Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,729)

Search Parameters:
Keywords = functional-technological properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1596 KB  
Article
Impact on the Rheological Properties and Amino Acid Compositions of the Industrial Evaporation of Waste Vinasse in the Production of Nutritional Supplements for Livestock
by Nayeli Gutiérrez-Casiano, Cesar Antonio Ortíz-Sánchez, Karla Díaz-Castellanos, Luis Antonio Velázquez-Herrera, Solmaría Mandi Pérez-Guzmán and Eduardo Hernández-Aguilar
Waste 2025, 3(4), 34; https://doi.org/10.3390/waste3040034 - 2 Oct 2025
Abstract
Vinasse a byproduct of ethanol manufacturing, is a challenge for ethanol producers which possesses a high organic content that presents a considerable environmental threat. This complicates its management and treatment utilizing standard technologies like anaerobic digestion. This residue contains a substantial quantity of [...] Read more.
Vinasse a byproduct of ethanol manufacturing, is a challenge for ethanol producers which possesses a high organic content that presents a considerable environmental threat. This complicates its management and treatment utilizing standard technologies like anaerobic digestion. This residue contains a substantial quantity of dead and lysed yeast cells, which can function as a protein source for livestock’s nutritional needs. The application of multi-effect evaporation enhances the characteristics of this residue by increasing protein concentration, reducing volume, and minimizing water content. This study examines the impact of the five-effect evaporation procedure on vinasse waste, focusing on its rheological properties and the concentrations of proteins, amino acids, RNA, and DNA. This study aims to assess the thermal impacts linked to the evaporation process. The findings of the one-way statistical analysis demonstrate that the five evaporation effects are relevant in the utilization of waste as feed for livestock. The substance has a viscosity of 0.933 Pa s, comprising 6.3 g/100 g of crude protein, 4.08 g/100 g of amino acids, 0.1158 g/L of DNA, and 0.1031 g/L of RNA. Full article
Show Figures

Figure 1

17 pages, 1782 KB  
Review
Quinoa and Colonic Health: A Review of Bioactive Components and Mechanistic Insights
by Yan Pan, Jimin Zheng, Zhixuan Wang, Shaohua Lin, Hongliang Jia, Hairun Pei and Ronghui Ju
Curr. Issues Mol. Biol. 2025, 47(10), 815; https://doi.org/10.3390/cimb47100815 - 2 Oct 2025
Abstract
Quinoa (Chenopodium quinoa Willd.) is an ancient Andean crop renowned for its exceptional nutritional profile and diverse bioactive compounds, including polysaccharides, polyphenols, saponins, and essential fatty acids. As global incidence of colonic diseases such as inflammatory bowel disease (IBD), colorectal cancer (CRC), [...] Read more.
Quinoa (Chenopodium quinoa Willd.) is an ancient Andean crop renowned for its exceptional nutritional profile and diverse bioactive compounds, including polysaccharides, polyphenols, saponins, and essential fatty acids. As global incidence of colonic diseases such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and celiac disease continues to rise, the therapeutic potential of quinoa has garnered increasing scientific attention. This review systematically examines the role of quinoa, with focus on quinoa polysaccharides (QPs), in maintaining and improving colonic health. It summarizes the molecular structure, functional properties, and gut microbiota-modulating effects of QPs, alongside emerging findings on their anti-inflammatory, antioxidant, immunomodulatory, and anticancer activities. Furthermore, the review explores quinoa’s auxiliary effects in mitigating CRC progression and chemotherapy resistance, alleviating intestinal inflammation, and supporting gastrointestinal integrity in celiac patients. By integrating evidence from multi-omics technologies, cell and animal models, and limited clinical studies with mechanistic insights, this review provides a focused synthesis of quinoa bioactive compounds in relation to colonic health. It highlights how precision nutrition and multi-omics approaches could guide future applications of quinoa as a novel functional food-based intervention for colonic diseases. Full article
Show Figures

Figure 1

15 pages, 1556 KB  
Article
Physicochemical Characterization of Soluble and Insoluble Fibers from Berry Pomaces
by Jolita Jagelavičiūtė, Simona Šimkutė, Aurelija Kairė, Gabrielė Kaminskytė, Loreta Bašinskienė and Dalia Čižeikienė
Gels 2025, 11(10), 796; https://doi.org/10.3390/gels11100796 - 2 Oct 2025
Abstract
Berry pomace is a valuable source of dietary fiber (DF) with promising applications in functional food development. This study aimed to evaluate and compare the technological and rheological properties of soluble (SDF) and insoluble (IDF) fiber fractions isolated from cranberry, black currant, lingonberry, [...] Read more.
Berry pomace is a valuable source of dietary fiber (DF) with promising applications in functional food development. This study aimed to evaluate and compare the technological and rheological properties of soluble (SDF) and insoluble (IDF) fiber fractions isolated from cranberry, black currant, lingonberry, and sea buckthorn pomace. SDF fractions demonstrated higher water solubility and lower swelling capacity, compared with IDF fractions. Meanwhile, water and oil retention capacities depended on fiber type and the sources of pomace. Fractionation notably affected color parameters, with SDFs generally being lighter. Rheological analysis revealed pseudoplastic, shear-thinning behavior in all SDF samples, with viscosity dependent on both pH and shear rate. In particular, the black currant SDF demonstrated higher yield stress compared to other SDFs, suggesting enhanced resistance to deformation and superior structural stability under low shear conditions. The consistency coefficient varied across samples, indicating differences in gel-forming potential. These findings highlight the importance of berry source and fiber fraction in determining functionality. The distinct hydration, binding, and rheological properties suggest that both SDF and IDF from berry pomace can be strategically applied as thickeners, stabilizers, or texture enhancers in food systems. This study supports the valorization of berry by-products as sustainable and functional ingredients in the formulation of fiber-enriched foods. Full article
(This article belongs to the Special Issue Food Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Figure 1

23 pages, 7422 KB  
Article
Adaptive–Predictive Lateral Web Movement Control Algorithm for Flexible Material Winding Systems
by Piotr Urbanek, Andrzej Fraczyk and Jacek Kucharski
Appl. Sci. 2025, 15(19), 10638; https://doi.org/10.3390/app151910638 - 1 Oct 2025
Abstract
Various industrial technologies require flexible material webs to undergo processes such as thermal treatment (e.g., drying), printing, or laminating. Such processes are usually performed within winding systems, where the web goes through a set of rolls, and the precision of the web movement [...] Read more.
Various industrial technologies require flexible material webs to undergo processes such as thermal treatment (e.g., drying), printing, or laminating. Such processes are usually performed within winding systems, where the web goes through a set of rolls, and the precision of the web movement determines the quality of the final product. Therefore, high accuracy in the control of both the longitudinal and lateral movement of the web is of paramount importance. Designing the proper control system requires insightful analysis of the technological setup and precise modeling of its dynamic properties. In this paper, the transfer function model of the roll-to-roll system with closed-loop web circulation has been developed based on the mathematical description of the open-loop system. It has been proven that the analyzed system can be efficiently represented by an integral block with negligible inertia. Having established this, several control algorithms have been analyzed, and, as a result, the dedicated adaptive–predictive control algorithm has been proposed. The developed solutions have been verified both by simulations and real experiments performed using the semi-industrial laboratory setup. The high control quality of the proposed algorithm (e.g., considerable reductions in overshoot and settling time compared to PI control), outperforming classical approaches, has been confirmed under various disturbances. Full article
Show Figures

Figure 1

27 pages, 2502 KB  
Review
Recent Advances in Transition Metal Dichalcogenide-Based Electrodes for Asymmetric Supercapacitors
by Tianyi Gao, Yue Li, Chin Wei Lai, Ping Xiang, Irfan Anjum Badruddin, Pooja Dhiman and Amit Kumar
Catalysts 2025, 15(10), 945; https://doi.org/10.3390/catal15100945 - 1 Oct 2025
Abstract
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge [...] Read more.
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge and discharge capability, and exceptional cycling stability. Concurrently, the increasing demand for efficient and sustainable energy storage systems has stimulated interest in multifunctional electrode materials that integrate electrocatalytic activity with electrochemical energy storage. Two-dimensional transition metal dichalcogenides (TMDs), owing to their distinctive layered structures, large surface areas, phase state, energy band structure, and intrinsic electrocatalytic properties, have emerged as promising candidates to achieve dual functionality in electrocatalysis and electrochemical energy storage for asymmetric supercapacitors (ASCs). Specifically, their unique electronic properties and catalytic characteristics promote reversible Faradaic reactions and accelerate charge transfer kinetics, thus markedly enhancing charge storage efficiency and energy density. This review highlights recent advances in TMD-based multifunctional electrodes. It elucidates mechanistic correlations between intrinsic electronic properties and electrocatalytic reactions that influence charge storage processes, guiding the rational design of high-performance ASC systems. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

15 pages, 2358 KB  
Article
Toward Thermally Stimuli-Responsive Polymeric Vesicles Fabricated by Block Copolymer Blends for Nanocarriers
by Jun-Ki Lee, Seung-Bum Heo, Jong Dae Jang, Dong-Chul Yang, Dae-Hee Yoon, Changwoo Do and Tae-Hwan Kim
Micromachines 2025, 16(10), 1131; https://doi.org/10.3390/mi16101131 - 30 Sep 2025
Abstract
Polymeric vesicles, characterized by enhanced colloidal stability, excellent mechanical properties, controllable surface functionality, and adjustable membrane thickness, are extremely useful in nano- and bio-technology for potential applications as nanosized carriers for drugs and enzymes. However, a few preparative steps are necessary to achieve [...] Read more.
Polymeric vesicles, characterized by enhanced colloidal stability, excellent mechanical properties, controllable surface functionality, and adjustable membrane thickness, are extremely useful in nano- and bio-technology for potential applications as nanosized carriers for drugs and enzymes. However, a few preparative steps are necessary to achieve a unilamellar vesicle with a narrow size distribution. Herein, we report the spontaneous formation of unilamellar polymeric vesicles with nanometer sizes (<50 nm), fabricated by simply mixing diblock copolymers (P(EO-AGE)(2K-2K) and P(EO-AGE)(0.75K-2K)) with differing hydrophilic mass fractions in aqueous solutions. Depending on the mixing ratio of block copolymers and the temperature, the block copolymer mixtures self-assemble into various nanostructures, such as spherical and cylindrical micelles, or vesicles. The self-assembled structures of the block copolymer mixtures were characterized by small-angle neutron scattering, resulting in a phase diagram drawn as a function of temperature and the mixing condition. Notably, the critical temperature for the micelle-to-vesicle phase transition can be easily controlled by altering the mixing conditions; it decreases with an increase in the concentration of one of the block copolymers. Full article
(This article belongs to the Section B5: Drug Delivery System)
22 pages, 1956 KB  
Review
Development and Application Prospects of Biomass-Based Organic Binders for Pellets Compared with Bentonite
by Yu Liu, Wenguo Liu, Zile Peng, Jingsong Wang, Qingguo Xue and Haibin Zuo
Materials 2025, 18(19), 4553; https://doi.org/10.3390/ma18194553 - 30 Sep 2025
Abstract
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, [...] Read more.
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, exhibiting favorable overall environmental benefits. Increasing their proportion in the furnace is one of the important measures the steel industry can take to reduce carbon emissions. Binders play a critical role in the pelletizing process, and their properties directly influence pellet quality, thereby affecting the subsequent blast furnace smelting process. Compared with traditional bentonite, organic binders have become a potential alternative material due to their environmental friendliness, renewability, and ability to significantly reduce silica and alumina impurities in pellets while improving the iron grade. This work systematically elucidates the mechanism of organic binders, which primarily rely on the chemical adsorption of carboxyl groups and the hydrogen bonding of hydroxyl groups to enhance pellet strength, and then provides three typical examples of organic binders: lignosulfonate, carboxymethyl cellulose (CMC), and carboxymethyl starch (CMS). The common characteristic of these organic binders is that they are derived from renewable biomass through chemical modification, which is a derivative of biomass with renewable and abundant resources. However, the main problem with organic binders is that they burn and decompose at high temperatures. Current research has achieved technological breakthroughs in pellet quality by combining LD sludge, low-iron oxides, and nano-CaCO3, including improved iron grade, reduced reduction swelling index (RSI), and enhanced preheating/roasting strength. Future studies should focus on optimizing the molecular structure of organic binders by increasing the degree of substitution of functional groups and the overall degree of polymerization. This approach aims to replace traditional bentonite while exploring applications of composite industrial solid wastes, effectively addressing the high-temperature strength loss issues in organic binders and providing strong support for the steel industry to achieve the green and low-carbon goals. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
27 pages, 748 KB  
Review
The Silent Revolution of Brewer’s Spent Grain: Meat/Food Innovations Through Circularity, Resource Recovery, and Nutritional Synergy—A Review
by Daniela Tapia, John Quiñones, Ailin Martinez, Erika Millahual, Paulo Cezar Bastianello Campagnol, Néstor Sepúlveda and Rommy Diaz
Foods 2025, 14(19), 3389; https://doi.org/10.3390/foods14193389 - 30 Sep 2025
Abstract
Brewer’s spent grain enhances nutritional quality by increasing fiber and plant-based proteins and reducing the need for synthetic additives. Technologies such as extrusion and fermentation transform BSG into functional ingredients that improve texture and stability. A significant increase in antioxidant capacity was observed [...] Read more.
Brewer’s spent grain enhances nutritional quality by increasing fiber and plant-based proteins and reducing the need for synthetic additives. Technologies such as extrusion and fermentation transform BSG into functional ingredients that improve texture and stability. A significant increase in antioxidant capacity was observed in enriched foods; for example, in burgers, BSG improved fiber and protein levels, while decreasing fat and calories without negatively affecting sensory acceptance. In sausages, substituting 5% of pork with BSG achieved acceptance similar to traditional formulations, and hybrid formulations with BSG maintained improved protein content while preserving texture. However, concentrations above 20% may negatively impact sensory and technological properties, by introducing undesirable flavors or altering texture. Thus, BSG is a promising source of high-value functional ingredients that contribute to the circular economy and healthier, sustainable foods. Nonetheless, more in vivo studies are needed to validate the health benefits, understand the interactions in complex matrices, assess the shelf life, and evaluate the long-term sensory perception. The “Silent Revolution” of BSG requires a multidisciplinary approach that integrates science, technology, sustainability, and effective communication with consumers. Full article
(This article belongs to the Special Issue New Research in Brewing: Ingredients, Brewing and Quality Improvement)
Show Figures

Figure 1

25 pages, 8087 KB  
Review
Biochar-Based Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Synergies, and Sustainable Prospects
by Yuxin Wei, Jingjing Ma, Kuankuan Liu, Shuai Zhang and Junqi Wang
Nanomaterials 2025, 15(19), 1487; https://doi.org/10.3390/nano15191487 - 29 Sep 2025
Abstract
This study systematically explores the mechanisms and application potential of biochar in remediating heavy metal-contaminated soils. Particular emphasis is placed on the role of raw materials and pyrolysis conditions in modulating key physicochemical properties of biochar, including its aromatic structure, porosity, cation exchange [...] Read more.
This study systematically explores the mechanisms and application potential of biochar in remediating heavy metal-contaminated soils. Particular emphasis is placed on the role of raw materials and pyrolysis conditions in modulating key physicochemical properties of biochar, including its aromatic structure, porosity, cation exchange capacity, and ash content, which collectively enhance heavy metal immobilization. The direct remediation mechanisms are categorized into six pathways: physical adsorption, electrostatic interactions, precipitation, ion exchange, organic functional group complexation, and redox reactions, with particular emphasis on the reduction in toxic Cr6+ and the oxidation of mobile As3+. In addition to direct interactions, biochar indirectly facilitates remediation by enhancing soil carbon sequestration, improving soil physicochemical characteristics, stimulating microbial activity, and promoting plant growth, thereby generating synergistic effects. The study evaluates combined remediation strategies integrating biochar with phytoremediation and microbial remediation, highlighting their enhanced efficiency. Moreover, practical challenges related to the long-term stability, ecological risks, and economic feasibility in field applications are critically analyzed. By synthesizing recent theoretical advancements and practical findings, this research provides a scientific foundation for optimizing biochar-based soil remediation technologies. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

25 pages, 9895 KB  
Review
Harnessing Microfluidics for the Effective and Precise Synthesis of Advanced Materials
by Xinlei Qi and Guoqing Hu
Micromachines 2025, 16(10), 1106; https://doi.org/10.3390/mi16101106 - 28 Sep 2025
Abstract
Microfluidic methods are powerful platforms for synthesizing advanced functional materials because they allow for precise control of microscale reaction environments. Microfluidics manipulates reactants in lab-on-a-chip systems to enable the fabrication of highly uniform materials with tunable properties, which are crucial for drug delivery, [...] Read more.
Microfluidic methods are powerful platforms for synthesizing advanced functional materials because they allow for precise control of microscale reaction environments. Microfluidics manipulates reactants in lab-on-a-chip systems to enable the fabrication of highly uniform materials with tunable properties, which are crucial for drug delivery, diagnostics, catalysis, and nanomaterial design. This review emphasizes recent progress in microfluidic technologies for synthesizing functional materials, with a focus on polymeric, hydrogel, lipid-based, and inorganic particles. Microfluidics provides exceptional control over the size, morphology, composition, and surface chemistry of materials, thereby enhancing their performance through uniformity, tunability, hierarchical structuring, and on-chip functionalization. Our review provides novel insights by linking material design strategies with fabrication methods tailored to biomedical applications. We also discuss emerging trends, such as AI-driven optimization, automation, and sustainable microfluidic practices, offering a practical and forward-looking perspective. As the field advances toward robust, standardized, and user-friendly platforms, microfluidics has the potential to increase industrial adoption and enable on-demand solutions in nanotechnology and personalized medicine. Full article
Show Figures

Figure 1

21 pages, 2038 KB  
Article
Improving the Yield and Quality of Morchella spp. Using Agricultural Waste
by Jiawen Wang, Weiming Cai, Qunli Jin, Lijun Fan, Zier Guo and Weilin Feng
J. Fungi 2025, 11(10), 703; https://doi.org/10.3390/jof11100703 - 28 Sep 2025
Abstract
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered [...] Read more.
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered attention. Specifically, reusing tomato substrate, mushroom residues, and coconut shells can lower the production costs and reduce environmental pollution, demonstrating remarkable ecological and economic benefits. To determine the soil microbial communities of Morchella spp. using different culture medias and influencing factors, this study analysed the relative abundance of bacterial and fungal communities in natural soil, soil with 5% tomato substrate, soil with 5% mushroom residues, and soil with 5% coconut shells using Illumina NovaSeq high-throughput sequencing. In addition, intergroup differences, soil physiochemical properties, and product quality were also determined. Results demonstrated that agricultural waste consisting of mushroom residues, waste tomato substrate, and coconut shells can improve the efficiency of Morchella spp. cultivation. When considering yield and quality, mushroom residue achieved the highest yield (soil nutrient enrichment), followed by tomato substrate (water holding + grass carbon nutrient). All three types of agricultural waste promoted early fruiting, significantly increased polysaccharide, crude protein, and potassium content, and lowered crude fat and fibre. In regard to soil improvement, the addition of different materials optimized the soil’s physical structure (reducing volume weight and increasing water holding capacity) and chemical properties (enrichment of nitrogen, phosphorus, and potassium, regulating nitrogen and medium trace elements). For microbial regulation, the added materials significantly increased the abundance of beneficial bacteria (e.g., Actinomycetota, Gemmatimonadota and Devosia) and strengthened nitrogen’s fixation/nitration/decomposition functions. In the mushroom residue group, the abundance of Bacillaceae was positively related to yield. Moreover, it inhibited pathogenic fungi like Mortierella and Trichoderma, and lowered fungal diversity to decrease ecological competition. In summary, mushroom residues have nutrient releasing and microbial regulation advantages, while tomato substrate and coconut shells are new high-efficiency resources. These increase yield through the “physiochemical–microorganism” collaborative path. Future applications may include regulating the function of microorganisms and optimizing waste preprocessing technologies to achieve sustainability. Full article
Show Figures

Figure 1

23 pages, 9896 KB  
Article
An Approach for Designing 3D-Printed Assembled Rotational Joints and Assemblies for Mechanisms and Robot Models
by Ivan Chavdarov, Bozhidar Naydenov and Stanislav Yochev
Technologies 2025, 13(10), 436; https://doi.org/10.3390/technologies13100436 - 28 Sep 2025
Abstract
Three-dimensional printing has enabled the production of complex parts that are difficult to create with conventional manufacturing methods. Its additive nature has made it possible to create interconnected (assembled) parts in a single manufacturing step. This requires the development of new ways of [...] Read more.
Three-dimensional printing has enabled the production of complex parts that are difficult to create with conventional manufacturing methods. Its additive nature has made it possible to create interconnected (assembled) parts in a single manufacturing step. This requires the development of new ways of designing, manufacturing, and testing mechanisms that do not require assembly after their creation, called non-assembly mechanisms. An approach is proposed for the design and experimental study of the properties of rotational joints created already assembled using FFF technology for 3D printing. The advantages and disadvantages of different 3D printing methods that can be used to obtain such assemblies are discussed. Basic principles for the design of assembled rotational joints, built without support structures, are introduced. Two examples of their application in creating functional robot models are presented. The features during production, and the advantages and disadvantages of the models are discussed. Models of directly assembled rotational joints with different clearances are studied, and an experiment is conducted based on measuring the magnitude of the current during the rotation of a link. This provides indirect results for the rolling resistance, on the basis of which the qualities of the joint are judged. The results from the experiments show that rotational joints with a diameter d = 10 [mm], created using FFF technology and PLA material, have the lowest resistance at a clearance in the range t = 0.15–0.25 [mm]. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

16 pages, 3481 KB  
Article
Encapsulation of Acid Whey in Alginate Microspheres for Application in Skin Microbiome-Friendly Topical Formulations: Optimization Through a Design of Experiments Approach
by Elżbieta Sikora, Anna Łętocha, Alicja Michalczyk and Agnieszka Kozik
Molecules 2025, 30(19), 3907; https://doi.org/10.3390/molecules30193907 - 28 Sep 2025
Abstract
Skin microbiome-friendly preparations are gaining increasing popularity in the cosmetics and pharmaceutical industries. Fermented plants, lysates, and heat-treated products are used as probiotic ingredients in cosmetics. This is due to the presence of Lactobacillus bacteria, such as acid or acid-rennet whey, which are [...] Read more.
Skin microbiome-friendly preparations are gaining increasing popularity in the cosmetics and pharmaceutical industries. Fermented plants, lysates, and heat-treated products are used as probiotic ingredients in cosmetics. This is due to the presence of Lactobacillus bacteria, such as acid or acid-rennet whey, which are natural probiotics that can positively impact the skin microbiome. However, due to technological difficulties, the direct use of whey as a cosmetic ingredient is limited. An optimized emulsification method was used to obtain alginate microspheres as carriers of whey. The process parameters were optimized using the Design of Experiments (DoEs) methodology. The effect of three key variables, including the type of probiotic raw material (whey from 1—cows, 2—goats, and 3—mixed), the alginate-to-raw material ratio (1–3%), and sonication time (0.5–1.5 min), on parameters such as encapsulation efficiency, bacterial survival, viscosity, and microspheres size was analyzed. The results obtained demonstrated that the optimal process parameters were the sonication time of 0.5 min and the alginate-to-whey mass ratio of 1.5% for all types of whey material studied. However, the most important factor influencing the properties and functionality of the microspheres was sonication time. The optimized whey-loaded microspheres were incorporated into a preservative-containing emulsion system, in which the viability of whey-derived bacteria was monitored over time. The whey encapsulation process effectively maintained the bacteria’s probiotic properties, protecting their viability despite the presence of preservatives (at a level of 4.92 ± 0.9 log CFU/g after 30 days of formulation storage), thus confirming the feasibility of incorporating liquid whey into skincare formulations. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Figure 1

27 pages, 4238 KB  
Article
The Multiple Recycling Process of Polypropylene Composites with Glass Fiber in Terms of Grinding Efficiency and Selected Properties of Recirculated Products
by Arkadiusz Kloziński, Paulina Jakubowska, Adam Piasecki and Dorota Czarnecka-Komorowska
Polymers 2025, 17(19), 2625; https://doi.org/10.3390/polym17192625 - 28 Sep 2025
Abstract
This study comprehensively discusses the effect of multiple material recycling (five recycling cycles with the same technological conditions: injection molding → grinding → drying → injection molding → …) of commercial polypropylene-glass fiber composites (PPGF) (PP + 10, 20 and 30 wt.% GF) [...] Read more.
This study comprehensively discusses the effect of multiple material recycling (five recycling cycles with the same technological conditions: injection molding → grinding → drying → injection molding → …) of commercial polypropylene-glass fiber composites (PPGF) (PP + 10, 20 and 30 wt.% GF) on the performance of the grinding process and the granulometric characteristics of the obtained regrinds, as well as selected surface, mechanical and thermal properties of the composites. An increase in mass (Em) and volume (Ev) grinding efficiency was confirmed, along with an increase in GF content in the composite and the number of recycling cycles. Both the GF additive and the number of recycling cycles contributed to the deterioration of the aesthetic qualities of the composites (darkening and reduction in gloss). Slight changes in the surface hardness of the test materials were observed as a function of the number of recycling cycles, from 3 to 4% after five recycling cycles. The adverse effect of multiple recycling on the mechanical and thermal properties of PP and PPGF composites has been confirmed. The occurrence and increase in carbonyl index (CI) values, as a function of multiples recycling, was confirmed for a composite containing 20 wt.% GF (CI in the range from 0.045 to 0.092) and for PPGF containing 30 wt.% GF (CI in the range from 0.193 to 0.272). The effect of multiple material recycling on the glass fiber structure in the tested composites was also investigated using scanning electron microscopy (SEM) and optical microscopy. The issues of grinding and changes in the surface properties of PPGF composites in multiple material recycling processes discussed in this article may constitute a source of practical knowledge that will contribute to increasing the use of this type of secondary composite in industrial plastics processing processes. Full article
Show Figures

Figure 1

26 pages, 1865 KB  
Review
Composite Membranes Based on MXene and Nanocellulose for Water Purification: Structure, Efficiency, and Future Prospects
by Madina Suleimenova, Aidana Tabynbayeva, Kainaubek Toshtay and Zhandos Tauanov
Membranes 2025, 15(10), 293; https://doi.org/10.3390/membranes15100293 - 26 Sep 2025
Abstract
The development of efficient and environmentally sustainable membrane materials is essential for advancing water purification technologies. This review examines composite membranes that combine the properties of MXene and nanocellulose, focusing on their structural features, functional characteristics, and potential advantages in water treatment applications. [...] Read more.
The development of efficient and environmentally sustainable membrane materials is essential for advancing water purification technologies. This review examines composite membranes that combine the properties of MXene and nanocellulose, focusing on their structural features, functional characteristics, and potential advantages in water treatment applications. Nanocellulose provides a biodegradable, renewable matrix with abundant surface functional groups, while MXene offers high hydrophilicity, electrical conductivity, and adsorption capacity. Based on a critical evaluation of published studies, the review outlines various fabrication strategies, discusses key factors affecting membrane performance—including morphology, surface modification, and interfacial interactions—and highlights the synergistic effects between the two components. The article systematizes current approaches to designing MXene/nanocellulose membranes and establishes a foundation for future scientific and technological development in this field. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

Back to TopTop