Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (871)

Search Parameters:
Keywords = fungal genetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1795 KB  
Article
ΔFW-NPS6-Dependent Transcriptome Profiling Reveals Putative Pathogenicity Genes in Fusarium oxysporum
by Xuhong Ye, Li Zhang, Jianjie Zhang, Haozhe Lu, Jiaqi Li and Hongtao Zou
Int. J. Mol. Sci. 2026, 27(2), 830; https://doi.org/10.3390/ijms27020830 - 14 Jan 2026
Viewed by 66
Abstract
Fusarium oxysporum f. sp. niveum is an increasingly threatening fungal pathogen that systemically colonizes watermelon plants and severely compromises their productivity by causing destructive vascular wilt disease. While its nonribosomal peptide synthetase NPS6 has been identified as a key virulence factor, the regulatory [...] Read more.
Fusarium oxysporum f. sp. niveum is an increasingly threatening fungal pathogen that systemically colonizes watermelon plants and severely compromises their productivity by causing destructive vascular wilt disease. While its nonribosomal peptide synthetase NPS6 has been identified as a key virulence factor, the regulatory mechanisms through which it controls downstream gene networks to cause disease remain unclear. To elucidate this regulatory pathway, we constructed a ΔFW-NPS6 knockout mutant and conducted a comparative genome-wide analysis using RNA sequencing, with the wild-type strain as a control. The results revealed 66 NPS6-dependent differentially expressed genes, which were primarily associated with secondary-metabolite biosynthesis (e.g., genes encoding nonribosomal peptide synthetases like NPS2) and pathogen–host interactions (e.g., components of the MAPK signaling pathway), and were enriched in key pathogenic pathways. This finding reveals the virulence regulatory network mediated by NPS6, providing a direct theoretical foundation and crucial molecular targets for developing novel control strategies, such as targeted fungicides or genetic interventions, against Fusarium wilt in watermelon by highlighting NPS6 itself as a potential fungicide target and its downstream pathways (e.g., siderophore biosynthesis) as points for intervention. Full article
Show Figures

Figure 1

14 pages, 3406 KB  
Article
Wheat SWI3B Subunit of SWI/SNF Chromatin Remodeling Complex Governs Powdery Mildew Susceptibility by Suppressing Salicylic Acid Biosynthesis
by Wanzhen Chen, Yixian Fu, Mengdi Zhang, Wenrui Zhao, Pengfei Zhi and Cheng Chang
J. Fungi 2026, 12(1), 68; https://doi.org/10.3390/jof12010068 - 14 Jan 2026
Viewed by 128
Abstract
The fungal pathogen Blumeria graminis forma specialis tritici (B.g. tritici) infects bread wheat (Triticum aestivum L.) to cause wheat powdery mildew disease. Elucidating the molecular mechanism underlying wheat susceptibility to the pathogenic fungus B.g. tritici could facilitate wheat genetic improvement. [...] Read more.
The fungal pathogen Blumeria graminis forma specialis tritici (B.g. tritici) infects bread wheat (Triticum aestivum L.) to cause wheat powdery mildew disease. Elucidating the molecular mechanism underlying wheat susceptibility to the pathogenic fungus B.g. tritici could facilitate wheat genetic improvement. In this study, we identified the wheat TaSWI3B gene as a novel Susceptibility gene positively regulating wheat susceptibility to B.g. tritici. The TaSWI3B gene encodes the SWI3B subunit of the SWI/SNF chromatin remodeling complex. The overexpression of the TaSWI3B gene enhances wheat powdery mildew susceptibility, whereas TaSWI3B silencing results in attenuated wheat powdery mildew susceptibility. Importantly, we found that TaSWI3B could be enriched at the promoter regions of the salicylic acid (SA) biosynthesis activator gene TaSARD1, facilitating nucleosome occupancy and thereby suppressing TaSARD1 transcription and inhibiting SA biosynthesis. Silencing of TaSARD1 and TaICS1 encoding a key enzyme in SA biosynthesis could attenuate the SA biosynthesis and powdery mildew resistance potentiated by knockdown of TaSWI3B expression. Collectively, these results suggest that the SWI3B subunit of the wheat SWI/SNF chromatin remodeling complex negatively regulates SA biosynthesis by suppressing TaSARD1 transcription at the epigenetic level and thus facilitates wheat powdery mildew susceptibility. Full article
(This article belongs to the Special Issue Plant Fungal Pathogenesis 2025)
Show Figures

Figure 1

19 pages, 606 KB  
Review
Genetic Manipulation in Sporothrix Species: Molecular Tools, Challenges, and Applications
by Mafalda Barros, Matheus Tavares, Ricardo Silvestre, Roberta Peres da Silva and Fernando Rodrigues
J. Fungi 2026, 12(1), 61; https://doi.org/10.3390/jof12010061 - 13 Jan 2026
Viewed by 115
Abstract
Sporothrix species are thermally dimorphic fungi responsible for sporotrichosis, a globally prevalent subcutaneous mycosis and an emerging zoonotic threat, particularly in South America. The high virulence of Sporothrix brasiliensis and its efficient transmission from cats to humans have intensified recent outbreaks, underscoring the [...] Read more.
Sporothrix species are thermally dimorphic fungi responsible for sporotrichosis, a globally prevalent subcutaneous mycosis and an emerging zoonotic threat, particularly in South America. The high virulence of Sporothrix brasiliensis and its efficient transmission from cats to humans have intensified recent outbreaks, underscoring the importance of understanding the pathogenic mechanisms. While several putative virulence factors have been identified, such as melanin production, cell wall remodeling, extracellular vesicles, and thermotolerance, functional studies remain hampered by limited molecular tools. Recent advances, including random mutagenesis, protoplast-mediated transformation, Agrobacterium tumefaciens-mediated transformation, RNA interference and CRISPR/Cas9-based genome editing, are changing this landscape. These methods have enabled the functional validation of key virulence factors and the investigation of gene function in both environmental and clinical strains. In this review, we summarize the genetic toolbox available for Sporothrix, outline current challenges, and discuss how these strategies are reshaping the study of fungal virulence and host–pathogen interactions. Full article
Show Figures

Figure 1

16 pages, 1252 KB  
Article
Field Susceptibility of Almond (Prunus dulcis) Cultivars to Red Leaf Blotch Caused by Polystigma amygdalinum in Apulia (Italy) and Influence of Environmental Conditions
by Pompea Gabriella Lucchese, Emanuele Chiaromonte, Donato Gerin, Angelo Agnusdei, Francesco Dalena, Davide Cornacchia, Davide Digiaro, Giuseppe Incampo, Davide Salamone, Pasquale Venerito, Francesco Faretra, Franco Nigro and Stefania Pollastro
Plants 2026, 15(2), 188; https://doi.org/10.3390/plants15020188 - 7 Jan 2026
Viewed by 211
Abstract
Polystigma amygdalinum the causal agent of Red Leaf Blotch (RLB), is responsible for one of the most important foliar diseases affecting almond [Prunus dulcis (Miller) D.A. Webb] in the Mediterranean Basin and the Middle East. The study is aimed at improving knowledge [...] Read more.
Polystigma amygdalinum the causal agent of Red Leaf Blotch (RLB), is responsible for one of the most important foliar diseases affecting almond [Prunus dulcis (Miller) D.A. Webb] in the Mediterranean Basin and the Middle East. The study is aimed at improving knowledge on RLB epidemiology and the role of environmental conditions in disease development. Field monitoring was conducted from 2022 to 2025 in three almond orchards located in Apulia (southern Italy) and characterized by different microclimatic conditions. A total of 39 cultivars, including Apulian local germplasm and international cultivars (‘Belona’, ‘Genco’, ‘Guara’, ‘Ferragnès’, ‘Filippo Ceo’, ‘Lauranne® Avijor’, ‘Soleta’, and ‘Supernova’), were evaluated. Symptoms occurred from late spring to summer, resulting particularly severe on ‘Guara’ and ‘Lauranne® Avijor’, whereas ‘Belona’, ‘Ferragnès’, ‘Genco’, and ‘Supernova’ exhibited the highest tolerance. To our knowledge, this is also the first report of RLB tolerance by ‘Filippo Ceo’, ‘Ficarazza’, ‘Centopezze’, and ‘Rachele piccola’ representing potential genetic resources for breeding programs. Moreover, these findings reinforced previous observations proving that RLB was less severe on medium-late and late cultivars. Disease incidence varied significantly among sites and years and was strongly associated with increased rainfall, higher relative humidity, and mild temperatures recorded in November, influencing disease occurrence in the following growing season. P. amygdalinum was consistently detected by qPCR in all RLB-affected tissues and, in some cases, from mixed early RLB + Pseudomonas-like symptoms. From some leaves with early RLB symptoms, P. amygdalinum was also successfully isolated in pure culture. Overall, our results provide clear evidence that P. amygdalinum is the sole fungal pathogen consistently associated with typical RLB symptoms in Apulia (southern Italy) and highlight important cultivar-dependent differences. Its frequent molecular detection in leaves showing atypical or mixed symptoms suggests unresolved epidemiological aspects requiring further investigation. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

14 pages, 889 KB  
Review
Genomic Insights and Bioconversion Potential in the Black Soldier Fly (Hermetia illucens): Current Advances and Future Directions
by Joana Oliveira, Leonardo Gaston Guilgur, Ricardo Assunção, Daniel Murta and Alexandre Trindade
Insects 2026, 17(1), 70; https://doi.org/10.3390/insects17010070 - 7 Jan 2026
Viewed by 334
Abstract
The global population continues to rise, placing increasing pressure on the agri-food sector and leading to the accelerated generation of urban organic waste, factors that collectively intensify climate stress and environmental instability. Insects are recognised for their remarkable capacity to transform substrates into [...] Read more.
The global population continues to rise, placing increasing pressure on the agri-food sector and leading to the accelerated generation of urban organic waste, factors that collectively intensify climate stress and environmental instability. Insects are recognised for their remarkable capacity to transform substrates into valuable products, with the black soldier fly larvae (BSFL) emerging as one of the most efficient and widely utilised species for this purpose. Beyond recycling organic matter, BSFL can also mitigate microbial contamination, effectively reducing bacterial and fungal loads in waste substrates. Understanding and manipulating the genome could provide tools to improve BSFL bioconversion process and contribute to sustainability. In this review, we provide an overview of recent advances in black soldier fly genomics and genome-editing technologies. Although research in this subject remains limited, recent studies have clarified its origin, characterised its genome, and established the foundation for targeted genetic improvements to enhance by-product conversion, nutrient recovery, and environmental sustainability. Full article
(This article belongs to the Special Issue Genome Editing and Synthetic Biology in Insects)
Show Figures

Graphical abstract

18 pages, 2459 KB  
Article
Study on the Susceptibility of Some Almond (Prunus dulcis) Cultivars to the Pathogen Diaporthe amygdali
by Pompea Gabriella Lucchese, Naïma Dlalah, Amélie Buisine, Franco Nigro, Stefania Pollastro and Henri Duval
Plants 2026, 15(1), 165; https://doi.org/10.3390/plants15010165 - 5 Jan 2026
Viewed by 340
Abstract
Diaporthe amygdali Delacr. is a phytopathogenic fungus of considerable agronomic importance, responsible for branch canker in almond (Prunus dulcis [Mill.] D.A. Webb) and peach (Prunus persica L.) trees. It represents a major phytosanitary threat to almond cultivation in Europe, particularly in [...] Read more.
Diaporthe amygdali Delacr. is a phytopathogenic fungus of considerable agronomic importance, responsible for branch canker in almond (Prunus dulcis [Mill.] D.A. Webb) and peach (Prunus persica L.) trees. It represents a major phytosanitary threat to almond cultivation in Europe, particularly in Mediterranean regions. Almond is currently among the most rapidly expanding perennial crops, with cultivated areas increasing as a result of the introduction of new cultivars and the adoption of improved agronomic practices. The objectives of this study were to isolate and identify fungal pathogens from infected almond samples collected in France through multilocus phylogenetic analyses (ITS, tef1-α, his3, tub2, cal genes) combined with morphological characterization; evaluate the susceptibility of 18 almond genotypes, using ‘Ferragnès’ and ‘Texas’ as reference standards for susceptibility and tolerance, respectively; and compare three field inoculation methods. All isolates were identified as D. amygdali. The varietal screening identified marked differences in resistance among the tested cultivars. In particular, ‘Ferrastar’, ‘R1877’, ‘R1413’, and ‘R1542’ exhibited high levels of resistance, whereas ‘Tuono’, ‘Guara’, and ‘R1568’ showed susceptibility comparable to that of ‘Ferragnès’, which was used as the susceptible control. Among the inoculation methods evaluated, the mycelial plug technique proved to be the most consistent and reliable, outperforming both conidial suspension inoculation and the toothpick method coated with mycelium. These findings further confirm the genetic resistance of the cultivars ‘Ferrastar’ and ‘Ardèchoise’ to branch canker across different growing conditions, supporting their suitability for use in breeding and genetic improvement programs. Full article
(This article belongs to the Special Issue Advances in Plant–Fungal Pathogen Interaction—2nd Edition)
Show Figures

Figure 1

15 pages, 1674 KB  
Article
Transcriptomic Analysis of Fusarium verticillioides Across Different Cultivation Periods Reveals Dynamic Gene Expression Changes
by Meng-Ling Deng, Jun-Jun He, Xin-Yan Xie, Jian-Fa Yang, Fan-Fan Shu, Feng-Cai Zou, Lu-Yang Wang and Jun Ma
Microorganisms 2026, 14(1), 102; https://doi.org/10.3390/microorganisms14010102 - 2 Jan 2026
Viewed by 237
Abstract
Fusarium verticillioides is a common pathogenic fungus of corn since it causes severe yield losses and produces mycotoxins to threaten the health of both humans and livestock. Although extensive research has characterized specific genetic and environmental factors influencing mycotoxin production, a systematic understanding [...] Read more.
Fusarium verticillioides is a common pathogenic fungus of corn since it causes severe yield losses and produces mycotoxins to threaten the health of both humans and livestock. Although extensive research has characterized specific genetic and environmental factors influencing mycotoxin production, a systematic understanding of the temporal transcriptional dynamics governing its developmental progression remains lacking. This study addresses this critical knowledge gap through a time-series transcriptomic analysis of F. verticillioides at four key cultivation stages (3, 5, 7, and 9 days post-inoculation). Transcriptomic analysis identified 1928, 2818, and 1934 differentially expressed genes (DEGs) in the comparisons of FV3 vs. FV5, FV5 vs. FV7, and FV7 vs. FV9, respectively. Gene Ontology enrichment revealed 76, 106, and 56 significantly enriched terms across these comparisons, with “integral component of membrane” consistently being the most enriched cellular component. Pathway analysis demonstrated “amino acid metabolism” and “carbohydrate metabolism” as the most significantly enriched metabolic pathways. Notably, the fumonisin (FUM) and fusaric acid (FA) biosynthetic gene clusters exhibited coordinated peak expression during the early cultivation, followed by progressive decline. Mfuzz clustering further delineated 12 distinct expression trajectories, highlighting the dynamic transcriptional networks underlying fungal adaptation. This work provided the first comprehensive temporal transcriptome of F. verticillioides, establishing a foundational resource for understanding its stage-specific biology and revealing potential time-sensitive targets for future intervention strategies. Full article
(This article belongs to the Special Issue Advances in Microbial Adaptation and Evolution)
Show Figures

Figure 1

16 pages, 3828 KB  
Article
Effects of Continuous Bt Maize Cultivation on Soil Nutrient Content and Microbial Communities
by Xiaomin Liang, Donghua Zhong, Shuai Yan and Yuanjiao Feng
Plants 2026, 15(1), 112; https://doi.org/10.3390/plants15010112 - 31 Dec 2025
Viewed by 206
Abstract
The global population growth has driven the widespread adoption of genetically modified crops, with Bt maize, due to its insect resistance, becoming the second most widely planted GM crop. However, studies on the effects of continuous Bt maize cultivation on soil ecosystems are [...] Read more.
The global population growth has driven the widespread adoption of genetically modified crops, with Bt maize, due to its insect resistance, becoming the second most widely planted GM crop. However, studies on the effects of continuous Bt maize cultivation on soil ecosystems are limited, and there is an urgent need to assess its ecological safety at the regional scale. To evaluate the potential effects of continuous cultivation of transgenic Bt maize on the soil ecosystem, a five-season continuous planting experiment was conducted using two Bt maize varieties (5422Bt1 and 5422CBCL) and their near-isogenic conventional maize (5422). After five consecutive planting seasons, bulk soil and rhizosphere soil were collected. The main nutrient contents of the bulk soil were measured, and high-throughput sequencing was employed to analyze microbial diversity and community composition in both soil types. The results showed that, compared with the near-isogenic conventional maize 5422, continuous planting of Bt maize varieties 5422Bt1 and 5422CBCL did not affect the contents of organic matter, total nitrogen, total phosphorus, total potassium, alkaline hydrolyzable nitrogen, available phosphorus, or available potassium in bulk soil. Regarding the microbial communities in bulk soil, there were no significant differences in the α-diversity indices of bacteria and fungi after five consecutive seasons of Bt maize cultivation, compared with soils planted with the near-isogenic conventional maize 5422. Proteobacteria and Ascomycota were the dominant phyla of bacteria and fungi, respectively. Principal coordinate analysis (PCoA) and redundancy analysis (RDA) revealed that the structure of microbial communities in bulk soil was primarily influenced by factors such as OM, TP, TN and AN, whereas the Bt maize varieties had no significant effect on the overall community structure. Regarding the rhizosphere soil microbial communities, compared with the near-isogenic conventional maize 5422, the evenness of the bacterial community in the rhizosphere soil of Bt maize decreased, leading to a reduction in overall diversity, whereas species richness showed no significant change. This change in diversity patterns further contributed to the restructuring of the rhizosphere soil microbial community. In contrast, the fungal community showed no significant differences among treatments, and its community structure remained relatively stable. Proteobacteria and Ascomycota were the dominant phyla of bacteria and fungi, respectively. Principal coordinate analysis (PCoA) indicated that continuous cultivation of Bt maize for five seasons had no significant effect on the structure of either bacterial or fungal communities in the rhizosphere soil. In summary, continuous cultivation of Bt maize did not lead to significant changes in soil nutrient contents or microbial community structures, providing a data foundation and theoretical basis for the scientific evaluation of the environmental safety of transgenic maize in agricultural ecosystems. Full article
Show Figures

Figure 1

30 pages, 6462 KB  
Review
Melanin and Neuromelanin in Humans: Insights Across Health, Aging, Diseases, and Unexpected Aspects of Fungal Melanogenesis
by Kathleen Hatch, Erin K. Murphy, Radamés J. B. Cordero and Diego Iacono
Biomolecules 2026, 16(1), 61; https://doi.org/10.3390/biom16010061 - 30 Dec 2025
Viewed by 438
Abstract
Melanin pigments are ubiquitous biopolymers across diverse life forms and play multifaceted roles in cellular defense and environmental adaptation. The specialized neuromelanin in human brains accumulates mainly within catecholaminergic neurons of the substantia nigra and locus coeruleus, serving as a crucial modulator of [...] Read more.
Melanin pigments are ubiquitous biopolymers across diverse life forms and play multifaceted roles in cellular defense and environmental adaptation. The specialized neuromelanin in human brains accumulates mainly within catecholaminergic neurons of the substantia nigra and locus coeruleus, serving as a crucial modulator of brain homeostasis, metal detoxification, and oxidative stress responses. The intricate processes of human melanogenesis, encompassing both cutaneous and neuronal forms, are governed by complex genetic networks. Concurrently, melanin in fungi (synthesized through distinct genetic pathways) confers remarkable resistance to environmental stressors, including ionizing radiation. Recent advancements in omics technologies—including transcriptomics, proteomics, metabolomics, and epigenomics—have profoundly enhanced our understanding of neuromelanin’s molecular environment in health, aging, and neurodegenerative conditions such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and other neurological disorders. This article reviews the genetic underpinnings of human melanogenesis and fungal melanogenesis, explores the convergent and divergent evolutionary pressures driving their functions, and synthesizes the rapidly accumulating omics data to elucidate neuromelanin’s critical, and often dual, role in human brain pathology. Moreover, we discuss the intriguing parallels between neuromelanin and fungal melanin, highlighting radioprotection and its potential implications for neuroprotection and astrobiology, with a special emphasis on the need to investigate neuromelanin’s potential for radioprotection in light of fungal melanin’s remarkable protective properties. Full article
Show Figures

Graphical abstract

27 pages, 4078 KB  
Article
Role of the osaA Transcription Factor Gene in Development, Secondary Metabolism and Virulence in the Mycotoxigenic Fungus Aspergillus flavus
by Farzana Ehetasum Hossain, Apoorva Dabholkar, Jessica M. Lohmar, Matthew D. Lebar, Brian M. Mack and Ana M. Calvo
Toxins 2026, 18(1), 23; https://doi.org/10.3390/toxins18010023 - 30 Dec 2025
Viewed by 349
Abstract
Aspergillus flavus colonizes oil-seed crops, contaminating them with aflatoxins; highly carcinogenic mycotoxins that cause severe health and economic losses. Genetic studies may reveal new targets for effective control strategies. Here, we characterized a putative WOPR transcription factor gene, osaA, in A. flavus [...] Read more.
Aspergillus flavus colonizes oil-seed crops, contaminating them with aflatoxins; highly carcinogenic mycotoxins that cause severe health and economic losses. Genetic studies may reveal new targets for effective control strategies. Here, we characterized a putative WOPR transcription factor gene, osaA, in A. flavus. Our results revealed that osaA regulates conidiation and sclerotial formation. Importantly, deletion of osaA reduces aflatoxin B1 production, while, unexpectedly, transcriptome analysis indicated upregulation of aflatoxin biosynthetic genes, suggesting post-transcriptional or cofactor-mediated regulation. Cyclopiazonic acid production also decreased in the absence of osaA. In addition, the osaA mutant exhibited upregulation of genes in the imizoquin and aspirochlorine clusters. Moreover, osaA is indispensable for normal seed colonization; deletion of osaA significantly reduced fungal burden in corn kernels. Aflatoxin content in seeds also decreased in the absence of osaA. Furthermore, deletion of osaA caused a reduction in cell-wall chitin content, as well as alterations in oxidative stress sensitivity, which could in part contribute to the observed reduction in pathogenicity. Additionally, promoter analysis of osaA-dependent genes indicated potential interactions with stress-responsive regulators, indicated by an enrichment in Sko1 and Cst6 binding motifs. Understanding the osaA regulatory scope provides insight into fungal biology and identifies potential targets for controlling aflatoxin contamination and pathogenicity. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

36 pages, 2031 KB  
Review
Pre- and Postharvest Determinants, Technological Innovations and By-Product Valorization in Berry Crops: A Comprehensive and Critical Review
by Elsa M. Gonçalves, Rui Ganhão and Joaquina Pinheiro
Horticulturae 2026, 12(1), 19; https://doi.org/10.3390/horticulturae12010019 - 24 Dec 2025
Viewed by 513
Abstract
Berries—including strawberries, blueberries, raspberries, blackberries, cranberries, and several less commonly cultivated berry species—are highly valued for their sensory quality and rich content of bioactive compounds, yet they are among the most perishable horticultural products. Their soft texture, high respiration rate, and susceptibility to [...] Read more.
Berries—including strawberries, blueberries, raspberries, blackberries, cranberries, and several less commonly cultivated berry species—are highly valued for their sensory quality and rich content of bioactive compounds, yet they are among the most perishable horticultural products. Their soft texture, high respiration rate, and susceptibility to fungal pathogens lead to rapid postharvest deterioration and significant economic losses. This review synthesizes advances in berry postharvest management reported between 2010 and 2025. Conventional strategies such as rapid precooling, cold-chain optimization, controlled and modified atmospheres, and edible coatings are discussed alongside emerging non-thermal technologies, including UV-C light, ozone, cold plasma, ultrasound, biocontrol agents, and intelligent packaging systems. Particular emphasis is placed on the instability of anthocyanins and other phenolic compounds, microbial spoilage dynamics, and the influence of cultivar genetics and preharvest factors on postharvest performance. The review also highlights opportunities for circular-economy applications, as berry pomace, seeds, and skins represent valuable sources of polyphenols, dietary fiber, and seed oils for use in food, nutraceutical, cosmetic, and bio-based packaging sectors. Looking ahead, future research should prioritize integrated, multi-hurdle, low-residue postharvest strategies, the scale-up of non-thermal technologies, and data-driven cold-chain management. Overall, coordinated physiological, technological, and sustainability-oriented approaches are essential to maintain berry quality, reduce postharvest losses, and strengthen the resilience of berry value chains. Full article
(This article belongs to the Special Issue Postharvest Physiology and Quality Improvement of Fruit Crops)
Show Figures

Graphical abstract

31 pages, 7965 KB  
Article
Diversity of Fungi Associated with Diseases of Cultivated Brassicaceae in Southern Italy
by Marwa Mourou, Maria Luisa Raimondo, Milan Spetik, Francesco Lops, Gaetana Ricciardi, Maria Grazia Morea, Ales Eichmeier and Antonia Carlucci
J. Fungi 2026, 12(1), 13; https://doi.org/10.3390/jof12010013 - 24 Dec 2025
Viewed by 471
Abstract
This study investigated the fungal species associated with symptomatic cultivated Brassica crops in Apulia, Southern Italy, during the 2022–2023 growing seasons. Twenty-two samples from Brassica oleracea var. botrytis, B. oleracea var. italica, and B. rapa var. cymosa showing stunting, wilting, necrotic [...] Read more.
This study investigated the fungal species associated with symptomatic cultivated Brassica crops in Apulia, Southern Italy, during the 2022–2023 growing seasons. Twenty-two samples from Brassica oleracea var. botrytis, B. oleracea var. italica, and B. rapa var. cymosa showing stunting, wilting, necrotic spots, and lesions were analyzed using morphological and molecular analyses. A total of 259 fungal isolates were obtained, mainly belonging to the genera Alternaria, Plectosphaerella, Fusarium, and Sclerotinia, with Alternaria and Plectosphaerella being the most frequent. Microsatellite PCR (MSP-PCR) profiling revealed considerable genetic diversity within the Alternaria and Plectosphaerella genera, whereas Fusarium and Sclerotinia showed uniform profiles. Multilocus analyses (ITS, tef-1α, rpb2, Alt-a1, and gapdh) identified nine species as Alternaria alternata, A. brassicicola, A. japonica, Fusarium solani species complex, Plectosphaerella cucumerina, P. pauciseptata, P. plurivora, Sclerotinia sclerotiorum, and Stemphylium vesicarium. While Alternaria, Fusarium, and Sclerotinia species are well-known Brassicaceae pathogens, P. pauciseptata, P. plurivora, and S. vesicarium have been detected here for the first time on cultivated Brassica crops worldwide. These findings highlight significant intraspecific diversity among the detected fungi and expand the current knowledge of fungal diversity associated with symptomatic cultivated Brassica plants. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

15 pages, 902 KB  
Article
Cytotoxic Curvalarol C and Other Compounds from Marine Fungus Asteromyces cruciatus KMM 4696
by Liliana E. Nesterenko, Ekaterina A. Yurchenko, Olesya I. Zhuravleva, Galina K. Oleinikova, Natalya N. Kirichuk, Roman S. Popov, Viktoria E. Chausova, Konstantin A. Drozdov, Ekaterina A. Chingizova, Marina P. Isaeva and Anton N. Yurchenko
Molecules 2025, 30(24), 4772; https://doi.org/10.3390/molecules30244772 - 14 Dec 2025
Viewed by 389
Abstract
The present study aimed to isolate new specialized metabolites from the obligate marine fungus Asteromyces cruciatus KMM 4696. The strain KMM 4696 was identified based on the 28S rRNA, ITS, and TEF1 molecular genetic markers. Chromatographic separation of the fungal extract obtained from [...] Read more.
The present study aimed to isolate new specialized metabolites from the obligate marine fungus Asteromyces cruciatus KMM 4696. The strain KMM 4696 was identified based on the 28S rRNA, ITS, and TEF1 molecular genetic markers. Chromatographic separation of the fungal extract obtained from KI-containing nutrient media cultivation led to the isolation of undescribed pentanorlanostanes curvalarols C (1) and D (2), as well as an undescribed 6/6/5 anthraquinone acruciquinone D (3), along with eight known metabolites. The structures of the isolated compounds were established based on 1D and 2D NMR and MS data. The cytotoxic activity of curvalarol C (1) was assessed in MCF-10A and MCF-7 cells. Curvalarol C exhibited selective activity against cancer MCF-7 cells and inhibiting colony formation with an IC50 of 4.7 µM. Full article
Show Figures

Figure 1

17 pages, 3469 KB  
Article
Evaluation of Oat Varieties Under Different Levels of Fertilization and Crop Protection in Conventional and Organic Systems
by Karolina Madajska, Anna Tratwal, Kamila Roik, Aleksandra Pietrusińska-Radzio and Jan Bocianowski
Agriculture 2025, 15(24), 2538; https://doi.org/10.3390/agriculture15242538 - 7 Dec 2025
Viewed by 407
Abstract
The selection of resistant cultivars is a cornerstone of crop production. Integrated Pest Management (IPM) guidelines explicitly emphasize the use of the genetic potential for natural resistance in cultivated varieties, which primarily enables a reduction in the use of chemical plant protection products. [...] Read more.
The selection of resistant cultivars is a cornerstone of crop production. Integrated Pest Management (IPM) guidelines explicitly emphasize the use of the genetic potential for natural resistance in cultivated varieties, which primarily enables a reduction in the use of chemical plant protection products. Post-Registration Variety Testing (PRVT) and Ecological Variety Testing (EVT) allow the identification of cultivars best adapted to local soil and climatic conditions and provide guidance for variety choice under conventional management with limited chemical inputs (PRVT) or organic farming (EVT). The objective of this study was to evaluate the response of selected cultivars of common oat (Avena sativa L.) and naked oat (Avena nuda L.) to different levels of fertilization and crop protection. We analyzed grain yield, thousand-grain weight (TGW), plant height, pre-harvest lodging, and susceptibility to two fungal pathogens (Drechslera avenae and Blumeria graminis f. sp. avenae). Experiments were performed in integrated (PRVT) and organic (EVT) systems in Pawłowice and Białogard during 2023–2024. The results highlight the importance of matching cultivar choice to the management system to achieve high and stable yields with minimal chemical inputs. Full article
Show Figures

Figure 1

17 pages, 2860 KB  
Article
Metagenomic Study of the Grapevine Decline Detected a Cocktail of Fungi Associated with Grapevine Trunk Diseases
by Daria Karpova, Daria Belkina, Elena Porotikova, Evgeniya Yurchenko and Svetlana Vinogradova
Plants 2025, 14(24), 3722; https://doi.org/10.3390/plants14243722 - 5 Dec 2025
Viewed by 595
Abstract
This study analyzed the microbiome of three varieties differing in genotype and technical purpose: Cristal, Riesling, and Avgustin, all exhibiting decline symptoms of unknown etiology. A total of 92 symptomatic and asymptomatic grapevines were analyzed using ITS and 16S rRNA amplicon sequencing and [...] Read more.
This study analyzed the microbiome of three varieties differing in genotype and technical purpose: Cristal, Riesling, and Avgustin, all exhibiting decline symptoms of unknown etiology. A total of 92 symptomatic and asymptomatic grapevines were analyzed using ITS and 16S rRNA amplicon sequencing and molecular genetic methods. Phytoplasmas and the pathogenic bacteria Xylella fastidiosa and Xylophilus ampelinus were not present in the samples. The decline symptoms were associated with a cocktail of fungal pathogens that cause grapevine trunk diseases. In particular, the analysis revealed the causative agents of Botryosphaeria dieback (Sphaeropsis spp. and Botryosphaeria spp.), fungi associated with the Esca complex (Phaeomoniella spp., Phaeoacremonium spp., Inonotus spp., Seimatosporium spp., Stereum spp., and Cadophora spp.), and the causative agents of Phomopsis dieback (Diaporthe spp.). The symptoms of decline may be increased by several facultative grapevine pathogens that have been identified in microbiome (genera Stemphylium, Alternaria, Aspergillus, Penicillium, Talaromyces, and Fusarium). The metagenomic data of the grapevine microbiome provides opportunities for developing disease control strategies, which is important for the sustainable management of vineyards. Full article
Show Figures

Figure 1

Back to TopTop