive Extraction: A New Generation Sample Preparation Strategy. In Green Analytical Methods and Miniaturized Sample Preparation Techniques for Forensic Drug Analysis; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Richter, P.; Arismendi, D.; Becerra-Herrera, M. The Fundamentals, Chemistries and Applications of Rotating-Disk Sorptive Extraction. TrAC—Trends Anal. Chem. 2021, 137, 116209. [Google Scholar]
- Nowak-Lange, M.; Niedziałkowska, K.; Lisowska, K. Cosmetic Preservatives: Hazardous Micropollutants in Need of Greater Attention? Int. J. Mol. Sci. 2022, 23, 14495. [Google Scholar] [CrossRef]
- Hernández, F.; Castiglioni, S.; Covaci, A.; de Voogt, P.; Emke, E.; Kasprzyk-Hordern, B.; Ort, C.; Reid, M.; Sancho, J.V.; Thomas, K.V.; et al. Mass Spectrometric Strategies for the Investigation of Biomarkers of Illicit Drug Use in Wastewater. Mass. Spectrom. Rev. 2016, 37, 258–280. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, C.; Sun, Z.; Xu, J. Occurrence, Bioaccumulation and Toxicological Effect of Drugs of Abuse in Aquatic Ecosystem: A Review. Environ. Res. 2021, 200, 111362. [Google Scholar] [CrossRef]
- Langa, I.M.; Lado Ribeiro, A.R.; Ratola, N.; Gonçalves, V.M.F.; Tiritan, M.E.; Ribeiro, C. Amphetamine-like Substances and Synthetic Cathinones in Portuguese Wastewater Influents: Enantiomeric Profiling and Role of Suspended Particulate Matter. Forensic Sci. Int. 2024, 361, 112128. [Google Scholar] [CrossRef]
- Nascimento, M.M.; Nascimento, M.L.; Pereira dos Anjos, J.; Cunha, R.L.; da Rocha, G.O.; Ferreira dos Santos, I.; Pereira, P.A.d.P.; de Andrade, J.B. A Green Method for the Determination of Illicit Drugs in Wastewater and Surface Waters-Based on a Semi-Automated Liquid-Liquid Microextraction Device. J. Chromatogr. A 2023, 1710, 464230. [Google Scholar] [CrossRef] [PubMed]
- Verovšek, T.; Heath, D.; Heath, E. Enantiomeric Profiling of Amphetamines in Wastewater Using Chiral Derivatisation with Gas Chromatographic-Tandem Mass Spectrometric Detection. Sci. Total Environ. 2022, 835, 155594. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Jiang, R.; Luan, T.; Ouyang, G. Rapid Detection and Speciation of Illicit Drugs via a Thin-Film Microextraction Approach for Wastewater-Based Epidemiology Study. Sci. Total Environ. 2022, 842, 156888. [Google Scholar] [CrossRef]
- Langa, I.; Tiritan, M.E.; Silva, D.; Chemosensors, C.R. Gas Chromatography Multiresidue Method for Enantiomeric Fraction Determination of Psychoactive Substances in Effluents and River Surface Waters. Chemosens 2021, 9, 224. [Google Scholar]
- Cong, Z.X.; Shao, X.T.; Liu, S.Y.; Pei, W.; Wang, D.G. Wastewater Analysis Reveals Urban, Suburban, and Rural Spatial Patterns of Illicit Drug Use in Dalian, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 25503–25513. [Google Scholar] [CrossRef]
- Liu, S.Y.; Yu, W.J.; Wang, Y.R.; Shao, X.T.; Wang, D.G. Tracing Consumption Patterns of Stimulants, Opioids, and Ketamine in China by Wastewater-Based Epidemiology. Environ. Sci. Pollut. Res. Int. 2021, 28, 16754–16766. [Google Scholar] [CrossRef]
- Shao, X.T.; Yu, H.; Lin, J.G.; Kong, X.P.; Wang, Z.; Wang, D.G. Presence of the Ketamine Analog of 2-Fluorodeschloroketamine Residues in Wastewater. Drug Test. Anal. 2021, 13, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shao, X.T.; Tan, D.Q.; Yan, J.H.; Xiao, Y.; Zheng, Q.-D.; Pei, W.; Wang, Z.; Wang, D.G. Reduction in Methamphetamine Consumption Trends from 2015 to 2018 Detected by Wastewater-Based Epidemiology in Dalian, China. Drug Alcohol. Depend. 2019, 194, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.; Moreno, I.; Da Fonseca, B.; Queiroz, J.A.; Gallardo, E. Role of Microextraction Sampling Procedures in Forensic Toxicology. Bioanalysis 2012, 4, 1805–1826. [Google Scholar]
- Čelić, M.; Škrbić, B.D.; Insa, S.; Živančev, J.; Gros, M.; Petrović, M. Occurrence and Assessment of Environmental Risks of Endocrine Disrupting Compounds in Drinking, Surface and Wastewaters in Serbia. Environ. Pollut. 2020, 262, 114344. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Yasuhara, A.; Shiraishi, H.; Nakasugi, O. Bisphenol A in Hazardous Waste Landfill Leachates. Chemosphere 2001, 42, 415–418. [Google Scholar] [CrossRef]
- Rocha, M.J.; Rocha, E. Synthetic Progestins in Waste and Surface Waters: Concentrations, Impacts and Ecological Risk. Toxics 2022, 10, 163. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Gatidou, G.; Mamais, D.; Thomaidis, N.S.; Lekkas, T.D. Occurrence and Fate of Endocrine Disrupters in Greek Sewage Treatment Plants. Water Res. 2008, 42, 1796–1804. [Google Scholar] [CrossRef]
- Liao, Z.; Jian, Y.; Lu, J.; Liu, Y.; Li, Q.; Deng, X.; Xu, Y.; Wang, Q.; Yang, Y.; Luo, Z. Distribution, Migration Patterns, and Food Chain Human Health Risks of Endocrine-Disrupting Chemicals in Water, Sediments, and Fish in the Xiangjiang River. Sci. Total Environ. 2024, 930, 172484. [Google Scholar] [CrossRef]
- Thacharodi, A.; Hassan, S.; Hegde, T.A.; Thacharodi, D.D.; Brindhadevi, K.; Pugazhendhi, A. Water a Major Source of Endocrine-Disrupting Chemicals: An Overview on the Occurrence, Implications on Human Health and Bioremediation Strategies. Environ. Res. 2023, 231, 116097. [Google Scholar] [CrossRef]
- Carnevali, O.; Santangeli, S.; Forner-Piquer, I.; Basili, D.; Maradonna, F. Endocrine-Disrupting Chemicals in Aquatic Environment: What Are the Risks for Fish Gametes? Fish Physiol. Biochem. 2018, 44, 1561–1576. [Google Scholar] [CrossRef]
- Vilela, C.L.S.; Bassin, J.P.; Peixoto, R.S. Water Contamination by Endocrine Disruptors: Impacts, Microbiological Aspects and Trends for Environmental Protection. Environ. Pollut. 2018, 235, 546–559. [Google Scholar] [CrossRef]
- Habib, A.; Landa, E.N.; Holbrook, K.L.; Walker, W.S.; Lee, W.Y. Rapid, Efficient, and Green Analytical Technique for Determination of Fluorotelomer Alcohol in Water by Stir Bar Sorptive Extraction. Chemosphere 2023, 338, 139439. [Google Scholar] [CrossRef]
- López-Velázquez, K.; Guzmán-Mar, J.L.; Saldarriaga-Noreña, H.A.; Murillo-Tovar, M.A.; Villanueva-Rodríguez, M. Ecological Risk Assessment Associated with Five Endocrine-Disrupting Compounds in Wastewater Treatment Plants of Northeast Mexico. Environ. Sci. Pollut. Res. Int. 2023, 30, 30714–30726. [Google Scholar] [CrossRef] [PubMed]
- Kiejza, D.; Kotowska, U.; Polińska, W.; Karpińska, J. USAEME-GC/MS Method for Easy and Sensitive Determination of Nine Bisphenol Analogues in Water and Wastewater. Molecules 2022, 27, 4977. [Google Scholar] [CrossRef]
- Chafi, S.; Ballesteros, E. A Sensitive, Robust Method for Determining Natural and Synthetic Hormones in Surface and Wastewaters by Continuous Solid-Phase Extraction-Gas Chromatography-Mass Spectrometry. Environ. Sci. Pollut. Res. Int. 2022, 29, 53619–53632. [Google Scholar] [CrossRef]
- López-Velázquez, K.; Guzmán-Mar, J.L.; Saldarriaga-Noreña, H.A.; Murillo-Tovar, M.A.; Hinojosa-Reyes, L.; Villanueva-Rodríguez, M. Occurrence and Seasonal Distribution of Five Selected Endocrine-Disrupting Compounds in Wastewater Treatment Plants of the Metropolitan Area of Monterrey, Mexico: The Role of Water Quality Parameters. Environ. Pollut. 2021, 269, 116223. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Z.; Tang, Z.; Zhang, J.; Dang, Z.; Liu, Y. Possible Overestimation of Bisphenol Analogues in Municipal Wastewater Analyzed with GC-MS. Environ. Pollut. 2021, 273, 116505. [Google Scholar] [CrossRef] [PubMed]
- Abdul Zali, M.; Juahir, H.; Ismail, A.; Retnam, A.; Idris, A.N.; Sefie, A.; Tawnie, I.; Saadudin, S.B.; Ali, M.M. Tracing Sewage Contamination Based on Sterols and Stanols Markers within the Mainland Aquatic Ecosystem: A Case Study of Linggi Catchment, Malaysia. Environ. Sci. Pollut. Res. Int. 2021, 28, 20717–20736. [Google Scholar] [CrossRef]
- Vargas-Berrones, K.; Díaz de León-Martínez, L.; Bernal-Jácome, L.; Rodriguez-Aguilar, M.; Ávila-Galarza, A.; Flores-Ramírez, R. Rapid Analysis of 4-Nonylphenol by Solid Phase Microextraction in Water Samples. Talanta 2020, 209, 120546. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. The Quantification of Bisphenols and Their Analogues in Wastewaters and Surface Water by an Improved Solid-Phase Extraction Gas Chromatography/Mass Spectrometry Method. Environ. Sci. Pollut. Res. Int. 2020, 27, 28829–28839. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Z.; Wang, H.; Dang, Z.; Yin, H.; Zhou, Y.; Liu, Y. Trace Determination of Eleven Natural Estrogens and Insights from Their Occurrence in a Municipal Wastewater Treatment Plant and River Water. Water Res. 2020, 182, 115976. [Google Scholar] [CrossRef] [PubMed]
- Manzo, V.; Goya-Pacheco, J.; Arismendi, D.; Becerra-Herrera, M.; Castillo-Aguirre, A.; Castillo-Felices, R.; Rosero-Moreano, M.; Carasek, E.; Richter, P. Cork Sheet as a Sorptive Phase to Extract Hormones from Water by Rotating-Disk Sorptive Extraction (RDSE). Anal. Chim. Acta 2019, 1087, 1–10. [Google Scholar] [CrossRef]
- Karayaka, S.; Chormey, D.S.; Fırat, M.; Bakırdere, S. Determination of Endocrine Disruptive Phenolic Compounds by Gas Chromatography Mass Spectrometry after Multivariate Optimization of Switchable Liquid-Liquid Microextraction and Assessment of Green Profile. Chemosphere 2019, 235, 205–210. [Google Scholar] [CrossRef]
- Hryniewicka, M.; Starczewska, B.; Tkaczuk, N. Simple Approach Based On Ultrasound-Assisted Emulsification Microextraction For Determination Of β-Sitosterol In Dietary Supplements And Selected Food Products. Microchem. J. 2020, 155, 104775. [Google Scholar] [CrossRef]
- Dey, T.K.; Uddin, M.E.; Jamal, M. Detection and Removal of Microplastics in Wastewater: Evolution and Impact. Environ. Sci. Pollut. Res. 2021, 28, 16925–16947. [Google Scholar] [CrossRef]
- Cheng, C.; Shi, J.X.; Kang, E.H.; Nelson, T.F.; Sander, M.; McNeill, K.; Hartwig, J.F. Polymers from Plant Oils Linked by Siloxane Bonds for Programmed Depolymerization. J. Am. Chem. Soc. 2024, 146, 12645–12655. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Do, H.T.; Phan Thi, L.A.; Singh, P.; Raizada, P.; Chi-Sheng Wu, J.; Nguyen, V.H. Global Challenges in Microplastics: From Fundamental Understanding to Advanced Degradations toward Sustainable Strategies. Chemosphere 2020, 267, 129275. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, M.J.; Kim, C.S.; Cheon, S.J.; Choi, K.I.; Kim, J.; Jung, J.; Yoon, J.K.; Lee, S.H.; Jeong, D.H. Detection of Microplastic Traces in Four Different Types of Municipal Wastewater Treatment Plants through FT-IR and TED-GC-MS. Environ. Pollut. 2023, 333, 122017. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, Q.; Wang, X.; Hou, F.; Li, P.; van der Hoek, J.P.; Liu, G. Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography-Mass Spectrometry. Environ. Sci. Technol. 2023, 57, 3114–3123. [Google Scholar] [CrossRef]
- Wolecki, D.; Trella, B.; Qi, F.; Stepnowski, P.; Kumirska, J. Evaluation of the Removal of Selected Phthalic Acid Esters (PAEs) in Municipal Wastewater Treatment Plants Supported by Constructed Wetlands. Molecules 2021, 26, 6966. [Google Scholar] [CrossRef]
- Takdastan, A.; Niari, M.H.; Babaei, A.; Dobaradaran, S.; Jorfi, S.; Ahmadi, M. Occurrence and Distribution of Microplastic Particles and the Concentration of Di 2-Ethyl Hexyl Phthalate (DEHP) in Microplastics and Wastewater in the Wastewater Treatment Plant. J. Environ. Manag. 2021, 280, 111851. [Google Scholar] [CrossRef]
- Zhou, X.X.; He, S.; Gao, Y.; Li, Z.C.; Chi, H.Y.; Li, C.J.; Wang, D.J.; Yan, B. Protein Corona-Mediated Extraction for Quantitative Analysis of Nanoplastics in Environmental Waters by Pyrolysis Gas Chromatography/Mass Spectrometry. Anal. Chem. 2021, 93, 6698–6705. [Google Scholar] [CrossRef] [PubMed]
- Kotowska, U.; Kapelewska, J.; Sawczuk, R. Occurrence, Removal, and Environmental Risk of Phthalates in Wastewaters, Landfill Leachates, and Groundwater in Poland. Environ. Pollut. 2020, 267, 115643. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.X.; Hao, L.T.; Wang, H.Y.Z.; Li, Y.J.; Liu, J.F. Cloud-Point Extraction Combined with Thermal Degradation for Nanoplastic Analysis Using Pyrolysis Gas Chromatography-Mass Spectrometry. Anal. Chem. 2019, 91, 1785–1790. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, X.; Lin, L.; Wang, D. Occurrence, Distribution and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons and Their Derivatives in the Effluents of Wastewater Treatment Plants. Sci. Total Environ. 2021, 789, 147911. [Google Scholar] [CrossRef]
- Erick, K.M.; Hudson, N.N.; Mildred, P.N. Physico-Chemical Characteristics and Levels of Polycyclic Aromatic Hydrocarbons in Untreated Water from Ngong River, Kenya. J. Pollut. Eff. Control 2016, 4, 2. [Google Scholar] [CrossRef]
- Huang, W.; Liu, B.; Zhao, H.; Zhao, L.; Zhang, J. Spatial Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Sediments from Dachan Bay, Shenzhen City. Water 2023, 15, 1848. [Google Scholar] [CrossRef]
- Sayed, F.A.; Eid, M.H.; El-Sherbeeny, A.M.; Abdel-Gawad, G.I.; Mohamed, E.A.; Abukhadra, M.R. Environmental and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons and Toxic Elements in the Red Sea Using Monte Carlo Simulation. Sci. Rep. 2025, 15, 4122. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive Review of Polycyclic Aromatic Hydrocarbons in Water Sources, Their Effects and Treatments. Sci. Total Environ. 2019, 696, 133971. [Google Scholar] [CrossRef]
- Shinde, D.; Murugan, V.; Dhagat, U.; Gupta, P.; Tadala, R.; Karubothula, B.; Golebiewska, I.; Bin Salem, S.; Elamin, W.; Brudecki, G. Introduction of a Small Volume Ethyl Acetate Based Liquid-Liquid Extraction Procedure for Analysis of Polycyclic Aromatic Hydrocarbons in Wastewater by Atmospheric Pressure Gas Chromatography-Mass Spectrometry and Evaluation of Method Greenness. J. Chromatogr. A 2025, 1740, 465563. [Google Scholar] [CrossRef]
- Çetintürk, K. A High-Throughput Novel Approach for the Determination of Cresols in Wastewater Based on Stir Bar Sorptive Extraction Along with Thermal Desorption GC-MS/MS. J. Anal. Chem. 2023, 78, 1255–1266. [Google Scholar] [CrossRef]
- Majumdar, D.; Majumdar, D. Dissolved Load of Aromatic and Halogenated Non-Methane VOCs in Urban Sewage during Wet and Dry Seasons. Environ. Sci. Pollut. Res. Int. 2022, 29, 60289–60301. [Google Scholar] [CrossRef]
- Tanimu, A.; Jillani, S.M.S.; Ganiyu, S.A.; Chowdhury, S.; Alhooshani, K. Multivariate Optimization of Chlorinated Hydrocarbons’ Micro-Solid-Phase Extraction from Wastewater Using Germania-Decorated Mesoporous Alumina-Silica. Microchem. J. 2021, 160, 105674. [Google Scholar]
- Rakhtshah, J.; Shirkhanloo, H.; Esmaeili, N. A Rapid Extraction of Toxic Styrene from Water and Wastewater Samples Based on Hydroxyethyl Methylimidazolium Tetrafluoroborate Immobilized on MWCNTs. Microchem. J. 2021, 170, 106759. [Google Scholar]
- Behzadi, M. Facile Fabrication and Application of Poly(Ortho-Phenetidine) Nanocomposite Coating for Solid-Phase Microextraction of Carcinogenic Polycyclic Aromatic Hydrocarbons from Wastewaters. Ecotoxicol. Environ. Saf. 2021, 208, 111568. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, I.; Arrebola, F.J.; Martínez Vidal, J.L.; Garrido Frenich, A. Assessment of Wastewater Pollution by Gas Chromatography and High Resolution Orbitrap Mass Spectrometry. J. Chromatogr. A 2020, 1619, 460964. [Google Scholar] [CrossRef] [PubMed]
- Senta, I.; Gracia-Lor, E.; Borsotti, A.; Zuccato, E.; Castiglioni, S. Wastewater Analysis to Monitor Use of Caffeine and Nicotine and Evaluation of Their Metabolites as Biomarkers for Population Size Assessment. Water Res. 2015, 74, 23–33. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I.; Orfanos, A.G.; Manariotis, I.D.; Tatarchuk, T.; Sellaoui, L.; Bonilla-Petriciolet, A.; Mittal, A.; Núñez-Delgado, A. Removal of Caffeine, Nicotine and Amoxicillin from (Waste)Waters by Various Adsorbents. A Review. J. Environ. Manag. 2020, 261, 110236. [Google Scholar] [CrossRef]
- Borrego-Soto, G.; Eberhart, J.K. Embryonic Nicotine Exposure Disrupts Adult Social Behavior and Craniofacial Development in Zebrafish. Toxics 2022, 10, 612. [Google Scholar] [CrossRef]
- dos Santos, J.A.; Quadra, G.R.; Almeida, R.M.; Soranço, L.; Lobo, H.; Rocha, V.N.; Bialetzki, A.; Reis, J.L.; Roland, F.; Barros, N. Sublethal Effects of Environmental Concentrations of Caffeine on a Neotropical Freshwater Fish. Ecotoxicology 2022, 31, 161–167. [Google Scholar] [CrossRef]
- Quéméneur, M.; Marty, Y. Fatty Acids and Sterols in Domestic Wastewaters. Water Res. 1994, 28, 1217–1226. [Google Scholar] [CrossRef]
- Jovičić, K.; Djikanović, V.; Santrač, I.; Živković, S.; Dimitrijević, M.; Vranković, J.S. Effects of Trace Elements on the Fatty Acid Composition in Danubian Fish Species. Animals 2024, 14, 954. [Google Scholar] [CrossRef]
- Nikonova, A.A.; Shishlyannikov, S.M.; Volokitina, N.A.; Galachyants, Y.P.; Bukin, Y.S.; Blinov, V.V.; Gnatovsky, R.Y.; Vorobyeva, S.S. Fatty Acid Changes in Nearshore Phytoplankton under Anthropogenic Impact as a Biodiversity Risk Factor for the World’s Deepest Lake Baikal. Diversity 2022, 14, 55. [Google Scholar] [CrossRef]
- Liu, H.; He, X.; Hu, X.; Pan, B.; Huang, Z.; Shen, J. Hollow Fiber-Solid Phase Microextraction of Fatty Acid Methyl Esters from Wastewater Coupled with Micro Sample Collector Assisted Injection Technique. J. Chromatogr. A 2023, 1710, 464415. [Google Scholar] [CrossRef]
- Guérette, C.; Lemoine, P.; Ramirez, P.; Segura, P.A. Determination of Short-Chain Carboxylic Acids and Non-Targeted Analysis of Water Samples Treated by Wet Air Oxidation Using Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2021, 1652, 462352. [Google Scholar] [CrossRef]
- Vargas-Muñoz, M.A.; Cerdà, V.; Turnes Palomino, G.; Palacio, E. Determination of Long-Chain Fatty Acids in Anaerobic Digester Supernatant and Olive Mill Wastewater Exploiting an in-Syringe Dispersive Liquid-Liquid Microextraction and Derivatization-Free GC-MS Method. Anal. Bioanal. Chem. 2021, 413, 3833–3845. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.W.; Wang, X.J.; Wang, P.; Zhao, Y.P.; Nie, J.; Li, Z.G.; Fang, X.G.; Lee, M.R. Dispersive Liquid-Liquid Microextraction Combined with Microwave Demulsification for Determination of FAME Residuals in Biodiesel Wastewater. J. Chromatogr. Sci. 2020, 58, 976–984. [Google Scholar] [CrossRef]
- Bielawska, K.; Dziakowska, I.; Roszkowska-Jakimiec, W. Chromatographic Determination of Fatty Acids in Biological Material. Toxicol Mech Methods 2010, 20, 526–537. [Google Scholar]
- Al-Khalid, T.; Surkatti, R.; El-Naas, M.H. Organic Contaminants in Industrial Wastewater: Prospects of Waste Management by Integrated Approaches. In Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant; Springer: Singapore, 2020; pp. 205–235. [Google Scholar] [CrossRef]
- Babu, N.; Reddy, S. Impact of Solvents Leading to Environmental Pollution. J Chem. Pharm. Sci. 2014, 3, 50–52. [Google Scholar]
- Sun, Z.; Xu, Z.; Zhou, Y.; Zhang, D.; Chen, W. Effects of Different Scrap Iron as Anode in Fe-C Micro-Electrolysis System for Textile Wastewater Degradation. Environ. Sci. Pollut. Res. 2019, 26, 26869–26882. [Google Scholar] [CrossRef]
- Sun, G.; Wan, J.; Sun, Y.; Li, H.; Chang, C.; Wang, Y. Enhanced Removal of Nitrate and Refractory Organic Pollutants from Bio-Treated Coking Wastewater Using Corncobs as Carbon Sources and Biofilm Carriers. Chemosphere 2019, 237, 124520. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, K.; Malik, A. Cyto-Genotoxic Potential of Petroleum Refinery Wastewater Mixed with Domestic Sewage Used for Irrigation of Food Crops in the Vicinity of an Oil Refinery. Heliyon 2021, 7, e08116. [Google Scholar] [CrossRef] [PubMed]
- Ötles, S.; Kartal, C. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples. Acta Sci. Pol. Technol. Aliment. 2016, 15, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Gomes Vianna, M.T.; Coutinho da Silva, R.; Marques, M. Optimisation of the Conditions of Dispersive Liquid-Liquid Microextraction for Environmentally Friendly Determination of Bisphenols and Benzophenone in Complex Water Matrices by Lc-Ms/Ms. SSRN Electron. J. 2022, 180, 107636. Available online: https://ssrn.com/abstract=4034638 (accessed on 31 April 2025).
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
WWTP water | 24 compounds | 50 | µd-SPE Stir-rate: manually shaken for 2.5 min; Drying: 25 min; Elution: 5 mL of cyclohexane. | GC-MS (n.s.) | n.s. | 0.11–0.24 | 53–120 | [24] (2024) |
WWTP water | 52 compounds | 10 | LLE Extractant: 700 µL of dichloromethane and n-hexane. | GC×GC-QTOF-MS (EI) | 1.13–6.59 | 3.39–19.41 | 60.6–121.4 | [25] (2024) |
WWTP influent | (a) Chlorbenside (b) Fenobucarb | 8 | BS-DLLME Binary solvent: 167 μL dichloromethane and 83 μL chloroform (2:1) and 2 mL ethanol; Centrifugation: 3461× g for 90 s. | GC-MS (EI) | (a) 0.71 (b) 0.33 | (a) 2.4 (b) 1.1 | (a) 99.4–103.1 (b) 96.0–102.2 | [26] (2023) |
WWTP effluent | 17 compounds | 100 | SPE (ZT-WCX/ZT-WAX/HR-X, 1:1:3) Conditioning: 5 mL of methanol/ethyl acetate and 5 mL of ultra-pure water; Drying: n.s.; Elution: 12 mL of hexane/toluene (4:1). | GC-MS (EI) | 0.003–0.145 | 0.007–0.213 | 3–132 | [27] (2023) |
WWTP water | Chlorpyrifos | n.s. | TF-LPME (Dibutyl sebacate film) Stir-rate: 6 h at 250 rpm; Washing: ultra-pure water; Drying: n.s.; Elution: 1 mL of ethyl acetate with UAE for 15 min. | GC-MS (EI) | 0.05 | 0.17 | 73–124 | [28] (2022) |
Municipal 1 and hospital 2 wastewater | (a) Dioxacarb (b) Trifluralin (c) Tefluthrin (d) Fenitrothion (e) Flumetralin | 8 | DLLME Dispersant: 1.96 mL ethanol; Extractant: 200 mL chloroform; Centrifugation: 6000 rpm for 2 min. | GC-MS (EI) | (a) 5.4 (b) 0.57 (c) 0.66 (d) 2.6 (e) 4.2 | (a) 18 (b) 1.9 (c) 2.2 (d) 8.6 (e) 13.8 | (a) (91.6–105.1) 1; (99.4–105.8) 2 (b) (97.6–107.9) 1; (86.9–106.9) 2 (c) (90.4–113.7) 1; (95.7–105.1) 2 (d) (91.6–108.5) 1; (95.7–105.1) 2 (e) (81.6–111.7) 1; (81.3–104.5) 2 | [29] (2021) |
Wastewater canal water | (a) PCB 10 (b) PCB 28 (c) PCB 52 (d) PCB 153 (e) PCB 138 (f) PCB 180 | 9.5 | Online emulsification-enhanced disposable pipette extraction Addition of 10 µL of 1-undecanol; Stir-rate: 2500 rpm for 6 min; Extractant: 15 mg of graphitic carbon nitride; Elution: 75 µL of n-hexane. | GC-MS (EI) | (a) 0.00435 (b) 0.00679 (c) 0.00580 (d) 0.00690 (e) 0.00690 (f) 0.00781 | (a) 0.0127 (b) 0.0278 (c) 0.0221 (d) 0.0278 (e) 0.0272 (f) 0.0303 | (a) 95.7–101 (b) 99.3–105 (c) 93.4–101 (d) 97.2–102 (e) 95.6–101 (f) 92.2–101 | [30] (2021) |
WWTP water | (a) Propham (b) Chlorpyrifos (c) β-Endosulfan (d) Acibenzolar-S-methyl | 8 | DLLME Extractant: 3 mL methanol and 200 μL chloroform; Centrifugation: 3461× g for 2 min. | GC-MS (n.s.) | (a) 0.4 (b) 2.8 (c) 2.3 (d) 0.7 | (a) 1.2 (b) 9.4 (c) 7.8 (d) 2.3 | (a) 99.0–113.2 (b) 103.1–104.8 (c) 92.7–108.2 (d) 97.2–104.2 | [31] (2020) |
Municipal wastewater | (a) Prothiofos (b) Oxadiargyl (c) γ-Cyhalothrin | 8 | QuEChERS Binary solvent: 100 μL chloroform and 100 μL 1,2-dichloroethane; Dispersant: 2 mL ethanol; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 0.59 (b) 1.5 (c) 1.6 | (a) 2.0 (b) 4.9 (c) 5.4 | (a) 86.1–88.3 (b) 89.6–95.6 (c) 89.2–91.7 | [32] (2020) |
Domestic 1 and industrial 2 wastewater | (a) Bixafen (b) Fipronil | 8 | B-DLLME Dispersant: 2.5 mL of methanol; Extractant: 250 mL of chloroform/dichloromethane (2:1); Centrifugation: 3461× g for 2 min. | GC-MS (n.s.) | (a) 7.3 (b) 6.1 | (a) 24 (b) 20 | (a) (92.1–103.6) 1; (98.1–101.6) 2 (b) (90.4–104.3) 1; (96.6–102.1) 2 | [33] (2020) |
Municipal 1 and medical 2 wastewater | (a) Dioxacarb (b) Trifluralin (c) Tefluthrin (d) Flumetralin | 8 | SS-LPME Switchable solvent: 0.50 mL of N, N-Dimethylbenzylamine, sodium hydroxide, and ultra-pure water; Deprotonation: 1.5 mL of 1 M sodium hydroxide; Centrifugation: 3461× g for 2 min. | GC-MS (n.s.) | (a) 2.0 (b) 0.74 (c) 0.67 (d) 0.38 | (a) 6.5 (b) 2.5 (c) 2.2 (d) 1.3 | (a) (79.8–85.9) 1; (88.0–93.7) 2 (b) (83.9–96.3) 1; (97.0–105.4) 2 (c) (80.6–86.3) 1; (91.5–99.2) 2 (d) (88.0–101.7) 1; (104.1–106.8) 2 | [34] (2020) |
Domestic wastewater | (a) Acibenzolar-S-methyl (b) Chlorpyrifos (c) β-Endosulfan (d) Propham | 8 | VA-SS-LPME Addition of 1.1 mL of protonated N, N-dimethylbenzylamine; Deprotonation: 1.5 mL of 0.50 M sodium hydroxide; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 0.42 (b) 0.70 (c) 1.9 (d) 0.42 | (a) 1.4 (b) 2.4 (c) 6.3 (d) 1.4 | (a) 87.0–113.8 (b) 94.5–107.6 (c) 95.5–103.8 (d) 95.2–104.7 | [35] (2020) |
Urban 1 and olive mill 2 wastewater | (a) PCB 28 (b) PCB 52 (c) PCB 118 (d) PCB153 (e) PCB 180 | 200 | SPE (STRATATM-XL) Conditioning: 5 mL of dichloromethane, 5 mL of 2-propanol, and 5 mL of water; Washing: 5 mL of water and 5 mL of 2-propanol/water; Drying: 10 min; Elution: 2 mL of dichloromethane. | GC-MS (n.s.) | 0.00078–0.00318 | n.s. | (a) 62.4 1; 26.6 2 (b) 69.2 1; 25.9 2 (c) 60.9 1; 24.1 2 (d) 76.8 1; 13.9 2 (e) 54.0 1; 9.8 2 | [36] (2020) |
Medical wastewater | (a) Heptachlor (b) Aldrin (c) Dieldrin | n.s. | SS-LPME Switchable solvent: water and N,N-dimethylbenzylamine (1:1 v/v); Deprotonation: 1 mL of 0.050 M of sodium hydroxide; Sonication: 30 s; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 0.96 (b) 1.5 (c) 0.44 | (a) 3.2 (b) 5.1 (c) 1.5 | (a) n.s. (b) n.s. (c) n.s. | [37] (2020) |
Municipal 1 and medical 2 wastewater | (a) Procymidone (b) Chlorfurenol | 8 | SS-LPME Switchable solvent: 2 mL of N,N-Dimethylbenzylamine and ultra-pure water; Addition of 1.5 mL of 0.50 M sodium hydroxide; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 0.44 (b) 2.9 | (a) 1.4 (b) 9.4 | (a) (98.1–115.1) 1; (99.5–101.4) 2 (b) (104.4–115.4) 1; (99.1–103.1) 2 | [38] (2019) |
Municipal wastewater | (a) 2,4,6-Trichlorophenol (b) Malathion | 8 | B-DLLME Addition of 1 g of potassium nitrate; Binary dispersive extractor mixture: 100 µL dichloromethane, 100 µL 1,2 dichloroethane, and 2 mL ethanol; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 5.9 (b) 0.73 | (a) 19 (b) 2.5 | (a) 91.0–101.7 (b) 96.8–103.1 | [39] (2019) |
WWTP influent | (a) Heptachlor (b) Aldrin (c) cis-Chlordane (d) Dieldrin (e) Diazinon (f) α-Endosulfan (g) β-Endosıulfan | 30 | BC-MNP-μSPE Addition of 50 mg of a binary mixture of OA-MNPs and SA-MNPs (25 mg each); Stirring: hand-shaken for 15 s; Ultrasonication: 30 s; Exposure to an external magnetic field for 2 min. | GC-MS (n.s.) | (a) 0.49 (b) 0.44 (c) 0.29 (d) 0.57 (e) 0.29 (f) 2.7 (g) 1.4 | (a) 1.5 (b) 1.5 (c) 0.95 (d) 1.9 (e) 1.0 (f) 9.0 (g) 4.7 | (a) 95.7–112.1 (b) 101.8–104.4 (c) 96.3–106.3 (d) 101.9–107.4 (e) 100.5–108.5 (f) 97.5–99.4 (g) 101.9–104.2 | [40] (2019) |
Coking wastewater | (a) 2,4,6-Trichlorophenol (b) 2,4,5-Trichlorophenol (c) 2,3,4,6-Tetrachlorophenol | 25 | HS-SPME (CAR/PDMS fibre) Equilibration: n.s.; Pre-incubation: 50 °C for 5 min; Extraction: 70 °C for 60 min; Desorption: 290 °C for 20 min. | GC-MS/MS (EI) | (a) 0.95 (b) 0.97 (c) 1.38 | (a) 3.16 (b) 3.25 (c) 4.59 | (a) 72.29–81.33 (b) 71.85–73.01 (c) 92.93–104.05 | [41] (2019) |
Municipal wastewater | Malathion | 7.9 | DLLME Dispersant: 1 mL of methanol; Extractant: 200 μL of chloroform; Centrifugation: 6000 rpm for 2 min. | GC-MS (EI) | 2.06 | 6.86 | 90.3–94.5 | [42] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
Hospital wastewater | (a) Amitriptyline (b) Sertraline | 8 | SS-LPME Switchable solvent: 1 mL of N,N-Dimethylbenzylamine, ultra-pure water, and sodium hydroxide; Deprotonation: 2.5 mL of 0.75 M sodium hydroxide; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 2.6 (b) 0.59 | (a) 8.7 (b) 2.0 | (a) 94.2–104.9 (b) 93.3–102.2 | [52] (2024) |
WWTP water | (a) Paracetamol (b) Ketoprofen (c) Naproxen (d) Diclofenac (e) Ibuprofen | 100 | SPE (STRATATM-X) Conditioning: 12 mL of distilled water and 6 mL of acetonitrile; Drying: 20 min; Elution: 4 mL of acetonitrile; Derivatisation: 100 µL of BSTFA with 1% TMCS at 100 °C for 1 h. | GC-MS (EI) | (a) 0.010 (b) 0.006 (c) 0.030 (d) 0.016 (e) 0.026 | (a) 0.030 (b) 0.018 (c) 0.088 (d) 0.046 (e) 0.082 | 41.57–89.94 | [53] (2023) |
WWTP water | (a) Paracetamol (b) Ketoprofen (c) Naproxen (d) Diclofenac (e) Ibuprofen | 100 | SPE (STRATATM-X) Conditioning: 12 mL of distilled water and 6 mL of acetonitrile; Drying: 20 min; Elution: 4 mL of acetonitrile; Derivatisation: 100 µL of BSTFA with 1% TMCS at 100 °C for 1 h. | GC-MS (EI) | (a) 0.010 (b) 0.006 (c) 0.030 (d) 0.016 (e) 0.026 | (a) 0.030 (b) 0.018 (c) 0.088 (d) 0.046 (e) 0.082 | 41.57–89.94 | [53] (2023) |
Municipal 1 and synthetic domestic 2 wastewater | (a) Fluoxetine (b) Oxcarbazepine (c) Amitriptyline (d) Moclobemide (e) Sertraline (f) Escitalopram oxalate (g) Paroxetine (h) Olanzapine (i) Haloperidol (j) Quetiapine (k) Donepezil | 8 | SS-LPME Switchable solvent: 0.50 mL water and N,N-dimethylbenzylamine; Deprotonation: 1.5 mL of 0.75 M sodium hydroxide; Centrifugation: 3461× g for 2 min. | GC-MS (n.s.) | (a) 1.5 (b) 0.67 (c) 0.30 (d) 7.7 (e) 0.26 (f) 1.4 (g) 3.4 (h) 1.4 (i) 2.7 (j) 7.0 (k) 7.9 | (a) 4.9 (b) 2.2 (c) 1.0 (d) 26 (e) 0.86 (f) 4.7 (g) 11 (h) 4.6 (i) 9.2 (j) 23 (k) 26 | (a) (97.7–105.1) 1; (92.2–101.7) 2 (b) (93.5–102.6) 1; (93.7–105.1) 2 (c) (95.0–101.4) 1; (94.2–104.9) 2 (d) (93.8–102.3) 1; (89.3–102.0) 2 (e) (94.5–103.2) 1; (93.3–102.2) 2 (f) (96.9–101.0) 1; (99.1–101.7) 2 (g) (98.9–100.6) 1; (97.2–109.0) 2 (h) (97.9–110.6) 1; (96.6–116.5) 2 (i) (98.1–105.9) 1; (96.9–104.2) 2 (j) (92.1–103.9) 1; (98.5–104.2) 2 (k) (86.1–104.8) 1; (93.6–101.1) 2 | [54] (2022) |
STP influent | (a) Ibuprofen (b) Naproxen (c) Ketoprofen (d) Diclofenac | 100 | SPE (CGL Sciences C18 and OASIS® HLB) Conditioning: 3 mL of ethyl acetate and 3 mL of methanol/ultra-pure water (pH 3); Washing: 10 mL of ultra-pure water/methanol (60:40); Drying: 30 min; Elution: 10 mL of ethyl acetate/acetone (50:50). | GC-MS (n.s.) | (a) 1417.1 (b) 2255.1 (c) 647.0 (d) 320.6 | (a) 4294.1 (b) 6833.5 (c) 1960.6 (d) 10579.5 | (a) 92.7–104.8 (b) 76.6–108.8 (c) 98.5–113.7 (d) 98.4–101.1 | [55] (2022) |
WWTP water | Benzothiazide | 1000 | SPE (OASIS® HLB) Conditioning: 10 mL of methanol and 10 mL of ultra-pure water; Washing: 100 mL mL of methanol/water (5:95, v/v); Drying: 2 h; Elution: 5 mL of methanol and 5 mL of dichloromethane. | GC-MS/MS (EI) | 0.00046 | 0.00154 | 87.9–116 | [56] (2022) |
Hospital wastewater | (a) Amitriptyline (b) Sertraline (c) Escitalopram oxalate | 25 | D-µ-SPE (100 mg of PS@MNPs) Addition of 1.5 mL of buffer solution (pH 8); Stir-rate: manually shaken for 20 s; Centrifugation: 2 min at 3500 rpm; Elution: 200 µL of acetonitrile and vortex mixed for 5 s. | GC-MS (n.s.) | (a) 0.43 (b) 0.59 (c) 0.53 | (a) 1.4 (b) 2.0 (c) 1.8 | (a) 96.7–97.2 (b) 90.9–92.6 (c) 93.4–97.5 | [57] (2022) |
Municipal 1, medical 2 and synthetic domestic 3 wastewater | (a) Memantine (b) Oxcarbazepine (c) Amitriptyline (d) Moclobemide (e) Escitalopram oxalate (f) Olanzapine (g) Haloperidol | 8 | BS-DLLME Dispersant: 0.50 mL isopropyl alcohol; Extractant: 37.5 µL of carbon tetrachloride and 112.5 µL of 1,2-dichloroethane; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 6.3 (b) 6.4 (c) 0.28 (d) 2.9 (e) 0.43 (f) 0.48 (g) 0.97 | (a) 21 (b) 21 (c) 0.93 (d) 9.7 (e) 1.4 (f) 1.6 (g) 3.2 | (a) (99–103) 1; (98–102) 2; (99–101) 3 (b) (96–104) 1; (98–100) 2; (99–102) 3 (c) (100) 1; (98–102) 2; (98–103) 3 (d) (99–102) 1; (99–101) 2; (99–101) 3 (e) (98–103) 1; (99–105) 2; (99–101) 3 (f) (95–104) 1; (97–103) 2; (100–102) 3 (g) (96–106) 1; (100) 2; (95–101) 3 | [58] (2021) |
Municipal 1 and hospital 2 wastewater | (a) Escitalopram oxalate (b) Olanzapine (c) Haloperidol | 8 | DLLME Dispersant: 1.96 mL ethanol; Extractant: 200 mL chloroform; Centrifugation: 6000 rpm for 2 h. | GC-MS (EI) | (a) 17 (b) 31 (c) 37 | (a) 56 (b) 103 (c) 122 | (a) (100.3–108.3) 1; (85.1–106.2) 2 (b) (88.6–100.1) 1; (96.1–100.1) 2 (c) (95.3–99.8) 1; (95.7–112.6) 2 | [29] (2021) |
Wastewater and urban effluent | (a) Acetaminophen (b) Ibuprofen (c) Trimethoprim | 500 | SPE (OASIS® HLB) Conditioning: 4 mL of methanol and 6 mL of reagent water; Drying: 10 min; Elution: 6 mL of methanol. | GC-MS (EI) | (a) 0.14 (b) 0.05 (c) 1.00 | (a) 0.40 (b) 0.14 (c) 2.80 | (a) 72 (b) 76 (c) 71 | [59] (2021) |
Hospital 1 and STP 2 wastewater | (a) Ibuprofen (b) Aspirin (c) Naproxen (d) Mefenamic acid (e) Ketoprofen (f) Diclofenac | 100 | SPE (S-Mg/Al-LDH) Conditioning: 2 mL of methanol and triply distilled water; Washing: 2 mL each of triply distilled water, acetonitrile, and methanol; Elution: methanol/acetic acid (9:1, v/v). | GC-MS (EI) | (a) (0.020) 1; (0.016) 2 (b) (0.010) 1; (0.004) 2 (c) (0.013) 1; (0.008) 2 (d) (0.018) 1; (0.013) 2 (e) (0.014) 1; (0.008) 2 (f) (0.016) 1; (0.012) 2 | (a) (0.066) 1; (0.00528) 2 (b) (0.033) 1; (0.0132) 2 (c) (0.0429) 1; (0.0264) 2 (d) (0.0594) 1; (0.0429) 2 (e) (0.0462) 1; (0.0264) 2 (f) (0.0528) 1; (0.0396) 2 | (a) (89.50–108.92) 1; (86.43–88.52) 2 (b) (102.37–126.56) 1; (99.07–99.99) 2 (c) (93.21–93.74) 1; (93.31–95.21) 2 (d) (89.02–89.45) 1; (88.82–91.34) 2 (e) (95.92–96.14) 1; (95.99–96.36) 2 (f) (93.15–105.93) 1; (89.97–92.91) 2 | [60] (2021) |
WWTP water | Diclofenac | 0.1 | Direct injection | GC-MS (EI) | 0.2 | 0.6 | n.s. | [61] (2019) |
WWTP influent and effluent | (a) Paracetamol (b) Ibuprofen (c) Flurbiprofen (d) Ketoprofen (e) Naproxen (f) Diclofenac (g) Metoprolol (h) Propranolol (i) Imipramine (j) Clomipramine | 250 | SPE (STRATATM-X with silica wool and 100 mg of an additional sorbent) Conditioning: 3 mL of methanol and 3 mL of deionised water; Washing: 3 mL of 5% aqueous methanol and 3 mL of hexane; Drying: n.s.; Elution: 5 mL of methanol Derivatisation: 100 μL of BSTFA with 1% TMCS at 60 °C for 30 min. | GC-MS (EI) | (a) 0.033 (b) 0.017 (c) 0.003 (d) 0.033 (e) 0.033 (f) 0.033 (g) 0.017 (h) 0.033 (i) 0.033 (j) 0.033 | (a) 0.100 (b) 0.050 (c) 0.010 (d) 0.100 (e) 0.100 (f) 0.100 (g) 0.050 (h) 0.100 (i) 0.100 (j) 0.100 | (a) 19 (b) 89 (c) 80 (d) 88 (e) 76 (f) 100 (g) 84 (h) 50 (i) 52 (j) 44 | [62] (2019) |
Municipal wastewater | Metformin | 10 | SPE (STRATATM-X-CW) Conditioning: 3 mL methanol and 3 mL ultra-pure water; Elution: 10 mL of acetonitrile/methanol (50:50, v/v) with 2% formic acid; Derivatisation: 25 μL of MBTFA at 70 °C for 100 min. | GC-MS (EI) | 0.0758 | 0.253 | 92.0–113.0 | [63] (2019) |
Municipal wastewater | Fluoxetine | 8 | B-DLLME Addition of 1 g of potassium nitrate; Binary dispersive extractor mixture: 100 µL dichloromethane, 100 µL 1,2-dichloroethane, and 2 mL ethanol; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | 5.6 | 18 | 98.2–107.3 | [39] (2019) |
Municipal 1 and sewage 2 wastewater | (a) Lidocaine (b) Prilocaine | 10 | FPSE (cellulose fabric with Carbowax 20 M coating and Teflon-coated magnetic stir bar) Conditioning: acetone/acetonitrile (1:1, v/v), rinsed with water, and dried with a lint-free tissue; Extraction: 30 min at 900 rpm; Desorption: 500 μL of acetone for 15 min. | GC-MS (EI) | (a) 0.005 (b) 0.019 | (a) 0.016 (b) 0.063 | (a) (97.56–98.45) 1; (94.65–96.92) 2 (b) (96.65–97.50) 1; (95.74–97.88) 2 | [64] (2019) |
WWTP influent 1 and effluent 2 | (a) (R)-Alprenolol (b) (S)-Alprenolol (c) (R)-Norfluoxetine (d) (S)-Norfluoxetine (e) (R)-Fluoxetine (f) (S)-Fluoxetine (g) (R)-Metoprolol (h) (S)-Metoprolol (i) (R)-Propranolol (j) (S)-Propranolol (k) Bisoprolol-D1 (l) Bisoprolol-D2 (m) Sertraline (n) Paroxetine | 500 | SPE (OASIS® MCX) Washing: 4 mL of 2% formic acid in water; Drying: 1 h; Elution: 4 mL of 5% ammonium hydroxide in ethanol; Derivatisation: 100 μL of MSTFA with 1% TMCS at 70 °C for 1 h. | GC-MS (EI) | (a) 0.0026 (b) 0.0003 (c) 00052 (d) 0.0052 (e) 0.00003 (f) 0.00003 (g) 0.0052 (h) 0.0052 (i) 0.0013 (j) 0.0013 (k) 0.0156 (l) 0.0156 (m) 0.0031 (n) 0.026 | (a) 0.0156 (b) 0.0156 (c) 0.0312 (d) 0.0312 (e) 0.00015 (f) 0.00015 (g) 0.0208 (h) 0.0208 (i) 0.0052 (j) 0.0052 (k) 0.0625 (l) 0.0625 (m) 0.0125 (n) 0.1042 | (a) 88.8 (b) 112.3 (c) 82.1 (d) 80.7 (e) n.s. (f) n.s. (g) 87.5 (h) 101.3 (i) 87.9 (j) 110.9 (k) 94.6 (l) 114.5 (m) n.s. (n) n.s. | [65] (2019) |
Municipal wastewater | Carbamazepine | 7.9 | DLLME Dispersant: 1 mL of methanol; Extractant: 200 μL of chloroform; Centrifugation: 6000 rpm for 2 min. | GC-MS (EI) | 3.22 | 10.74 | 100.0–105.8 | [42] (2019) |
WWTP influent and effluent | (a) Acetylsalicylic acid (b) Ketoprofen (c) Naproxen (d) Ibuprofen (e) Mefenamic acid (f) Diclofenac | 20 | RDSE (Teflon disk) Conditioning: 5 mL of ethyl acetate, 5 mL of methanol, and 5 mL of deionised water for 5 min each; Extraction: 60 min at 3000 rpm at room temperature; Desorption: 10 mL of methanol for 10 min at 2000 rpm; Derivatisation: 70 μL of MSTFA and 50 μL of pyridine for 35 min at 80 °C. | GC-MS (n.s.) | (a) 0.03 (b) 0.15 (c) 0.07 (d) 0.03 (e) 0.09 (f) 0.04 | (a) 0.10 (b) 0.44 (c) 0.20 (d) 0.08 (e) 0.27 (f) 0.12 | (a) 11 (b) 82 (c) 31 (d) 75 (e) 30 (f) 33 | [66] (2019) |
WWTP water | (a) Salicylic acid (b) Acetylsalicylic acid (c) Ibuprofen (d) Naproxen (e) Meclofenamic acid (f) Diclofenac (g) Chloramphenicol (h) Carbamazepine | 1000 | SPE (OASIS® HLB) Conditioning: 6 mL of methanol and 6 mL of ultra-pure water (pH 2 or 7); Drying: 30 min; Elution: 9 mL of extraction solution (6 mL of acetone/ethyl acetate (1:1), 1 mL of methanol, 1 mL of acetonitrile, and 1 mL of dichloromethane); Derivatisation: 100 µL of BSTFA with 1% TMCS for 30 min at 70 °C. | GC-MS (n.s.) | (a) 0.051 (b) 0.403 (c) 0.160 (d) 0.101 (e) 0.111 (f) 0.559 (g) 0.500 (h) 0.200 | (a) 0.164 (b) 1.333 (c) 0.533 (d) 0.333 (e) 0.368 (f) 1.864 (g) 1.400 (h) 0.650 | (a) 65 (b) 90 (c) 96 (d) 80 (e) 106 (f) 93 (g) 102 (h) 80 | [67] (2019) |
WWTP influent | Metformin | 10 | SPE (STRATATM-X-CW) Conditioning: 9 mL of methanol and 9 mL of ultra-pure water; Drying: n.s.; Elution: 10 mL of acetonitrile/methanol (50/50, v/v) with 2% formic acid; Derivatisation: MBTFA at 70 °C for 100 min. | GC-MS (EI) | 0.129 | 0.429 | 90.2–119.6 | [68] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
WWTP influent and effluent | Triclosan | 5 | DLLME Dispersant: 750 μL of methanol; Extractant: 60 μL of 1,1,1-trichloroethane; Centrifugation: 4000 rpm for 5 min; Addition of 5 mL of ethyl acetate; Sonication: 2 h in ultrasonic bath; Derivatisation: MTBSTFA in bain-marie for 10 min at 65 °C. | GC-MS (n.s.) | 0.04 | 0.11 | 100 | [73] (2024) |
WWTP water | (a) Triclosan (b) Methyl triclosan | 50 | µd-SPE Stir-rate: manually shaken for 2.5 min; Drying: 25 min; Elution: 5 mL of cyclohexane. | GC-MS (n.s.) | (a) n.s. (b) n.s. | (a) 0.24 (b) 0.17 | (a) 66–76 (b) 85–94 | [24] (2024) |
WWTP influent and effluent | (a) UV-327 (b) UV-328 (c) UV-326 (d) UV-329 (e) UV-234 (f) UV-P (g) UV-531 | 500 | SPE (Chromabond® HLB) Conditioning: 5 mL ethyl acetate/dichloromethane (1:1), 5 mL methanol, and 5 mL ultra-pure water; Washing: 5 mL ultra-pure water; Drying: 30 min; Derivatisation: 20 mL ethyl acetate/dichloromethane (1:1). | GC-MS (EI) | (a) 0.04 (b) 0.01 (c) 0.04 (d) 0.03 (e) 0.09 (f) 0.03 (g) 0.03 | (a) 0.12 (b) 0.04 (c) 0.13 (d) 0.10 (e) 0.28 (f) 0.10 (g) 0.08 | (a) 54–100 (b) 61–133 (c) 40–101 (d) 41–103 (e) 51–99 (f) 65–105 (g) 51–132 | [74] (2024) |
Industrial WWTP water | (a) 1H-Benzotriazole (b) 4-Methyl-1H-benzotriazole (c) 5-Methyl-1H-benzotriazole (d) 5-Chloro-1H-benzotriazole (e) 2-Tert-butyl-6-(5-chloro-2Hbenzotriazole-2-yl)-4-methylphenol (f) 2-(2H-Benzotriazole-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol | 5 | USA-EME Addition of 300 μL of acetic anhydride and 100 μL of chlorobenzene; Emulsification: 5 min in ultrasonication bath; Centrifugation: 4000 rpm for 5 min. | GC-MS (EI) | (a) 0.0012 (b) 0.0007 (c) 0.0002 (d) 0.0009 (e) 0.0001 (f) 0.0001 | (a) 0.05 (b) 0.05 (c) 0.05 (d) 0.05 (e) 0.05 (f) 0.05 | (a) 106–112 (b) 108–112 (c) 95–98 (d) 94–108 (e) 81–118 (f) 106–121 | [75] (2024) |
WWTP water | (a) 2-Ethylhexyl salicylate (b) Homosalate (c) 3-benzylidene camphor (d) isoamyl p-methoxycinnamate (e) 4-methylbenzylidene camphor (f) 2-hydroxy-4-methoxybenzophenone (g) 2-ethylhexyl- 4-(dimethylamin(o) benzoate (h) 2-ethyl-hexyl-4-trimethoxy cinnamate (i) Octocrylene | 10 | HS-SPME (Polyacrylate fiber) Conditioning: 280 °C for 30 min; Equilibration: 88 °C for 10 min; Extraction: 100 °C for 30 min; Desorption: 285 °C for 4.7 min. | GC-MS/MS (EI) | (a) 0.01200 (b) 0.00992 (c) 0.01007 (d) 0.00952 (e) 0.00800 (f) 0.00844 (g) 0.00426 (h) 0.00421 (i) 0.01060 | (a) 0.0400 (b) 0.0300 (c) 0.0396 (d) 0.0317 (e) 0.0267 (f) 0.0282 (g) 0.01421 (h) 0.0139 (i) 0.0351 | (a) 92.7–101.7 (b) 98.7–106.3 (c) 110.7–116 (d) 106.7–110.3 (e) 109.8–113.2 (f) 101.2–111.9 (g) 109–112.4 (h) 112.5–114.3 (i) 89.4–106.4 | [76] (2024) |
WWTP influent and effluent | (a) 2-hydroxy-4-methoxybenzophenone (b) 2,4-dihydroxybenzophenone (c) 4-hydroxybenzophenone (d) 2,2′-dihydroxy-4-methoxybenzophenone (e) 4,4′-dihydroxybenzophenone | 100 | SPE (OASIS® HLB) Conditioning: 5 mL of dichloromethane/ethyl acetate (v/v, 1:1), 5 mL of methanol, and 5 mL of ultra-pure water (pH 3); Drying: 1 h; Elution: 6 mL of dichloromethane/ethyl acetate (v/v, 1:1); Derivatisation: 2 µL of BSTFA. | GC-MS/MS (EI) | (a) 0.00144 (b) 0.00667 (c) 0.00100 (d) 0.01080 (e) 0.00810 | (a) 0.00432 (b) 0.02000 (c) 0.00300 (d) 0.03230 (e) 0.02430 | (a) 88.1–99.3 (b) 86.4–103.6 (c) 91.4–105.8 (d) 96.3–109.2 (e) 98.4–111.9 | [77] (2024) |
Domestic wastewater and WWTP influent and effluent | (a) Oxybenzone (b) Octocrylene | 100 | SPE (Spe-ed C18/10% Octadecyl) Conditioning: 2 mL of methanol and 1 mL of ultra-pure water; Elution: 15 mL of dichloromethane; Derivatisation: 20 µL of pyridine and 60 µL of MSTFA for 30 min at 80 °C. | GC-MS (EI) | (a) 0.008 (b) 0.013 | (a) 0.026 (b) 0.042 | (a) 59.4–62.7 (b) 60.8–77.2 | [78] (2024) |
WWTP effluent | (a) Musk Ambrette (b) Musk Ketone (c) Celestolide (d) Phantolide (e) Traseolide (f) Cashmeran (g) Tonalide (h) 2-ethylhexyl 4-(dimethylamino)benzoate (i) Ethyl 4-dimethylaminobenzoate | 100 | SPE (ZT-WCX:ZT-WAX:HR-X 1:1:3) Conditioning: 5 mL of methanol/ethyl acetate and 5 mL of ultra-pure water; Drying: n.s.; Elution: 12 mL of hexane/toluene (4:1). | GC-MS (EI) | (a) 0.082 (b) 0.009 (c) 0.007 (d) 0.030 (e) 0.046 (f) 0.064 (g) 0.004 (h) 0.064 (i) 0.052 | (a) 0.090 (b) 0.025 (c) 0.020 (d) 0.083 (e) 0.123 (f) 0.068 (g) 0.010 (h) 0.068 (i) 0.058 | (a) 51 (b) 35 (c) 68 (d) 68 (e) 11 (f) 20 (g) 41 (h) 67 (i) 71 | [27] (2023) |
WWTP water | (a) Tonalide (b) Triclosan | n.s. | TF-LPME (Dibutyl sebacate film) Stir-rate: 6 h at 250 rpm; Washing: ultra-pure water; Drying: n.s.; Elution: 1 mL of ethyl acetate with UAE for 15 min. | GC-MS (EI) | (a) 0.04 (b) 0.42 | (a) 0.14 (b) 1.41 | 73–124 | [28] (2022) |
STP influent and effluent | (a) Tonalide (b) Galaxolide (c) Musk Ketone (d) Triclocarban (e) Triclosan (f) UV-9 (g) UV-P (h) UV-326 (i) UV-327 (j) UV-328 (k) UV-329 | 500 | LLE Addition of 50 mL of hexane; Stir-rate: vigorously shaken for 15 min. | GC-MS (EI) | (a) 0.0002 (b) 0.0003 (c) 0.0005 (d) 0.0002 (e) 0.0030 (f) 0.0002 (g) 0.0001 (h) 0.0003 (i) 0.0002 (j) 0.0002 (k) 0.0003 | (a) 0.0008 (b) 0.0011 (c) 0.0020 (d) 0.0007 (e) 0.0045 (f) 0.0007 (g) 0.0005 (h) 0.0009 (i) 0.0007 (j) 0.0005 (k) 0.0005 | (a) 90 (b) 99 (c) 97 (d) 54 (e) 102 (f) 122 (g) 111 (h) 111 (i) 117 (j) 106 (k) 98 | [79] (2022) |
WWTP water | (a) 2-Ethylhexylsalicylate (b) Homosalate (c) Benzophenone-3 (d) 3-(4-Methylbenzyliden(e) camphor (e) 2-(2′-Hydroxy-5′-methylpheny(l) benzotriazole (f) 2-Ethylhexyl 4-methoxycinnamate (g) (3-t-Butyl-2-hydroxy5-methylphenyl)-5-chlorobenzotriazole (h) 2-(2′-Hydroxy-5′-octylphenyl)-benzotriazole (i) 2-(2-Hydroxy-3,5-dipenryl-pheny(l) benzotriazole (j) 2,4-Di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-y(l) phenol | 1000 | SPE (OASIS® HLB) Conditioning: 10 mL of methanol and 10 mL of ultra-pure water; Washing: 100 mL mL of methanol/water (5:95, v/v); Drying: 2 h; Elution: 5 mL of methanol and 5 mL of dichloromethane. | GC-MS/MS (EI) | (a) 0.00108 (b) 0.00060 (c) 0.00184 (d) 0.00100 (e) 0.00153 (f) 0.00059 (g) 0.00116 (h) 0.00019 (i) 0.00041 (j) 0.00273 | (a) 0.00360 (b) 0.00201 (c) 0.00614 (d) 0.00333 (e) 0.00510 (f) 0.00197 (g) 0.00385 (h) 0.00064 (i) 0.00136 (j) 0.00273 | (a) 73.9–78.2 (b) 79.3–89.9 (c) 126–154 (d) 84.1–96.8 (e) 115–134 (f) 75.4–77.7 (g) 94.5–116 (h) 71.5–77.1 (i) 105–108 (j) 103–132 | [56] (2022) |
WWTP waters and urban effluent | Triclosan | 500 | SPE (OASIS® HLB) Conditioning: 4 mL of methanol and 6 mL of reagent water; Drying: 10 min; Elution: 6 mL of methanol. | GC-MS (EI) | 0.05 | 0.14 | 88 | [59] (2021) |
WWTP effluent | (a) Cashmeran (b) Celestolide (c) Phantolide (d) Traseolide (e) Galaxolide (f) Tonalide (g) Musk ketone | 10 | HS-SPME (a CIM-80(A(l) fibre; b PDMS/DVB fibre) Equilibration: 5 min; Extraction: 55 °C for 40 min at 700 rpm; Desorption: 270 °C for 10 min. | GC-MS (EI) | (a) n.s. (b) n.s. (c) n.s. (d) n.s. (e) n.s. (f) n.s. (g) n.s. | (a) 1.7 a; 0.3 b (b) 1.2 a; 0.2 b (c) 2.2 a; 0.1 b (d) 1.4 a; 0.4 b (e) 3.5 a; 0.2 b (f) 2.0 a; 0.4 b (g) 2.4 a; 0.2 b | (a) (89.7–101) a; (78.0–85.2) b (b) (99.0–100) a; (77.2–93.0) b (c) (81.6–96.1) a; (75.4–87.9) b (d) (101–109) a; (73.4–78.9) b (e) (104–118) a; (68.9–71.8) b (f) (97.1–113) a; (71.9–74.6) b (g) (103–112) a; (61.4–89.6) b | [80] (2021) |
WWTP influent and effluent | (a) Celestolide (b) Galaxolide (c) Galaxolidone (d) Limonene (e) Phantolide (f) Tonalide | 1000 | SPE (C18) Conditioning: 10 mL of methanol and 10 mL of ultra-pure water; Drying: 1 h; Elution: 10 mL of n-hexane/dichloromethane (1:1, v/(v)) and 10 mL of n-hexane. | GC-MS/MS (EI) | (a) 0.0024 (b) 0.061 (c) 0.039 (d) 0.0017 (e) 0.080 | (a) 0.0063 (b) 0.124 (c) 0.090 (d) 0.005 (e) 0.137 | (a) 63.20–95.53 (b) 54.02–>100 (c) 80.65–>100 (d) 63.97–97.91 (e) 56.78–93.76 | [81] (2020) |
Municipal 1 and sewage 2 wastewater | Triclosan | 10 | FPSE (cellulose fabric with Carbowax 20 M coating and Teflon-coated magnetic stir bar) Conditioning: acetone/acetonitrile (1:1, v/v), rinsed with water, and dried with a lint-free tissue; Extraction: 30 min at 900 rpm; Desorption: 500 μL of acetone for 15 min. | GC-MS (EI) | 0.021 | 0.069 | (96.25–98.35) 1; (96.01–97.82) 2 | [64] (2019) |
Municipal wastewater | (a) Triclosan (b) Tonalide (c) Galaxolide | 7.9 | DLLME Dispersant: 1 mL of methanol; Extractant: 200 μL of chloroform; Centrifugation: 6000 rpm for 2 min. | GC-MS (EI) | (a) 2.16 (b) 3.30 (c) 2.67 | (a) 7.21 (b) 10.99 (c) 8.91 | (a) 90.9–91.2 (b) 94.9–96.4 (c) 91.1–111.8 | [42] (2019) |
WWTP influent and effluent | Triclosan | 20 | RDSE (Teflon disk) Conditioning: 5 mL of ethyl acetate, 5 mL of methanol, and 5 mL of deionised water for 5 min each; Extraction: 1 h at 3000 rpm at room temperature; Desorption: 10 mL of methanol for 10 min at 2000 rpm; Derivatisation: 70 μL of MSTFA and 50 μL of pyridine for 35 min at 80 °C. | GC-MS (n.s.) | 0.07 | 0.21 | 44 | [66] (2019) |
WWTP influent 1 and effluent 2 | 19 compounds | 6 | USA-DLLME Addition of 880 μL of 2-propanol and 80 μL of 1,1,2-trichloroethane; Sonication: 2 min in a 420 W ultrasonic bath; Centrifugation: 2670 × g for 15 min. | GC-MS/MS (EI) | 0.0001–0.0200 | 0.0004–0.0667 | (81–121) 1; (80–125) 2 | [82] (2019) |
WWTP water | Triclosan | 1000 | SPE (OASIS® HLB) Conditioning: 6 mL of methanol and 6 mL of ultra-pure water (pH 2 or 7); Drying: 30 min; Elution: 9 mL of extraction solution (6 mL of acetone/ethyl acetate (1:1), 1 mL of methanol, 1 mL of acetonitrile, and 1 mL of dichloromethane); Derivatisation: 100 µL of BSTFA with 1% TMCS for 30 min at 70 °C. | GC-MS (n.s.) | 0.100 | 0.290 | 94 | [67] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
STP influent and effluent | (a) Methyl Paraben (b) Ethyl Paraben (c) Propyl Paraben (d) Butyl Paraben | 100 | SPE (C18-E) Conditioning: 5 mL of ethyl acetate, 5 mL of methanol, and 5 mL of ultra-pure water; Elution: 20 mL ethyl acetate; | GC-MS (EI) | (a) 0.0005 (b) 0.0006 (c) 0.0005 (d) 0.0006 | (a) 0.0019 (b) 0.0025 (c) 0.0015 (d) 0.0011 | (a) 81 (b) 91 (c) 91 (d) 98 | [79] (2022) |
Municipal 1 and sewage 2 wastewater | (a) Ethyl paraben (b) Butyl paraben | 10 | FPSE (cellulose fabric with Carbowax 20 M coating and Teflon-coated magnetic stir bar) Conditioning: acetone/acetonitrile (1:1, v/v), rinsed with water, and dried with a lint-free tissue; Extraction: 30 min at 900 rpm; Desorption: 500 μL of acetone for 15 min. | GC-MS (EI) | (a) 0.013 (b) 0.008 | (a) 0.042 (b) 0.026 | (a) (95.56–97.54) 1; (94.84–96.96) 2 (b) (95.68–97.45) 1; (96.29–97.65) 2 | [64] (2019) |
Municipal wastewater | (a) Methyl paraben (b) Ethyl paraben | 7.9 | DLLME Dispersant: 1 mL of methanol; Extractant: 200 μL of chloroform; Centrifugation: 6000 rpm for 2 min. | GC-MS (EI) | (a) 5.05 (b) 2.92 | (a) 16.87 (b) 9.74 | (a) 91.8–92.3 (b) 98.5–99.9 | [42] (2019) |
WWTP influent and effluent | (a) Methyl paraben (b) Ethyl paraben (c) Propyl paraben (d) Butyl paraben | 20 | RDSE (Teflon disk) Conditioning: 5 mL of ethyl acetate, 5 mL of methanol, and 5 mL of deionised water for 5 min each; Extraction: 1 h at 3000 rpm at room temperature; Desorption: 10 mL of methanol for 10 min at 2000 rpm; Derivatisation: 70 μL of MSTFA and 50 μL of pyridine for 35 min at 80 °C. | GC-MS (n.s.) | (a) 0.08 (b) 0.07 (c) 0.11 (d) 0.04 | (a) 0.23 (b) 0.20 (c) 0.33 (d) 0.11 | (a) 75 (b) 74 (c) 81 (d) 97 | [66] (2019) |
WWTP water | Propylparaben | 1000 | SPE (OASIS® HLB) Conditioning: 6 mL of methanol and 6 mL of ultra-pure water (pH 2 or 7); Drying: 30 min; Elution: 9 mL of extraction solution (6 mL of acetone/ethyl acetate (1:1), 1 mL of methanol, 1 mL of acetonitrile, and 1 mL of dichloromethane); Derivatisation: 100 µL of BSTFA with 1% TMCS for 30 min at 70 °C. | GC-MS (n.s.) | 1.5 | 3.000 | 102 | [67] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
Inlet of WWTP | (a) (R)-Amphetamine (b) (S)-Amphetamine (c) (R)-Methamphetamine (d) (S)-Methamphetamine (e) (R)-MDMA (f) (S)-MDMA (g) Buphedrone D1 (h) Buphedrone D2 (i) (R)-Butylone (j) (S)-Butylone (k) 3,4-DMMC D1 (l) 3,4-DMMC D2 (m) 3-MMC D1 (n) 3-MMC D2 | 100 | SPE (OASIS® MCX) Washing: 4 mL of 2% formic acid in water; Drying: 30 min; Elution: 4 mL of 5% ammonium hydroxide in ethanol; Derivatisation: 5 μL of the (R)-MTPA-Cl (5%, v/(v)) at 80 °C for 90 min and 100 μL of ethanol at 70 °C for 15 min. | GC-MS (EI) | (a) 0.00624 (b) 0.00666 (c) 0.00513 (d) 0.00508 (e) 0.00774 (f) 0.00738 (g) 0.00575 (h) 0.00519 (i) 0.00530 (j) 0.00751 (k) 0.00521 (l) 0.00686 (m) 0.00963 (n) 0.00844 | (a) 0.015 (b) 0.015 (c) 0.015 (d) 0.015 (e) 0.015 (f) 0.015 (g) 0.015 (h) 0.015 (i) 0.015 (j) 0.015 (k) 0.015 (l) 0.015 (m) 0.030 (n) 0.030 | (a) 94 (b) 90 (c) 97 (d) 95 (e) 97 (f) 107 (g) 100 (h) 101 (i) 107 (j) 99 (k) 95 (l) 98 (m) 83 (n) 88 | [89] (2024) |
Wastewater influent and effluent | (a) MDMA (b) MDEA (c) Fenproporex (d) MBDB (e) Ethylone (f) Methylone (g) N-ethylpentylone (h) Cocaine (i) Cocaethylene | 12 | LPME 100 μL of toluene/dichloromethane/ethyl acetate. | GC-MS (EI) | (a) 0.0205 (b) 0.0149 (c) 0.0125 (d) 0.0174 (e) 0.0105 (f) 0.0220 (g) 0.0129 (h) 0.012 (i) 0.0153 | (a) 0.0682 (b) 0.0495 (c) 0.0418 (d) 0.0579 (e) 0.0349 (f) 0.0733 (g) 0.043 (h) 0.0399 (i) 0.0509 | (a) 33.1 (b) 56 (c) 54 (d) 83.9 (e) 67.4 (f) 97.2 (g) 92.5 (h) 96 (i) 97 | [90] (2023) |
WWTP effluent | (a) Amphetamine (b) Methamphetamine (c) MDMA | 25 | SPE (OASIS® Prime MCX) Washing: 5 mL of ultra-pure water and 6 mL of methanol; Elution: 4 mL of 0.5% ammonia in methanol; Derivatisation: 25 µL of (R)-MTP-Cl in dry acetonitrile for 2 h at 80 °C. | GC-MS/MS (EI) | (a) 0.120 (b) 0.120 (c) 0.120 | (a) 0.400 (b) 0.400 (c) 0.400 | (a) 93 (b) 94–99 (c) 81–88 | [91] (2022) |
WWTP water | (a) Methamphetamine (b) Ketamine (c) Methaqualone | 19 | TFME (DVB/PDMS membrane) Stir-rate: 200 rpm for 2 h at room temperature; Desorption: n.s. | GC-MS (EI) | (a) 0.0055 (b) 0.0020 (c) 0.0011 | (a) 0.0180 (b) 0.0068 (c) 0.0035 | (a) 95–108 (b) 97–104 (c) 99–111 | [92] (2022) |
WWTP effluent | 18 compounds | 1000 | SPE (OASIS® MCX) Washing: 4 mL of 2% formic acid; Drying: 1 h; Elution: 4 mL of 5% ammonium hydroxide in ethanol; Derivatisation: 10 µL of (R)-MTPA-Cl at 80 °C for 2 h. | GC-MS (EI) | 0.0142–0.0895 | 0.050–0.250 | 18.6–98.0 | [93] (2021) |
WWTP influent | (a) Methamphetamine (b) MDMA (c) Norketamine (d) Morphine (e) Benzoylecgonine | 50 | SPE (OASIS® MCX) Conditioning: 6 mL of methanol and 9 mL of ultra-pure water; Drying: 5 min; Elution: 4 mL of methanol and 4 mL of 5% ammonia/water in methanol; Derivatisation:
| GC-MS (EI) | (a) 0.00027 (b) 0.00050 (c) 0.00035 (d) 0.00071 (e) 0.00043 | (a) 0.00091 (b) 0.00167 (c) 0.00118 (d) 0.00235 (e) 0.00143 | (a) 98.4 (b) 122 (c) 87.7 (d) 66.0 (e) 75.3 | [94] (2021) |
WWTP water | (a) MDMA (b) Ephedrine (c) Methamphetamine (d) Methcathinone (e) Norketamine (f) Ketamine (g) Morphine (h) Benzoylecgonine (i) 6-Acetylmorphine (j) Codeine (k) Methadone | 50 | SPE (OASIS® MCX) Conditioning: 6 mL of methanol and 9 mL of ultra-pure water; Drying: n.s.; Elution: 4 mL of methanol and 4 mL of 5% ammonia/methanol; Derivatisation: 25 μL of BSTFA with 1% TMCS at 70 °C for 30 min. | GC-MS (n.s.) | (a) 0.000298 (b) 0.000170 (c) 0.0000256 (d) 0.000383 (e) 0.0000723 (f) 0.000117 (g) 0.0000446 (h) 0.0000750 (i) 0.0000649 (j) 0.0000896 (k) 0.0000123 | (a) 0.000992 (b) 0.000568 (c) 0.000085 (d) 0.00128 (e) 0.000241 (f) 0.000391 (g) 0.000149 (h) 0.000250 (i) 0.000216 (j) 0.000299 (k) 0.0000409 | (a) 91.4 (b) 85.8 (c) 98.4 (d) 115 (e) 87.7 (f) 91.2 (g) 110 (h) 98.0 (i) 123 (j) 98.2 (k) 101 | [95] (2021) |
WWTP influent | (a) 2F-DCK (b) Ketamine | 50 | SPE (OASIS® MCX) Conditioning: 6 mL of methanol, 4 mL of water, and 4 mL of water (pH 2); Drying: n.s.; Elution: 4 mL of methanol and 4 mL of 5% ammonia/methanol. | GC-MS (EI) | (a) 0.12 (b) 0.20 | (a) 0.41 (b) 0.67 | (a) 101 (b) 102 | [96] (2021) |
WWTP influent 1 and effluent 2 | (a) (R)-Amphetamine (b) (S)-Amphetamine (c) (S)-Methamphetamine (d) (R)-Methamphetamine (e) (R)-MDMA (f) (S)-MDMA | 500 | SPE (OASIS® MCX) Washing: 4 mL of 2% formic acid in water; Drying: 1 h; Elution: 4 mL of 5% ammonium hydroxide in ethanol; Derivatisation: 100 μL of MSTFA with 1% TMCS at 70 °C for 1 h. | GC-MS (EI) | (a) 0.001 (b) 0.001 (c) 0.0003 (d) 0.0003 (e) 0.0021 (f) 0.0013 | (a) 0.0063 (b) 0.0063 (c) 0.0021 (d) 0.0021 (e) 0.0156 (f) 0.0063 | (a) 103.5 (b) 97.5 (c) 100.1 (d) 99.3 (e) n.s. (f) n.s. | [65] (2019) |
WWTP water | Methamphetamine | 50 | SPE (OASIS® MCX) Conditioning: 6 mL of methanol, 4 mL of ultra-pure water, and 4 mL of ultra-pure water (pH 2); Drying: 5 min; Elution: 4 mL of methanol and 4 mL of 4% ammonia in methanol. | GC-MS (EI) | 0.000858 | 2.86 | 109 | [97] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
Domestic wastewater and WWTP influent and effluent | (a) Estrone (b) β-Estradiol (c) Estriol | 100 | SPE (Spe-ed C18/10% Octadecyl) Conditioning: 2 mL of methanol and 1 mL of ultra-pure water; Elution: 15 mL of dichloromethane; Derivatisation: 20 µL of pyridine and 60 µL of MSTFA for 30 min at 80 °C. | GC-MS (EI) | (a) 0.013 (b) 0.004 (c) 0.055 | (a) 0.042 (b) 0.014 (c) 0.155 | (a) 63–96.8 (b) 40.2–66.5 (c) 2.9–15.2 | [78] (2024) |
WWTP influent 1 and effluent 2 | (a) 1H,1H,2H,2H-Perfluorooctan-1-ol (b) 1H,1H,2H,2H-Perfluorodecan-1-ol (c) 1H,1H,2H,2H-Perfluorododecan-1-ol | 20 | SBSE (PDMS) Addition of 1 mL of methanol, 400 mg of sodium chloride, and one stir bar; Stir-rate: 1000 rpm for 90 min; Washing: deionised water; Dying: lint-free tissue paper; Desorption: thermal tube. | TED-GC-MS (EI) | (a) 0.00216 (b) 0.0108 (c) 0.0167 | (a) 0.0233 (b) 0.0284 (c) 0.0401 | (a) (36–50) 1; (64–85) 2 (b) (56–87) 1; (94–120) 2 (c) (12–21) 1; (73–80) 2 | [107] (2023) |
WWTP water | (a) 17-β-estradiol (b) 17-α-ethinylestradiol (c) Bisphenol A (d) 4-Nonylphenol (e) 4-tert-octylphenol | 1000 | SPE (OASIS® HLB) Conditioning: 10 mL of dichloromethane, 10 mL of methanol, and 10 mL of ultra-pure water; Washing: 10 mL of ultra-pure water; Drying: 30 min; Elution: 10 mL dichloromethane/methanol (1:1); Derivatisation: 50 μL of pyridine and 50 μL of BSTFA with 1% TMCS for 30 min at 60 °C. | GC-MS (EI) | (a) 0.21 (b) 1.1 (c) 0.53 (d) 0.20 (e) 0.27 | (a) 0.71 (b) 3.01 (c) 1.77 (d) 0.86 (e) 0.91 | (a) 77.5 (b) 74.6 (c) 103.4 (d) 81.6 (e) 93.9 | [108] (2023) |
WWTP influent 1 and effluent 2 | (a) Bisphenol F (b) Bisphenol E (c) Bisphenol A (d) Bisphenol C (e) Bisphenol B (f) Bisphenol G (g) Bisphenol Cl2 (h) Bisphenol Z (i) Bisphenol AP | n.s. | USA-EME Salt: disodium hydrogen phosphate; Addition of 60 µL of chlorobenzene and 225 µL of acetic anhydride; Stir-rate: hand-shaken for 10 s; Sonication: 5 min; Centrifugation: 4000 rpm; Derivatisation: 225 µL acetic anhydride. | GC-MS (EI) | (a) 0.00465 1; 0.00457 2 (b) 0.01173 1; 0.00469 2 (c) 0.06382 1; 0.00388 2 (d) 0.001533 1; 0.00041 2 (e) 0.00416 1; 0.01464 2 (f) 0.00912 1; 0.00476 2 (g) 0.01851 1; 0.00518 2 (h) 0.00816 1; 0.00463 2 (i) 0.01645 1; 0.01172 2 | (a) 0.01 1; 0.005 2 (b) 0.1 1; 0.05 2 (c) 0.1 1; 0.05 2 (d) 0.05 1; 0.005 2 (e) 0.01 1; 0.05 2 (f) 0.05 1; 0.01 2 (g) 0.05 1; 2 (h) 0.05 1; 0.1 2 (i) 0.1 1; 0.05 2 | (a) (112–119) 1; (112–116) 2 (b) (98–100) 1; (106–122) 2 (c) (85–101) 1; 113 2 (d) (86–102) 1; (108–113) 2 (e) (10–118) 1; (87–115) 2 (f) (95–102) 1; (94–118) 2 (g) (91–115) 1; (99–111) 2 (h) (105–114) 1; (106–108) 2 (i) (103–119) 1; (105–118) 2 | [109] (2022) |
Wastewater | (a) Hexestrol (b) Diethylstilbestrol (c) Estrone (d) 17-β-estradiol (e) 17-α-ethinylestradiol (f) Estriol (g) Testosterone (h) Dihydrotestosterone (i) Androstenedione (j) Progesterone (k) Norethindrone (l) Levonorgestrel (m) Pregnenolone | 100 | SPE (OASIS® HLB) Drying: n.s.; Elution: 600 µL of acetone; Derivatisation: 70 µL of BSTFA with 1% TMCS for 4 min in a microwave at 200 W. | GC-MS (n.s.) | (a) 0.00001 (b) 0.00010 (c) 0.00001 (d) 0.00001 (e) 0.00001 (f) 0.00001 (g) 0.00015 (h) 0.00015 (i) 0.00030 (j) 0.00005 (k) 0.00030 (l) 0.00005 (m) 0.00010 | (a) 0.00004 (b) 0.00040 (c) 0.00004 (d) 0.00004 (e) 0.00004 (f) 0.00004 (g) 0.00050 (h) 0.00050 (i) 0.00100 (j) 0.00018 (k) 0.00100 (l) 0.00018 (m) 0.00035 | (a) 98–100 (b) 97–101 (c) 95–102 (d) 96–102 (e) 97–102 (f) 100–102 (g) 96–101 (h) 98–100 (i) 97–99 (j) 98–99 (k) 99–102 (l) 99–100 (m) 97–100 | [110] (2022) |
Wastewater and urban effluents | Estradiol | 500 | SPE (OASIS® HLB) Conditioning: 4 mL of methanol and 6 mL of reagent water; Drying: 10 min; Elution: 6 mL of methanol. | GC-MS (EI) | 0.38 | 1.14 | 75 | [59] (2021) |
WWTP water | (a) 4-tert-octylphenol (b) 4-Nonylphenol (c) Bisphenol A (d) 17-β-estradiol (e) 17-α-ethinyl estradiol | 1000 | SPE (OASIS® HLB) Conditioning: 10 mL of dichloromethane, 10 mL of methanol, and 10 mL of water. Washing: 10 mL of water; Drying: 30 min; Elution: 10 mL of a dichloromethane/methanol (1:1, v/v); Derivatisation: 50 μL of pyridine and 50 μL of BSTFA with 1% TMCS for 30 min at 60 °C. | GC-MS (EI) | (a) 0.27 (b) 0.20 (c) 0.53 (d) 0.21 (e) 1.1 | (a) 0.91 (b) 0.86 (c) 1.77 (d) 0.71 (e) 3.01 | (a) 93.9 (b) 81.6 (c) 103.4 (d) 77.5 (e) 74.6 | [111] (2021) |
WWTP influent 1 and effluent 2 | (a) Bisphenol A (b) Bisphenol B (c) Bisphenol C (d) Bisphenol E (e) Bisphenol F (f) Bisphenol P (g) Bisphenol S (h) Bisphenol Z (i) Bisphenol AP (j) Bisphenol AF | 1000 | SPE (OASIS® HLB) Conditioning: 6 mL of methanol and 10 mL of ultra-pure water; Drying: 2 h; Elution: ethyl acetate/methanol; Derivatisation: BSTFA with 1% TMCS for 60 min at 70 °C. | GC-MS (EI) | (a) 0.00068 (b) 0.00061 (c) 0.00098 (d) 0.00073 (e) 0.00091 (f) 0.00204 (g) 0.00230 (h) 0.00217 (i) 0.00074 (j) 0.00156 | (a) 0.00227 (b) 0.00204 (c) 0.00327 (d) 0.00242 (e) 0.00302 (f) 0.00681 (g) 0.00767 (h) 0.00722 (i) 0.00245 (j) 0.00520 | (a) 104.2–113.5 (b) n.s. (c) n.s. (d) n.s. (e) n.s. (f) n.s. (g) n.s. (h) n.s. (i) n.s. (j) n.s. | [112] (2021) |
STP effluent | (a) Coprostanol (b) Epi-Coprostanol (c) Cholesterol (d) Cholestanol (e) Campesterol (f) Stigmasterol (g) β-Sitosterol | 100 | SPE (C18) Conditioning: 10 mL of methanol and 6 mL of ultra-pure water; Drying: 30 min; Elution: 9 mL of dichloromethane; Derivatisation: BSTFA with 1% of TMCS for 1 h at 70 °C. | GC-MS (n.s.) | (a) n.s. (b) n.s. (c) n.s. (d) n.s. (e) n.s. (f) n.s. (g) n.s. | (a) 500 (b) 500 (c) 500 (d) 300 (e) 100 (f) 100 (g) 50 | (a) 45–130 (b) 67–143 (c) 80–120 (d) 80–120 (e) 80–120 (f) 75–110 (g) 85–110 | [113] (2021) |
Industrial wastewater | 4-Nonylphenol | 1 | HS-SPME (DVB/CAR/PDMS fibre) Extraction: 20 min at 80 °C at 600 rpm; Derivatisation: 100 μL of MBTFA for 10 min at 60 °C at 600 rpm; Desorption: 3 min at 230 °C. | GC-MS (EI) | 0.01 | 0.15 | 94–118 | [114] (2020) |
WWTP water | (a) Bisphenol AF (b) Bisphenol F (c) Bisphenol E (d) Bisphenol A (e) Bisphenol C (f) Bisphenol A diacetate (g) Bisphenol Z (h) Bisphenol S (i) Bisphenol BP (j) Bisphenol FL | 100 | SPE (STRATATM-X) Conditioning: 3 mL of methanol and 3 mL of deionised water; Washing: 3 mL of 5% aqueous methanol and 3 mL of hexane; Drying: n.s.; Elution: 6 mL of methanol; Derivatisation: 50 μL of BSTFA with 1% TMCS for 30 min at 30 °C. | GC-MS (EI) | (a) 0.0003 (b) 0.0017 (c) 0.0003 (d) 0.0017 (e) 0.0017 (f) 0.0170 (g) 0.0003 (h) 0.0017 (i) 0.0017 (j) 0.0017 | (a) 0.001 (b) 0.005 (c) 0.001 (d) 0.005 (e) 0.005 (f) 0.050 (g) 0.001 (h) 0.005 (i) 0.005 (j) 0.005 | (a) 109 (b) 105 (c) 133 (d) 120 (e) 122 (f) 135 (g) 111 (h) 104 (i) 111 (j) 115 | [115] (2020) |
Municipal WWTP influent 1 and effluent 2 | (a) Estrone (b) 17-β-estradiol (c) Estriol (d) 2-Hydroxyestrone (e) 4-Hydroxyestrone (f) 16-α-Hydroxyestrone (g) 2-Hydroxyestradiol (h) 4-Hydroxyestradiol (i) 17-Epiestriol (j) 16-Epiestriol (k) 16-Keto-estradiol | 1000 | SPE (OASIS® HLB) Conditioning: 6 mL of ethyl acetate, 6 mL of methanol, and 10 mL of ultra-pure water; Washing: 10 mL of 10% methanol, 10 mL of ultra-pure water, and 10 mL of 10% methanol with 2% ammonium hydroxide; Drying: 60 min; Elution: 8 mL methanol/ethyl acetate solution (2:8, v/v) and 2 mL of ethyl acetate; Derivatisation: 50 μL of DMF and 50 μL of BSTFA with 1% TMCS for 1 h at 80 °C. | GC-MS (EI) | (a) 0.0028 (b) 0.0044 (c) 0.0046 (d) 0.0055 (e) 0.0057 (f) 0.0047 (g) 0.0059 (h) 0.0023 (i) 0.0049 (j) 0.0035 (k) 0.0038 | (a) 0.0094 (b) 0.0146 (c) 0.0153 (d) 0.0183 (e) 0.0189 (f) 0.0158 (g) 0.0196 (h) 0.0077 (i) 0.0163 (j) 0.0117 (k) 0.0127 | (a) (79.8–94.1) 1; (82.5–88.9) 2 (b) (60.4–83.3) 1; (68.3–94.0) 2 (c) (84.9–101.8) 1; (88.8–112.5) 2 (d) (87.1–114.9) 1; (77.4–88.3) 2 (e) (63.0–92.6) 1; (60.8–84.3) 2 (f) (86.2–112.0) 1; (88.3–89.6) 2 (g) (59.5–92.8) 1; (77.8–82.2) 2 (h) (34.9–41.5) 1; (32.0–48.2) 2 (i) (84.7–113.8) 1; (65.9–104.1) 2 (j) (84.7–100.8) 1; (91.6–110.4) 2 (k) (89.0–101.1) 1; (97.2–105.5) 2 | [116] (2020) |
Medical wastewater | (a) Estrone (b) 17-β-Estradiol | n.s. | SS-LPME Switchable solvent: water and N,N-dimethylbenzylamine (1:1, v/v); Deprotonation: 1 mL of 0.050 M of sodium hydroxide; Sonication: 30 s; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 0.58 (b) 0.54 | (a) 1.9 (b) 1.8 | (a) n.s. (b) n.s. | [37] (2020) |
WWTP influent and effluent | (a) Estrone (b) 17-β-estradiol (c) Testosterone (d) 17-α-ethinylestradiol (e) Estriol | 250 | SPE (STRATATM-X with silica wool and 100 mg of an additional sorbent) Conditioning: 3 mL of methanol and 3 mL of deionised water; Washing: 3 mL of 5% aqueous methanol and 3 mL of hexane; Drying: n.s.; Elution: 5 mL of methanol; Derivatisation: 100 μL of BSTFA with 1% TMCS at 60 °C for 30 min. | GC-MS (EI) | (a) 0.017 (b) 0.033 (c) 0.033 (d) 0.017 (e) 0.033 | (a) 0.050 (b) 0.100 (c) 0.100 (d) 0.050 (e) 0.100 | (a) 83 (b) 87 (c) 88 (d) 103 (e) 94 | [62] (2019) |
Municipal wastewater | Estrone | 8 | B-DLLME Addition of 1 g of potassium nitrate; Binary dispersive extractor mixture: 100 µL dichloromethane, 100 µL 1,2 dichloroethane, and 2 mL ethanol; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | 0.43 | 1.4 | 94.2–101.5 | [39] (2019) |
Wastewater | (a) Estrone (b) 17-β-Estradiol (c) Estriol (d) 17-α-ethinylestradiol | 20 | RDSE (Cork sheet) Extraction: 45 min at 2000 rpm at room temperature; Desorption: 5 mL of methanol for 10 min at 2000 rpm; Derivatisation: 50 µL of MSTFA and 50 µL of pyridine at for 30 min 80 °C. | GC-MS (EI) | (a) 0.003 (b) 0.006 (c) 0.019 (d) 0.016 | (a) 0.010 (b) 0.019 (c) 0.062 (d) 0.054 | (a) 89 (b) 86 (c) 63 (d) 83 | [117] (2019) |
Municipal wastewater | (a) 4-tert-octylphenol (b) 4-n-octylphenol (c) 4-n-nonylphenol (d) Bisphenol A | 8 | SS-LPME Switchable solvent: 1.5 mL of N,N-dimethylbenzylamine and ultra-pure deionised water; Deprotonation: 1 mL of 1 M sodium hydroxide; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | (a) 0.21 (b) 0.13 (c) 0.14 (d) 0.54 | (a) 0.68 (b) 0.45 (c) 0.47 (d) 1.8 | (a) 91.6–103.8 (b) 90.5–97.4 (c) 93.8–99.5 (d) 92.7–106.6 | [118] (2019) |
Municipal 1 and sewage 2 wastewater | Bisphenol A | 10 | FPSE (cellulose fabric with Carbowax 20 M coating and Teflon-coated magnetic stir bar) Conditioning: acetone/acetonitrile (1:1, v/v), rinsed with water, and dried with a lint-free tissue; Extraction: 30 min at 900 rpm; Desorption: 500 μL of acetone for 15 min. | GC-MS (EI) | 0.017 | 0.056 | (96.48–98.63) 1; (96.21–98.56) 2 | [64] (2019) |
WWTP influent | (a) 4-Octylphenol (b) 4-Nonylphenol (c) Bisphenol A (d) Estrone (e) 17-β-Estradiol | 30 | BC-MNP-μSPE Addition of 50 mg of a binary mixture of OA-MNPs and SA-MNPs (25 mg each); Stirring: hand-shaken for 15 s; Ultrasonication: 30 s; Exposure to an external magnetic field for 2 min. | GC-MS (n.s.) | (a) 0.13 (b) 0.17 (c) 0.31 (d) 0,70 (e) 0.91 | (a) 0.42 (b) 0.58 (c) 1.0 (d) 2.3 (e) 3.0 | (a) 98.2–99.3 (b) 95.3–101.9 (c) 101.9–109.4 (d) 97.6–101.7 (e) 99.6–109.1 | [40] (2019) |
Municipal wastewater | (a) 17α-Ethynylestradiol (b) β-Estradiol (c) 4-Nonylphenol (d) Estrone (e) Bisphenol A | 7.9 | DLLME Dispersant: 1 mL of methanol; Extractant: 200 μL of chloroform; Centrifugation: 6000 rpm for 2 min. | GC-MS (EI) | (a) 4.83 (b) 3.14 (c) 2.99 (d) 4.12 (e) 1.99 | (a) 16.11 (b) 10.46 (c) 9.97 (d) 13.73 (e) 6.63 | (a) 95.9–105.6 (b) 105.8–110.7 (c) 89.7–91.3 (d) 106.4–115.1 (e) 98.2–100.9 | [42] (2019) |
WWTP influent and effluent | (a) Estriol (b) Estrone (c) 17-α-ethinylestradiol (d) 17-β-estradiol (e) Bisphenol A | 20 | RDSE (Teflon disk) Conditioning: 5 mL of ethyl acetate, 5 mL of methanol, and 5 mL of deionised water for 5 min each; Extraction: 60 min at 3000 rpm at room temperature; Desorption: 10 mL of methanol for 10 min at 2000 rpm; Derivatisation: 70 μL of MSTFA and 50 μL of pyridine for 35 min at 80 °C. | GC-MS (n.s.) | (a) 0.07 (b) 0.04 (c) 0.07 (d) 0.04 (e) 0.02 | (a) 0.21 (b) 0.11 (c) 0.21 (d) 0.11 (e) 0.06 | (a) 38 (b) 75 (c) 79 (d) 80 (e) 94 | [66] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
WWTP water | (a) Dimethyl phthalate (b) Diethyl Phthalate (c) Dibutyl phthalate (d) Benzyl butyl phthalate (e) Bis-(2-ethylhexy(l) phthalate (f) Di-n-octyl phthalate | 10 | LLE Extractant: 700 µL of dichloromethane and n-hexane. | GC×GC-QTOF-MS (EI) | (a) 1.08 (b) 2.06 (c) 2.42 (d) 5.63 (e) 11.38 (f)9.65 | (a) 3.24 (b) 6.18 (c) 7.26 (d) 16.89 (e) 34.14 (f) 28.95 | (a) 97.8–108.5 (b) 86.8–94.2 (c) 101.8–107.8 (d) 85.7–86.4 (e) 89.2–91.4 (f) 98.9–100.1 | [25] (2024) |
WWTP effluent | (a) Bis(2-ethylhexy(l) phthalate (b) Dicyclohexyl phthalate (c) Bis(2-methoxyethy(l) phthalate (d) Dioctyl phthalate (e) Dibutyl phthalate (f) Diamyl phthalate (g) Bis(2-ethylhexy(l) adipate (h) 2,2-dimethoxy-2–2-phenylacetophenone (i) 4-methylbenzophenone | 100 | SPE (ZT-WCX:ZT-WAX:HR-X 1:1:3) Conditioning: 5 mL of methanol/ethyl acetate (1:1) and 5 mL of ultra-pure water; Drying: n.s.; Elution: 12 mL of hexane/toluene (4:1). | GC-MS (EI) | (a) 0.118 (b) 0.044 (c) 0.128 (d) 0.099 (e) 0.171 (f) 0.170 (g) 0.001 (h) 0.007 (i) 0.049 | (a) 0.152 (b) 0.046 (c) 0.230 (d) 0.099 (e) 0.321 (f) 0.247 (g) 0.002 (h) 0.012 (i) 0.084 | (a) 37 (b) 65 (c) 104 (d) 103 (e) 66 (f) 37 (g) 69 (h) 90 (i) 17 | [27] (2023) |
Municipal wastewater | (a) Polystyrene (b) Polypropylene (c) Polyethylene | 10,30 and 100 | Fenton-oxidation Addition of 10 mL of iron sulphate heptahydrate (FeSO4·7H2O, 20 g/L); Digestion: 20 mL of hydrogen peroxide was initially injected into sample, then an additional 5 mL hydrogen peroxide was added every 10 min, and finally 4 mL of sulphuric acid. | TED-GC-MS (n.s.) | (a) 500–1600 (b) 43,200 (c) 2500–11,300 | (a) 33,100–43,300 (b) 46,700 (c) 25,700–53,400 | (a) 96 (b) 100.8 (c) 96 | [123] (2023) |
Raw and treated wastewater | (a) Polymethyl methacrylate (b) Polypropylene (c) Polystyrene (d) Polyethylene (e) Polyethylene terephthalate (f) Polyamide | n.s. | Microfiltration, ultrafiltration, and hydrogen peroxide digestion 1. Microplastics Digestion: 30% hydrogen peroxide at 65 °C for 48 h; Drying: 60 °C. 2. Nanoplastics Digestion: 30% hydrogen peroxide at 65 °C for 48 h; Washing: 3 times with ultra-pure water; Drying: 90 °C. | Py-GC-MS (n.s.) | (a) 0.001 (b) 0.001 (c) 0.002 (d) 0.001 (e) 0.002 (f) 0.001 | (a) 0.002 (b) 0.002 (c) 0.006 (d) 0.002 (e) 0.004 (f) 0.002 | (a) n.s. (b) 60.7−72.4 (c) 64.8−75.4 (d) n.s. (e) 65.5−79.1 (f) n.s. | [124] (2023) |
STP influent and effluent | (a) Dimethyl phthalate (b) Diethyl phthalate (c) Dibutyl phthalate (d) Benzyl butyl phthalate (e) Diethylhexyl phthalate (f) Di-n-octyl phthalate | 100 | SPE (C18-E) Conditioning: 5 mL of ethyl acetate, 5 mL of methanol, and 5 mL of ultra-pure water; Elution: 20 mL ethyl acetate. | GC-MS (EI) | (a) 0.0008 (b) 0.0005 (c) 0.0008 (d) 0.0012 (e) 0.0009 (f) 0.0008 | (a) 0.0026 (b) 0.0015 (c) 0.0024 (d) 0.00407 (e) 0.0031 (f) 0.0024 | (a) 109 (b) 118 (c) 121 (d) 33 (e) 116 (f) 45 | [79] (2022) |
WWTP water | (a) N-tert-butylbenzothiazole-2-sulphenamide (b) 2-Mercaptobenzothiazole (c) N,N-Dicyclohexyl-2-benzothiazolesulfonamide | 1000 | SPE (OASIS® HLB) Conditioning: 10 mL of methanol and 10 mL of ultra-pure water; Washing: 100 mL of methanol/water (5:95, v/v); Drying: 2 h; Elution: 5 mL of methanol and 5 mL of dichloromethane. | GC-MS/MS (EI) | (a) 0.00024 (b) 0.00010 (c) 0.00017 | (a) 0.00080 (b) 0.00034 (c) 0.00057 | (a) 79.7–86.4 (b) 98.3–129 (c) 60.8–63.5 | [56] (2022) |
Raw 1 and treated 2 municipal wastewater | (a) Dimethyl phthalate (b) Diethyl phthalate (c) Dibutyl phthalate (d) Benzyl butyl phthalate (e) Di-n-octyl phthalate (f) Bis(2-ethylhexy(l) phthalate | 250 | SPE (OASIS® HLB) Conditioning: 5 mL of ethyl acetate, 5 mL of methanol, and 5 mL of distilled water (pH 3); Washing: 10 mL of a methanol/water (1:9, v/v); Drying: 1 h; Elution: 10 mL of ethyl acetate. | GC-MS (EI) | (a) 0.002 1; 2 (b) 0.002 1; 2 (c) 0.002 1; 2 (d) 0.001 1; 2 (e) 0.002 1; 2 (f) 0.002 1; 0.001 2 | (a) 0.005 1; 0.006 2 (b) 0.006 1; 0.007 2 (c) 0.005 1; 0.006 2 (d) 0.003 1; 0.004 2 (e) 0.005 1; 0.007 2 (f) 0.006 1; 0.004 2 | (a) 126 1; 118 2 (b) 109 1; 121 2 (c) 120 1; 113 2 (d) 189 1; 137 2 (e) 115 1; 39 2 (f) 108 1; 36 2 | [125] (2021) |
WWTP effluent | (a) L3 (b) D4 (c) L4 (d) D5 (e) L5 (f) D6 | 10 | HS-SPME (a CIM-80(A(l) fiber; b PDMS/DVB fiber) Equilibration: 5 min; Extraction: 55 °C for 40 min at 700 rpm; Desorption: 270 °C for 10 min. | GC-MS (EI) | (a) n.s. (b) n.s. (c) n.s. (d) n.s. (e) n.s. (f) n.s. | (a) 0.1 a; 0.05 b (b) 0.7 a; 0.5 b (c) 0.1 a; 0.05 b (d) 0.2 a; 0.6 b (e) 0.4 a; 0.06 b (f) 0.5 a; 0.6 b | (a) (82.0–106) a; (95.8–120) b (b) (93.9–110) a; (98.0–137) b (c) (88.1–108) a; (84.6–89.9) b (d) (96.5–108) a; (92.2–110) b (e) (90.7–101) a; (103–110) b (f) (94.3–97.7) a; (145–151) b | [80] (2021) |
WWTP water | 2-ethyl hexyl phthalate | 100 | LLE Addition of 50 mL of n-hexane for 20 min on a shaker. | GC-MS (n.s.) | 0.3 | 1.1 | 94–108 | [126] (2021) |
WWTP influent 1 and effluent 2 | (a) Polystyrene (b) Poly(methyl methacrylate) | 4 | Protein corona-mediated extraction Addition of 40 μL of 20 g/L BSA aqueous solution and 4 g of sodium chloride; Incubation: 80 °C in a water bath for 15 min; Centrifugation: 8000 rpm for 15 min; Dispersant: 200 μL of ultra-pure water; Drying: 100 °C for 10 min. | Py-GC-MS (n.s.) | (a) 0.08 (b) 0.03 | (a) n.s. (b) n.s. | (a) 98.9 1; 84.4 2 (b) 72.1 1; 93.9 2 | [127] (2021) |
WWTP influent 1 and effluent 2 | (a) Dimethyl phthalate (b) Diethyl phthalate (c) Dipropyl phthalate (d) Diisobutyl phthalate (e) Dibutyl phthalate (f) Diisoheptyl phthalate (g) Bis-2-ethylhexyl phthalate (h) Diisononyl phthalate | 10 | HS-SPME (PDMS/DVB fiber) Equilibration: 95 °C for 5 min; Extraction: 95 °C for 15 min at 700 rpm; Desorption: 250 °C for 20 min. | GC-MS (EI) | (a) (0.007) 1; (0.108) 2 (b) (0.004) 1; (0.004) 2 (c) (0.006) 1; (5.07) 2 (d) (0.0009) 1; (0.001) 2 (e) (0.009) 1; (0.002) 2 (f) (0.001) 1; (0.003) 2 (g) (0.0008) 1; (0.002) 2 (h) (0.103) 1; (0.115) 2 | (a) (0.024) 1; (0.324) 2 (b) (0.012) 1; (0.014) 2 (c) (0.020) 1; (15.24) 2 (d) (0.0031) 1; (0.004) 2 (e) (0.031) 1; (0.008) 2 (f) (0.005) 1; (0.009) 2 (g) (0.0028) 1; (0.007) 2 (h) (0.345) 1; (0.382) 2 | (a) 92 1; 110 2 (b) 102 1; 103 2 (c) 107 1; 103 2 (d) 93 1; 110 2 (e) 91 1; 109 2 (f) 102 1; 96 2 (g) 102 1; 102 2 (h) 109 1; 107 2 | [128] (2020) |
Municipal wastewater | Di-n-octyl phthalate | 8 | B-DLLME Addition of 1 g of potassium nitrate; Binary dispersive extractor mixture: 100 µL dichloromethane, 100 µL 1,2 dichloroethane, and 2.0 mL ethanol; Centrifugation: 6000 rpm for 2 min. | GC-MS (n.s.) | 0.43 | 1.4 | 89.6–102.2 | [39] (2019) |
WWTP influent 1 and effluent 2 | (a) Polystyrene (b) Poly(methyl methacrylate) | 10 | CPE (Triton X-45 and magnesium sulphate) Addition of 30 μL of Triton X-45 aqueous solution 10% (m/(v) and 100 μL of 1 M magnesium sulphate; Water bath: 45 °C for 15 min; Centrifugation: 3000 rpm at 4 °C for 10 min; Thermal treatment in a muffle furnace at 190 °C for 3 h. | Py-GC-MS (n.s.) | (a) 1.1 (b) 0.6 | (a) n.s. (b) n.s. | (a) 90 1; 84.6 2 (b) 86.2 1; 82.3 2 | [129] (2019) |
Municipal 1 and sewage 2 wastewater | (a) Diethyl phthalate (b) Dibutyl phthalate | 10 | FPSE (cellulose fabric with Carbowax 20 M coating and Teflon-coated magnetic stir bar) Conditioning: acetone/acetonitrile (1:1, v/v), rinsed with water, and dried with a lint-free tissue; Extraction: 30 min at 900 rpm; Desorption: 500 μL of acetone for 15 min. | GC-MS (EI) | (a) 0.003 (b) 0.006 | (a) 0.009 (b) 0.019 | (a) (95.56–98.49) 1; (94.23–95.86) 2 (b) (96.52–98.49) 1; (96.91–98.54) 2 | [64] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
n.s. | 17 compounds | 11 | SVEA-LLE Addition of 10 mL of ethyl acetate, and 4 g of anhydrous sodium sulphate; Stir-rate: manually shaken for 30 s; Centrifugation: 20 min at 4000 rpm at 10 °C. | GC-MS/MS (n.s.) | 0.34–2.48 | 1.03–7.52 | 90–117 | [135] (2025) |
WWTP water | (a) Phenanthrene (b) Anthracene (c) Fluoranthene (d) Pyrene (e) Benzo[a]anthracene (f) Chrysene (g) Benzo[a]pyrene (h) Indeno [1,2,3-c,d]pyrene (i) Dibenzo[a,h]iniaturiz (j) Benzo[g,h,i]perylene | 50 | µd-SPE Stir-rate: manually shaken for 2.5 min; Drying: 25 min; Elution: 5 mL of cyclohexane. | GC-MS (n.s.) | (a) n.s. (b) n.s. (c) n.s. (d) n.s. (e) n.s. (f) n.s. (g) n.s. (h) n.s. (i) n.s. (j) n.s. | (a) 0.20 (b) 0.37 (c) 0.18 (d) 0.17 (e) 0.23 (f) 0.22 (g) 0.22 (h) 0.20 (i) 0.20 (j) 0.19 | (a) 66–113 (b) 73–98 (c) 88–98 (d) 94–99 (e) 88–95 (f) 70–78 (g) 81–105 (h) 97–103 (i) 100–103 (j) 90–114 | [24] (2024) |
WWTP water | 55 compounds | 10 | LLE Extractant: 700 µL of dichloromethane and n-hexane. | GC×GC-QTOF-MS (EI) | 1.08–13.26 | 3.24–39.78 | 69.0–107.7 | [25] (2024) |
WWTP effluent | 15 compounds | 100 | SPE (ZT-WCX:ZT-WAX:HR-X 1:1:3) Conditioning: 5 mL of methanol/ethyl acetate (1:1) and 5 mL of ultra-pure water; Drying: n.s.; Elution: 12 mL of hexane/toluene (4:1). | GC-MS (EI) | 0.001–0.153 | 0.002–0.340 | <10–92 | [27] (2023) |
WWTP water | (a) o-Cresol (b) m/p-Cresol | 20 | SBSE Addition of 2 mL of methanol; Stir-rate: 8h at 1200 rpm; Washing: ultra-pure water; Drying: n.s. | GC-MS/MS (EI) | (a) 0.04 (b) 0.021 | (a) 0.14 (b) 0.07 | (a) 104.8–107.3 (b) 101.4–106.2 | [136] (2023) |
Urban sewage wastewater | (a) Benzene (b) Toluene (c) Ethylbenzene (d) m/p- Xylene (e) o-Xylene (f) Isopropylbenzene (g) 1,3,5-Trimethylbenzene (h) 1,2,4-Trimethylbenzene (i) 4-Isopropyltoluene (j) 1,4-Dichlorobenzene (k) 1,2,4-Trichlorobenzene (l) Naphthalene | 10 | HS-SPME (PDMS fibre) Equilibration: 2 h at room temperature; Pre-incubation: 45 °C for 10 min and stirring at 250 rpm; Extraction: 15 min; Desorption: 270 °C for 15 min. | GC-MS (EI) | (a) n.s. (b) n.s. (c) n.s. (d) n.s. (e) n.s. (f) n.s. (g) n.s. (h) n.s. (i) n.s. (j) n.s. (k) n.s. (l) n.s. | (a) 0.04 (b) 0.07 (c) 0.06 (d) 0.05 (e) 0.05 (f) 0.04 (g) 0.05 (h) 0.03 (i) 0.03 (j) 0.04 (k) 0.17 (l) 0.04 | (a) 101.0 (b) 95.9 (c) 95.4 (d) 100.3 (e) 96.7 (f) 99.1 (g) 99.5 (h) 100.1 (i) 100.0 (j) 100.6 (k) 99.1 (l) 98.9 | [137] (2022) |
WWTP water | (a) Benzothiazole (b) 2-Methylbenzothiazole (c) 2-Aminobenzothiazole (d) 2-Methylthio-benzothiazole (e) 2-Hydroxybenzothiazole (j) Bezotriazole | 1000 | SPE (OASIS® HLB) Conditioning: 10 mL of methanol and 10 mL of ultra-pure water; Washing: 100 mL of methanol/water (5:95, v/v); Drying: 2 h; Elution: 5 mL of methanol and 5 mL of dichloromethane. | GC-MS/MS (EI) | (a) 0.00030 (b) 0.00008 (c) 0.00130 (d) 0.00005 (e) 0.00015 (j) 0.00065 | (a) 0.00099 (b) 0.00026 (c) 0.00435 (d) 0.00016 (e) 0.00049 (j) 0.00216 | (a) 74.4–78.4 (b) 71.4–73.8 (c) 72.6–77.5 (d) 76.6–98.5 (e) 117–139 (j) 105–145 | [56] (2022) |
WWTP water | (a) 1,2-dichlorobenzene (b) 1,3-dichlorobenzene (c) 1,4-dichlorobenzene (d) 1,2,4-trichlorobenzene (e) 1,2,4,5-tetrachlorobenzene (f) 2-chloronaphthalene (g) Hexachlorobenzene (h) Pentachlorobenzene | 10 | SB-μ-SPE Sonication: 2 min in toluene; Addition of 2 g of sodium chloride; Stir-rate: 20 min; Washing: deionised water; Drying: with lint-free wipes; Desorption: 300 µL of methanol with sonication for 10 min. | GC-MS (n.s.) | (a) 0.45 (b) 0.43 (c) 0.26 (d) 0.39 (e) 0.18 (f) 0.33 (g) 0.32 (h) 0.14 | (a) 1.5 (b) 1.4 (c) 0.9 (d) 1.3 (e) 0.6 (f) 1.1 (g) 1.1 (h) 0.5 | (a) 87.8–98.4 (b) 86.7–105 (c) 92.7–101 (d) 89–97.5 (e) 94.7–106 (f) 87.8–98.9 (g) 86.7–102 (h) 85–102 | [138] (2021) |
Industrial wastewater | Styrene | 20 | USA-DCC-µ-SPE Addition of 30 mg of MWCNTs@[Hemim][BF4]; Stir-rate: 12 min at 25 °C; Centrifugation: 5 min at 3500 rpm; Addition of 0.2 mL of ethyl benzene; Elution: 70 °C. | GC-MS/MS (n.s.) | 0.25 | n.s. | 96.3–98.5 | [139] (2021) |
Coal processing industries wastewater | (a) Anthracene (b) Fluoranthene (c) Pyrene (d) Benz[a]anthracene (e) Chrysene (f) Benzo[k]fluoranthene (g) Benzo[a]pyrene | 10 | SPME (polypyrrole/nanosilica/polyphosphate composite) Equilibration: n.s.; Extraction: 35 °C for 40 min; Desorption: 270 °C for 3 min. | GC-MS (n.s.) | (a) 0.0007 (b) 0.0005 (c) 0.0016 (d) 0.0025 (e) 0.0043 (f) 0.0005 (g) 0.0004 | (a) 0.0023 (b) 0.0017 (c) 0.0053 (d) 0.0083 (e) 0.0143 (f) 0.0017 (g) 0.0013 | (a) 96–98 (b) 100–102 (c) 87–95 (d) 95–105 (e) 89–91 (f) 93–101 (g) 92–99 | [140] (2021) |
WWTP water | 15 compounds | 10 | HS-SPME (Polyacrylate fibre) Equilibration: n.s.; Extraction: 60 °C for 40 min; Desorption: 280 °C for 3 min. | GC-Orbitrap-MS (EI) | 0.00001–0.00021 | 0.00003–0.00070 | 89–115 | [141] (2020) |
Urban 1 and olive mill 2 wastewater | (a) Benzo(a)anthracene (b) Chrysene (c) Benzo(b)fluoranthene (d) Benzo(k)fluoranthene (e) Benzo(a)pyrene (f) Indene (g) Dibenzoanthracene (h) Benzoperylene | 200 | SPE (STRATATM-XL) Conditioning: 5 mL of dichloromethane, 5 mL of 2-propanol, and 5 mL of water; Washing: 5 mL of water and 5 mL of 2-propanol/water; Drying: 10 min; Elution: 2 mL of dichloromethane. | GC-MS (n.s.) | 0.00043–0.00111 | n.s. | (a) 79.3 1; 96.2 2 (b) 58,0 1; 37.9 2 (c) 61.7 1; 29.9 2 (d) 61.6 1; 24.0 2 (e) 72.0 1; 21.4 2 (f) 61.6 1; 15.7 2 (g) 60.8 1; 18.7 2 (h) 52.0 1; 9.7 2 | [36] (2020) |
Coking wastewater | 39 compounds | 25 | HS-SPME (CAR/PDMS fibre) Equilibration: n.s.; Pre-incubation: 50 °C for 5 min; Extraction: 70 °C for 60 min; Desorption: 290 °C for 20 min. | GC-MS/MS (EI) | 0.03–2.88 | 0.11–9.62 | 71.92–119.75 | [41] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
WWTP water and urban effluent | (a) Caffeine (b) Nicotine | 500 | SPE (OASIS® HLB) Conditioning: 4 mL of methanol and 6 mL of reagent water; Drying: 10 min; Elution: 6 mL of methanol. | GC-MS (EI) | (a) 0.007 (b) 0.05 | (a) 0.02 (b) 0.14 | (a) 92 (b) 85 | [59] (2021) |
WWTP water | Caffeine | 1000 | SPE (OASIS® HLB) Conditioning: 6 mL of methanol and 6 mL of ultra-pure water (pH 2 or 7); Drying: 30 min; Elution: 9 mL of extraction solution (6 mL of acetone/ethyl acetate (1:1), 1 mL of methanol, 1 mL of acetonitrile, and 1 mL of dichloromethane); Derivatisation: 100 µL of BSTFA with 1% TMCS for 30 min at 70 °C. | GC-MS (n.s.) | 0.400 | 1.100 | 104 | [67] (2019) |
Sample Type | Compounds | Sample Volume (mL) | Extraction Technique/Procedure | Detection Mode | LOD (ng/mL) | LOQ (ng/mL) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
Biodiesel wastewater | (a) Methyl palmitate (b) Methyl linoleate (c) Methyl oleate (d) Methyl stearate | 4 | SPME (Polypropylene hollow fibre) Equilibration: 20 min in ethanol; Extraction: 40 °C for 40 min at 500 rpm; Desorption: n.s. | GC-MS (EI) | (a) 0.04 (b) 0.40 (c) 0.04 (d) 0.04 | (a) 10 (b) 10 (c) 10 (d) 10 | (a) 67.4 (b) 38.8 (c) 48.5 (d) 70.5 | [149] (2023) |
Hospital wastewater | (a) Formic acid (b) Acetic acid (c) Propionic acid | 0.2 | LLE Addition of 25 μL of 1.2 N HCl; Addition of 600 μL of methyl tert-butyl ether; Centrifugation: 6000 rpm for 4 min; Addition of sodium sulphate; Derivatisation: 100 μL of BSTFA with 1% TMCS. | GC-MS (EI) | (a) 1000 (b) 1000 (c) 1000 | 49–4150 | (a) 92 (b) 96–100 (c) 97–119 | [150] (2021) |
(a) Lactic acid (b) Glycolic acid (c) Oxalic acid (d) Malonic acid (e) Glyoxylic acid (f) Maleic acid (g) Succinic acid (h) Fumaric acid (i) Malic acid (j) Muconic acid (k) Tartaric acid | 0.5 | Direct injection Derivatisation: 620 μL of methyl tert-butyl ether/acetonitrile (1:1, v/(v)) and 80 μL of BSTFA with 1% TMCS. | (a) 30 (b) 50 (c) 50 (d) 60 (e) 200 (f) 70 (g) 10 (h) 40 (i) 100 (j) 100 (k) 100 | (a) 31–96 (b) 39–80 (c) 98–118 (d) 71–82 (e) n.s. (f) 102–112 (g) 101–102 (h) 85–93 (i) 92–107 (j) 91–108 (k) 90–101 | ||||
Olive mill wastewater | (a) Myristic acid (b) Palmitic acid (c) Stearic acid (d) Oleic acid (e) Linoleic acid | 3 | In-syringe MSA-DLLME Sample is diluted in half; Dispersant: 1.6 mL of ethanol; Extractant: 400 μL of hexane. | GC-MS (EI) | (a) 20 (b) 10 (c) 30 (d) 30 (e) 50 | (a) 60 (b) 40 (c) 100 (d) 110 (e) 100 | (a) 31.3 (b) 58.3 (c) 94.2 (d) 102.8 (e) 101.6 | [151] (2021) |
Biodiesel wastewater | (a) Methyl palmitate (b) Methyl stearate | 20 | DLLME (Toluene) Emulsification; Microwave irradiation lasted for 2 min; Addition of deionised water. | GC-MS (EI) | (a) 50 (b) 50 | (a) 200 (b) 200 | (a) 100.29–106.32 (b) 99.72–154.01 | [152] (2020) |
Sample Type | Compounds | Sample Volume (m(L) | Extraction Technique/Conditions | Detection Mode | LOD (ng/m(L) | LOQ (ng/m(L) | Recovery (%) | Reference (Year) |
---|---|---|---|---|---|---|---|---|
Urban sewage wastewater | (a) trans-1,2-Dichloroethene (b) Bromochloromethane (c) Chloroform (d) Trichloroethylene (e) Tetrachloroethylene | 10 | HS-SPME (PDMS fibr(e) Equilibration: 2 h at room temperature; Pre-incubation: 45 °C for 10 min and stirring at 250 rpm; Extraction: 15 min; Desorption: 270 °C for 15 min. | GC-MS (E(I) | (a) n.s. (b) n.s. (c) n.s. (d) n.s. (e) n.s. | (a) 0.20 (b) 0.48 (c) 0.32 (d) 0.09 (e) 0.45 | (a) 96.2 (b) 95.0 (c) 100.1 (d) 97.1 (e) 96.8 | [137] (2022) |
WWTP water | (a) Pentachloroethane (b) Hexachloroethane (c) Hexachloropropene (d) Hexachlorobutadiene | 10 | SB-μ-SPE Sonication: 2 min in toluene; Addition of 2 g of sodium chloride; Stir-rate: 20 min; Washing: deionised water; Drying: with lint-free wipes; Desorption: 300 µL of methanol with sonication for 10 min. | GC-MS (n.s.) | (a) 0.38 (b) 0.36 (c) 0.31 (d) 0.34 | (a) 1.3 (b) 1.2 (c) 1.0 (d) 1.1 | (a) 88.4–97.2 (b) 94.2–113 (c) 87.9–100 (d) 91.5–114 | [138] (2021) |
Technique | Sample Volume (mL) | Solvent Use | Sensitivity (LOD/LOQ)—Range | Recovery (%)—Range | Analyte Suitability |
---|---|---|---|---|---|
SPE | 100–1000 | Moderate to High | Down to 0.00001 ng/mL | 77–102 | Dilute, polar, non-volatile |
DLLME | 5–10 | Low | 4–16 ng/mL | 90–106 | Moderately polar, hydrophobic |
HS-SPME | 10–50 | None (solvent-free) | 0.00001–0.5 ng/mL | 70–100 | Volatile/semi-volatile, low matrix interference |
FPSE | 10–100 | Very Low | Sub-ng/mL | 80–99 | Broad range, green method |
SB-μ-SPE | 50–100 | Low | 0.1–1.0 ng/mL | 88–114 | Specific affinity, magnetic manipulation required |
LLE | 100–1000 | High | 1–1000 ng/mL | 85–119 | Non-polar or moderately polar, less green |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarro, G.; Pelixo, R.; Feijó, M.; Rosado, T.; Socorro, S.; Araújo, A.R.T.S.; Gallardo, E. Analytical Approaches Using GC-MS for the Detection of Pollutants in Wastewater Towards Environmental and Human Health Benefits: A Comprehensive Review. Chemosensors 2025, 13, 253. https://doi.org/10.3390/chemosensors13070253
Catarro G, Pelixo R, Feijó M, Rosado T, Socorro S, Araújo ARTS, Gallardo E. Analytical Approaches Using GC-MS for the Detection of Pollutants in Wastewater Towards Environmental and Human Health Benefits: A Comprehensive Review. Chemosensors. 2025; 13(7):253. https://doi.org/10.3390/chemosensors13070253
Chicago/Turabian StyleCatarro, Gonçalo, Rodrigo Pelixo, Mariana Feijó, Tiago Rosado, Sílvia Socorro, André R. T. S. Araújo, and Eugenia Gallardo. 2025. "Analytical Approaches Using GC-MS for the Detection of Pollutants in Wastewater Towards Environmental and Human Health Benefits: A Comprehensive Review" Chemosensors 13, no. 7: 253. https://doi.org/10.3390/chemosensors13070253
APA StyleCatarro, G., Pelixo, R., Feijó, M., Rosado, T., Socorro, S., Araújo, A. R. T. S., & Gallardo, E. (2025). Analytical Approaches Using GC-MS for the Detection of Pollutants in Wastewater Towards Environmental and Human Health Benefits: A Comprehensive Review. Chemosensors, 13(7), 253. https://doi.org/10.3390/chemosensors13070253