Composite Membranes Based on MXene and Nanocellulose for Water Purification: Structure, Efficiency, and Future Prospects
Abstract
1. Introduction
2. MXene as a Promising Material for Membrane Technology
MXene Synthesis Methods
3. Classification, Properties, and Formation Mechanisms of Nanocellulose
3.1. Types of Nanocellulose
- Bacterial nanocellulose (BNC): Synthesized by microorganisms such as Acetobacter xylinum, BNC is free from lignin and hemicellulose impurities, resulting in exceptional purity and porosity. These properties enable its use in biomedical applications and high-performance membranes [41].
- Crystalline nanocellulose (CNC): Consisting of rod-shaped nanoparticles produced via acid hydrolysis of crystalline cellulose, CNC exhibits high crystallinity, rigidity, and adsorption capacity. Its surface can be readily functionalized to enhance pollutant removal and mechanical reinforcement in composite membranes [42,43].
3.2. Methods of Nanocellulose Production
3.3. Mechanisms of Nanocellulose Formation
4. Composite Membranes
4.1. Classification of Composite Membranes
4.2. Materials Used in Composite Membranes
4.2.1. Polymeric Matrices
4.2.2. Functional Fillers
4.2.3. Functional Groups for the Selective Binding of Hg2+ Ions and Other Heavy Metals
5. Efficiency and Selectivity of Composite Membranes in Water Treatment
5.1. Water Absorption of Membranes
5.2. Membrane Porosity
5.3. Antifouling Properties of Membranes
5.4. Selectivity of Composite Membranes
6. Composite Membranes Based on MXene and Nanocellulose
6.1. Membrane Fabrication Methods
6.1.1. Vacuum Filtration
6.1.2. Evaporation and Self-Supporting Coating Deposition
6.2. The Role of MXene and Nanocellulose in Composite Membranes
TFN Membranes Based on Nanocellulose
7. Prospects and Future Directions
7.1. Development of Self-Healing and Self-Cleaning Membranes
7.2. Development of Environmentally Friendly Biodegradable Membranes
7.3. Enhancing Functionality Through Molecular Design
7.4. Use of Composite Membranes in Large-Scale Water Treatment Systems
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNC | Crystalline Nanocellulose |
CNF | Cellulose Nanofibrils |
BNC | Bacterial Nanocellulose |
TEMPO | 2,2,6,6-Tetramethylpiperidine-1-oxyl |
MOF | Metal–Organic Framework |
PES | Polyethersulfone |
PANI | Polyaniline |
PAN | Polyacrylonitrile |
PVDF | Polyvinylidene Fluoride |
CNT | Carbon Nanotubes |
FRR | Flux Recovery Ratio |
References
- World Health Organization. Guidelines for Drinking-Water Quality. 2022. Available online: https://www.who.int (accessed on 5 June 2025).
- National Health and Medical Research Council. Australian Drinking Water Guidelines—Mercury. 2023. Available online: https://www.nhmrc.gov.au (accessed on 5 June 2025).
- Jeong, H.; Ali, W.; Zinck, P.; Souissi, S. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. Sci. Total Environ. 2024, 943, 173574. [Google Scholar] [CrossRef]
- Sinclair, C.A.; Garcia, T.S.; Eagles-Smith, C.A. A meta-analysis of mercury biomagnification in freshwater predatory invertebrates. Environ. Sci. Technol. 2024, 58, 19429–19439. [Google Scholar] [CrossRef] [PubMed]
- AP News. Japan’s Court Recognizes More Victims of Minamata Mercury Poisoning and Awards Them Compensation. Available online: https://apnews.com/article/6c321fa5a208f378ab1e58b558cff835 (accessed on 27 September 2023).
- The Guardian. What’s Behind the Alarming Rise in Birth Defects in Brazil’s Illegal Gold Mining Capital? Available online: https://www.theguardian.com/global-development/2024/nov/28/rise-birth-defects-in-brazil-para-state-illegal-gold-mining-capital (accessed on 28 November 2024).
- He, H.; Liu, X.K.; Zhao, B.Y.; Zhou, L.J.; Zhao, X.; Wang, C.X.; Wang, L. Preparation of UiO-66-NH2 @cellulose nanofiber composite film and its adsorption performance study towards Cd(II). Biomass-Convers. Biorefin. 2024, 15, 10293–10304. [Google Scholar] [CrossRef]
- Zhong, H.; Tang, W.; Li, Z.; Sonne, C.; Lam, S.S.; Zhang, X.; Kwon, S.Y.; Rinklebe, J.; Nunes, L.M.; Yu, R.-Q.; et al. Soil Geobacteraceae are the key predictors of neurotoxic methylmercury bioaccumulation in rice. Nat. Food 2024, 5, 301–311. [Google Scholar] [CrossRef]
- Janwery, D.; Memon, F.H.; Memon, A.A.; Iqbal, M.; Memon, F.N.; Ali, W.; Choi, K.-H.; Thebo, K.H. Lamellar graphene oxide-based composite membranes for efficient separation of heavy metal ions and desalination of water. ACS Omega 2023, 8, 7648–7656. [Google Scholar] [CrossRef]
- Pei, X.; Gan, L.; Tong, Z.; Gao, H.; Meng, S.; Zhang, W.; Wang, P.; Chen, Y. Robust cellulose-based composite adsorption membrane for heavy metal removal. J. Hazard. Mater. 2021, 406, 124746. [Google Scholar] [CrossRef]
- Kayani, K.F.; Mohammed, S.J. Mercury in aquatic environments: Toxicity and advances in remediation using covalent organic frameworks. Mater. Adv. 2025, 6, 3371–3385. [Google Scholar] [CrossRef]
- Qin, X.; Ding, C.; Tian, Y.; Dong, J.; Cheng, B. Multifunctional Ti3C2Tx MXene/Silver Nanowire Membranes with Excellent Catalytic, Antifouling, and Antibacterial Properties for Nitrophenol-Containing Water Purification. ACS Appl. Mater. Interfaces 2023, 15, 48154–48167. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lu, Y.; Wang, Y.; Guo, Y.; Shi, W. Preparation of 2D Materials and Their Application in Oil–Water Separation. Biomimetics 2023, 8, 35. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Yin, H.; Guo, J.; Lv, S.; Li, Y. MXene/cellulose hydrogel composites: Preparation and adsorption properties of Pb2+. Polymers 2024, 16, 189. [Google Scholar] [CrossRef]
- Amani, A.M.; Abbasi, M.; Najdian, A.; Mohamadpour, F.; Kasaee, S.R.; Kamyab, H.; Mosleh-Shirazi, S. MXene-based materials for enhanced water quality: Advances in remediation strategies. Ecotoxicol. Environ. Saf. 2025, 291, 117817. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Mi, K.; Han, S.; Su, Y.; Li, J.; Zhao, Y.; Hou, S. A critical review on graphene-based membrane for ion separation: Mechanisms, research status, and development prospects. Sep. Purif. Technol. 2025, 360, 130892. [Google Scholar] [CrossRef]
- Yang, W.; Cheng, M.; Han, Y.; Luo, X.; Li, C.; Tang, W.; Yue, T.; Li, Z. Heavy metal ions’ poisoning behavior-inspired etched UiO-66/CTS aerogel for Pb(II) and Cd(II) removal from aqueous and apple juice. Journal of hazardous materials. Journal of Hazardous Materials 2021, 401, 123318. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tan, S.; Xu, Z. Anisotropic nanocellulose aerogel loaded with modified UiO-66 as efficient adsorbent for heavy metal ions removal. Nanomaterials 2020, 10, 1114. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, L.; Ge, X.; Zhang, Y.; Liu, Y.; Wang, J. A mild one-step method to fabricate graphene oxide cross-linked with dopamine/polyethyleneimine (GO@DA/PEI) composite membranes with an ultrahigh flux for heavy metal ion removal. Sep. Purif. Technol. 2024, 339, 126618. [Google Scholar] [CrossRef]
- Algieri, V.; Tursi, A.; Costanzo, P.; Maiuolo, L.; De Nino, A.; Nucera, A.; Beneduci, A. Thiol-functionalized cellulose for mercury polluted water remediation: Synthesis and study of the adsorption properties. Chemosphere 2024, 355, 141891. [Google Scholar] [CrossRef]
- Akhter, R.; Maktedar, S.S. MXenes: A comprehensive review of synthesis, properties, and progress in supercapacitor applications. J. Mater. 2023, 9, 1196–1241. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Q.; Huang, B.; Feng, S.; Lu, C. Facile Fabrication of Densely Packed Ti3C2MXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance. ACS Nano 2021, 15, 12405–12417. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Huang, Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano 2021, 15, 5775–5780. [Google Scholar] [CrossRef]
- Rong, C.; Su, T.; Li, Z.; Chu, T.; Zhu, M.; Yan, Y.; Zhang, B.; Xuan, F.-Z. Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers. Nat. Commun. 2024, 15, 1566. [Google Scholar] [CrossRef]
- Lipatov, A.; Goad, A.; Loes, M.J.; Vorobeva, N.S.; Abourahma, J.; Gogotsi, Y.; Sinitskii, A. High electrical conductivity and breakdown current density of individual monolayer Ti3C2T MXene flakes. Matter 2021, 4, 1413–1427. [Google Scholar] [CrossRef]
- Zhang, B.; Wong, P.W.; Guo, J.; Zhou, Y.; Wang, Y.; Sun, J.; Jiang, M.; Wang, Z.; An, A.K.; Zhang, B.; et al. Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nat. Commun. 2022, 13, 3315. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Raymundo-Piñero, E.; Sunny, S.; Taberna, P.; Simon, P. Role of Surface Terminations for Charge Storage of Ti3C2Tx MXene Electrodes in Aqueous Acidic Electrolyte. Angew. Chem. Int. Ed. 2024, 63, e202319238. [Google Scholar] [CrossRef] [PubMed]
- Marquez, K.P.; Sisican, K.M.D.; Ibabao, R.P.; Malenab, R.A.J.; Judicpa, M.A.N.; Henderson, L.; Zhang, J.; Usman, K.A.S.; Razal, J.M. Understanding the Chemical Degradation of Ti3C2Tx MXene Dispersions: A Chronological Analysis. Small Sci. 2024, 4, 2400150. [Google Scholar] [CrossRef]
- Rahman, U.U.; Humayun, M.; Ghani, U.; Usman, M.; Ullah, H.; Khan, A.; Khan, A. MXenes as emerging materials: Synthesis, properties, and applications. Molecules 2022, 27, 4909. [Google Scholar] [CrossRef]
- Ronchi, R.M.; Arantes, J.T.; Santos, S.F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int. 2019, 45, 18167–18188. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, C.; Filatov, A.S.; Cho, W.; Lagunas, F.; Wang, M.; Vaikuntanathan, S.; Liu, C.; Klie, R.F.; Talapin, D.V. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242–1247. [Google Scholar] [CrossRef]
- Amrillah, T.; Abdullah, C.A.C.; Hermawan, A.; Sari, F.N.I.; Alviani, V.N. Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials 2022, 12, 4280. [Google Scholar] [CrossRef]
- Liu, L.; Zschiesche, H.; Antonietti, M.; Gibilaro, M.; Chamelot, P.; Massot, L.; Simon, P. In situ synthesis of MXene with tunable morphology by electrochemical etching of MAX phase prepared in molten salt. Adv. Energy Mater. 2023, 13, 2203805. [Google Scholar] [CrossRef]
- Kruger, D.D.; García, H.; Primo, A. Molten Salt Derived MXenes: Synthesis and Applications. Adv. Sci. 2024, 11, e2307106. [Google Scholar] [CrossRef]
- Huang, L.; Ding, L.; Wang, H. MXene-Based Membranes for Separation Applications. Small Sci. 2021, 1, 2100013. [Google Scholar] [CrossRef]
- Iravani, S.; Zarepour, A.; Nazarzadeh Zare, E.; Makvandi, P.; Khosravi, A.; Varma, R.S.; Zarrabi, A. Advancements in MXenes and mechanochemistry: Exploring new horizons and future applications. Mater. Adv. 2024, 5, 8404–8418. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, X.; Gu, H.; Zhang, H.; Meng, J.; Dai, W.L. Synthesis and recent developments of MXene-based composites for photocatalytic hydrogen production. J. Phys. D Appl. Phys. 2024, 57, 482001. [Google Scholar] [CrossRef]
- Zeng, J.; Zeng, Z.; Cheng, Z.; Wang, Y.; Wang, X.; Wang, B.; Gao, W. Cellulose nanofibrils manufactured by various methods with application as paper strength additives. Sci. Rep. 2021, 11, 11918. [Google Scholar] [CrossRef] [PubMed]
- Dhali, K.; Ghasemlou, M.; Daver, F.; Cass, P.; Adhikari, B. A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 2021, 775, 145871. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Mohd Kasim, N.A.; Knight, V.F.; Ong, K.K.; Mohd Noor, S.A.; Abdul Halim, N.; Ahmad Shah, N.A.; Jamal, S.H.; Janudin, N.; Misenan, M.S.M.; et al. Emerging Developments Regarding Nanocellulose-Based Membrane Filtration Material against Microbes. Polymers 2021, 13, 3249. [Google Scholar] [CrossRef]
- Barja, F. Bacterial nanocellulose production and biomedical applications. J. Biomed. Res. 2021, 35, 310–317. [Google Scholar] [CrossRef]
- Khan, M.N.; Ditta, A.; Sharif, A.; Farooqi, Z.H.; Rehman, N.; Ahmed, E.; Din, M.I.; Tariq, M.; Iqbal, R.; Basuliman, O.A.; et al. Production of nanocellulose from lignocellulosic biomass and its potential applications: A review. Glob. NEST J. 2024, 26, 05604. [Google Scholar] [CrossRef]
- Sadare, O.O.; Yoro, K.O.; Moothi, K.; Daramola, M.O. Lignocellulosic Biomass-Derived Nanocellulose Crystals: Membrane Applications and Waste-to-Value Perspectives. Membranes 2022, 12, 320. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Wan, C.; Zhang, Z.; Cao, W.; Wang, G.; Wu, Y. A comprehensive review of cellulose nanomaterials for adsorption of wastewater pollutants: Focus on dye and heavy metal Cr adsorption and oil/water separation. Collagen Leather 2024, 6, 35. [Google Scholar] [CrossRef]
- Mautner, A. Nanocellulose water treatment membranes and filters: A review. Polym. Int. 2020, 69, 741–751. [Google Scholar] [CrossRef]
- Si, R.; Pu, J.; Luo, H.; Wu, C.; Duan, G. Nanocellulose-based adsorbents for heavy metal ion. Polymers 2022, 14, 5479. [Google Scholar] [CrossRef]
- Jaouahar, M.; Ablouh, E.H.; Hanani, Z.; Jaklič, B.; Spreitzer, M.; Semlali, F.Z.; Sehaqui, H. Preparation and characterization of sulfated nanocellulose: From hydrogels to highly transparent films. Int. J. Biol. Macromol. 2024, 260, 129464. [Google Scholar] [CrossRef]
- Li, L.; Guo, J.; Kang, C.; Song, H. Reinforcement of nanocomposite hydrogel with dialdehyde cellulose nanofibrils via physical and double network crosslinking synergies. Polymers 2023, 15, 1765. [Google Scholar] [CrossRef] [PubMed]
- Asem, M.; Noraini Jimat, D.; Huda Syazwani Jafri, N.; Mohd Fazli Wan Nawawi, W.; Fadhillah Mohamed Azmin, N.; Firdaus Abd Wahab, M. Entangled cellulose nanofibers produced from sugarcane bagasse via alkaline treatment, mild acid hydrolysis assisted with ultrasonication. J. King Saud. Univ. Eng. Sci. 2023, 35, 24–31. [Google Scholar] [CrossRef]
- Suanto, P.; Saloma, S.; Nurjannah, S.A.; Ngian, S.P. Synthesis of Nanocellulose as a Sustainable Construction Material from Waste Paper Using the Alkaline Method at Low Temperature. Civ. Eng. Archit. 2025, 13, 175–192. [Google Scholar] [CrossRef]
- Almashhadani, A.Q.; Leh, C.P.; Chan, S.Y.; Lee, C.Y.; Goh, C.F. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters. Carbohydr. Polym. 2022, 286, 119285. [Google Scholar] [CrossRef]
- Bacha, E.G.; Demsash, H.D. Extraction and Characterization of Nanocellulose from Eragrostis Teff Straw. Int. J. Adv. Sci. Eng. 2021, 9, 2751–2757. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; El-Malkey, S.E.; Abu-Saied, M.A.; Mohammed, A.B.A. Exploration of a novel and efficient source for production of bacterial nanocellulose, bioprocess optimization and characterization. Sci. Rep. 2022, 12, 18533. [Google Scholar] [CrossRef]
- Zhou, Y.; Reshmy, R.; Philip, E.; Thomas, D.; Sindhu, R.; Bhargava, P.C.; Tiwari, A.; Ruiz, H.A.; Madhavan, A.; Pandey, A.; et al. Bacterial nanocellulose: Optimized synthesis and biomedical applications. Ind. Crops Prod. 2023, 205, 117589. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Cui, F.; Wu, W.; Zhu, H.; Li, X.; Kang, K. Preparation and characterization of nanocellulose fiber (CNF) by biological enzymatic method. J. Thermoplast. Compos. Mater. 2024, 37, 1223–1241. [Google Scholar] [CrossRef]
- Bondancia, T.J.; Florencio, C.; Baccarin, G.S.; Farinas, C.S. Cellulose nanostructures obtained using enzymatic cocktails with different compositions. Int. J. Biol. Macromol. 2022, 207, 299–307. [Google Scholar] [CrossRef]
- Hastuti, N.; Darmayanti, R.F.; Hardiningtyas, S.D.; Kanomata, K.; Sonomoto, K.; Goto, M.; Kitaoka, T. Nanocellulose from oil palm biomass to enhance microbial fermentation of butanol for bioenergy applications. Bioresources 2019, 14, 6936–6957. [Google Scholar] [CrossRef]
- Pradhan, D.; Jaiswal, A.K.; Jaiswal, S. Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydr. Polym. 2022, 285, 119258. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Zeng, J.; Cheng, Z.; Wang, X.; Wang, B.; Zeng, Z.; Chen, K. Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydr. Polym. 2021, 254, 117474. [Google Scholar] [CrossRef] [PubMed]
- Gallo Stampino, P.; Riva, L.; Punta, C.; Elegir, G.; Bussini, D.; Dotelli, G. Comparative life cycle assessment of cellulose nanofibres production routes from virgin and recycled raw materials. Molecules 2021, 26, 2558. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, H.; Mu, T.; Fauconnier, M.L.; Li, M. Preparation of cellulose nanofibers from potato residues by ultrasonication combined with high-pressure homogenization. Food Chem. 2023, 413, 135675. [Google Scholar] [CrossRef] [PubMed]
- Hoo, D.Y.; Low, Z.L.; Low, D.Y.S.; Tang, S.Y.; Manickam, S.; Tan, K.W.; Ban, Z.H. Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrason. Sonochem 2022, 90, 106176. [Google Scholar] [CrossRef]
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules 2023, 28, 2639. [Google Scholar] [CrossRef]
- Samsalee, N.; Meerasri, J.; Sothornvit, R. Rice husk nanocellulose: Extraction by high-pressure homogenization, chemical treatments and characterization. Carbohydr. Polym. Technol. Appl. 2023, 6, 100353. [Google Scholar] [CrossRef]
- Bárta, J.; Hájková, K.; Sikora, A.; Jurczyková, T.; Popelková, D.; Kalous, P. Effect of a Nanocellulose Addition on the Mechanical Properties of Paper. Polymers 2023, 16, 73. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Sanchez-Salvador, J.L.; Blanco, A.; Balea, A.; Negro, C. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties. Carbohydr. Polym. 2023, 319, 121168. [Google Scholar] [CrossRef] [PubMed]
- Barbash, V.A.; Yashchenko, O.V.; Gondovska, A.S.; Deykun, I.M. Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks. Appl. Nanosci. 2022, 12, 835–848. [Google Scholar] [CrossRef]
- Çiçekler, M.; Tutuş, A. Cellulose nanofibers (cnf) and cellulose nanocrystals (cnc) as high-performance fillers improving the mechanical, optical, and surface properties of recycled newspaper. Turk. J. For. Sci. 2025, 9, 122–140. [Google Scholar] [CrossRef]
- Jimmy, J.; Kandasubramanian, B. Mxene functionalized polymer composites: Synthesis and applications. Eur. Polym. J. 2020, 122, 109367. [Google Scholar] [CrossRef]
- Ohno, R.; Shudo, K.; Tano, T.; Kakinuma, K. Development of Polymer Composite Membranes with Hydrophilic TiO2 Nanoparticles and Perfluorosulfonic Acid-Based Electrolyte for Polymer Electrolyte Fuel Cells Operating over a Wide Temperature Range. ACS Appl. Energy Mater. 2023, 6, 10098–10104. [Google Scholar] [CrossRef]
- Pathak, R.; Punetha, M.; Bhatt, S.; Pillai, S.A.; Dhapola, P.S.; Punetha, V.D. Organic and inorganic nanofillers for polymer nanocomposites. In Advances in Functionalized Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–34. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, Q.; Shen, Y.; Chen, X.; Qiu, M.; Fan, Y. Construction of TiO2-ZrO2 composite nanofiltration membranes for efficient selective separation of dyes and salts. Sep. Purif. Technol. 2024, 351, 128127. [Google Scholar] [CrossRef]
- Mahdavi Far, R.; Van der Bruggen, B.; Verliefde, A.; Cornelissen, E. A review of zeolite materials used in membranes for water purification: History, applications, challenges and future trends. J. Chem. Technol. Biotechnol. 2022, 97, 575–596. [Google Scholar] [CrossRef]
- Xue, S.; Ji, C.; Kowal, M.D.; Molas, J.C.; Lin, C.-W.; McVerry, B.T.; Turner, C.L.; Mak, W.H.; Anderson, M.; Muni, M.; et al. Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. Nano Lett. 2020, 20, 2209–2218. [Google Scholar] [CrossRef]
- Barrejón, M.; Prato, M. Carbon Nanotube Membranes in Water Treatment Applications. Adv. Mater. Interfaces 2021, 9, 2101260. [Google Scholar] [CrossRef]
- Oh, H.; Samineni, L.; Vogler, R.J.; Yao, C.; Behera, H.; Dhiman, R.; Horner, A.; Kumar, M. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS Nano 2025, 19, 31–53. [Google Scholar] [CrossRef]
- Elshaarawy, R.F.M.; Abd El-Aal, R.M.; Mustafa, F.H.A.; Borai, A.E.; Schmidt, S.; Janiak, C. Dual ionic liquid-based crosslinked chitosan for fine-tuning of antifouling, water throughput, and denitrification performance of polysulfone membrane. Int. J. Biol. Macromol. 2021, 170, 572–582. [Google Scholar] [CrossRef]
- Ghodke, Y.A.; Mayilswamy, N.; Kandasubramanian, B. Polyamide (PA)- and Polyimide (PI)-based membranes for desalination application. Polym. Bull. 2023, 80, 10661–10695. [Google Scholar] [CrossRef]
- Li, N.; Lou, T.-J.; Wang, W.; Li, M.; Jing, L.-C.; Yang, Z.-X.; Chang, R.-Y.; Li, J.; Geng, H.-Z. MXene-PANI/PES composite ultrafiltration membranes with conductive properties for anti-fouling and dye removal. J. Membr. Sci. 2023, 668, 121271. [Google Scholar] [CrossRef]
- Gao, H.; Chen, Y. Hybrid dimensional MXene/CNC framework-regulated nanofiltration membrane with high separation performance. Acs EsT Water 2022, 3, 1767–1777. [Google Scholar] [CrossRef]
- Wu, R.; Tan, Y.; Meng, F.; Zhang, Y.; Huang, Y.-X. PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation. Desalination 2022, 540, 116013. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, D.; Sun, H.; Zhao, Y.; Xie, M. Adsorption and detection of heavy metals from aqueous water by PVDF/ATP-CDs composite membrane. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128573. [Google Scholar] [CrossRef]
- Spoială, A.; Ilie, C.-I.; Dolete, G.; Croitoru, A.-M.; Surdu, V.-A.; Trușcă, R.-D.; Motelica, L.; Oprea, O.-C.; Ficai, D.; Ficai, A.; et al. Preparation and Characterization of Chitosan/TiO2 Composite Membranes as Adsorbent Materials for Water Purification. Membranes 2022, 12, 804. [Google Scholar] [CrossRef]
- Ajibade, T.F.; Tian, H.; Hassan Lasisi, K.; Xue, Q.; Yao, W.; Zhang, K. Multifunctional PAN UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater. Sep. Purif. Technol. 2021, 275, 119135. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Qin, Q.; Mi, L.; Li, G.; Zheng, G.; Liu, C.; Li, Q.; Liu, X. Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Adv. Compos. Hybrid. Mater. 2021, 4, 1215–1225. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.; Zhou, H.; Zhu, S.; Yang, J. Nanocellulose-intercalated MXene NF membrane with enhanced swelling resistance for highly efficient antibiotics separation. Sep. Purif. Technol. 2023, 305, 122425. [Google Scholar] [CrossRef]
- Bhuyan, C.; Bora, P.; Hazarika, S. MXenes in membrane engineering: Unlocking the new potential for water treatment. Water Supply 2025, 25, ws2025072. [Google Scholar] [CrossRef]
- Tan, Z.-K.; Gong, J.-L.; Fang, S.-Y.; Li, J.; Cao, W.-C.; Chen, Z.-P. Outstanding anti-bacterial thin-film composite membrane prepared by incorporating silver-based metal–organic framework (Ag-MOF) for water treatment. Appl. Surf. Sci. 2022, 590, 153059. [Google Scholar] [CrossRef]
- Jasim, H.K.; Al-Ridah, Z.A.; Naje, A.S. Graphene oxide–carbon nanotube composite membrane for enhanced removal of organic pollutants by forward osmosis. Desalination Water Treat. 2024, 318, 100363. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, X.; Chen, Y.; Chen, Z.; Lan, Y.; Hong, Y.; Lan, W. Graphene oxide composite membranes for water purification. ACS Appl. Nano Mater. 2022, 5, 3643–3653. [Google Scholar] [CrossRef]
- Kirk, C.H.; Wang, P.; Chong, C.Y.D.; Zhao, Q.; Sun, J.; Wang, J. TiO2 photocatalytic ceramic membranes for water and wastewater treatment: Technical readiness and pathway ahead. J. Mater. Sci. Technol. 2024, 183, 152–164. [Google Scholar] [CrossRef]
- Kumari, S.; Chowdhry, J.; Kumar, M.; Garg, M.C. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. Environ. Res. 2024, 260, 119782. [Google Scholar] [CrossRef]
- Manoharmayum, V.S.; Ningombam, D. Zeolites as versatile material for sustainable water purification: A review. EQA-Int. J. Environ. Qual. 2025, 65, 25–34. [Google Scholar] [CrossRef]
- Ajith, S.; Almomani, F.; Qiblawey, H. Emerging 2D MXene-based polymeric membranes for water treatment and desalination. J. Environ. Chem. Eng. 2024, 12, 112078. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Batista, J.G.; Rodrigues, M.Á.; Thipe, V.C.; Minarini, L.A.; Lopes, P.S.; Lugão, A.B. Advances in silver nanoparticles: A comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front. Microbiol. 2024, 15, 1440065. [Google Scholar] [CrossRef]
- Chamam, B.; Ben Dassi, R.; Abderraouf, J.; Mericq, J.P.; Faur, C.; Trabelsi, I.; Heran, M. Incorporation of Ag-ZnO Nanoparticles into PVDF Membrane Formulation to Enhance Dye Retention, Permeability, and Antibacterial Properties. Polymers 2025, 17, 1269. [Google Scholar] [CrossRef] [PubMed]
- Kothavale, V.P.; Sharma, A.; Dhavale, R.P.; Chavan, V.D.; Shingte, S.R.; Selyshchev, O.; Dongale, T.D.; Park, H.H.; Zahn, D.R.T.; Salvan, G.; et al. Carboxyl and thiol-functionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal ions from aqueous solutions: Studies of adsorption, kinetics, and isotherms. J. Phys. Chem. Solids 2023, 172, 111089. [Google Scholar] [CrossRef]
- Waly, S.M.; El-Wakil, A.M.; El-Maaty, W.M.A.; Awad, F.S. Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon. J. Saudi Chem. Soc. 2021, 25, 101296. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Cheng, Q.; Wang, C.; Li, H.; Han, X.; Fan, Z.; Su, G.; Pan, D.; Li, Z. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. Chemosphere 2021, 279, 130927. [Google Scholar] [CrossRef]
- Shahkaramipour, N.; Tran, T.N.; Ramanan, S.; Lin, H. Membranes with surface-enhanced antifouling properties for water purification. Membranes 2017, 7, 13. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Ding, M.; Zhang, L.; Chen, G.; Fu, J.; Wang, A.; Chen, J.; Liu, B.; Yang, W. MXene-regulation polyamide membrane featuring bubble-like nodule for efficient dye/salt separation and antifouling performance. RSC Adv. 2022, 12, 10267–10279. [Google Scholar] [CrossRef]
- Qian, L.; Yuan, C.; Wang, X.; Zhang, H.; Du, L.; Wei, G.; Chen, S. Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance. RSC Adv. 2023, 13, 15872–15880. [Google Scholar] [CrossRef]
- Soomro, R.A.; Zhang, P.; Fan, B.; Wei, Y.; Xu, B. Progression in the Oxidation Stability of MXenes. Nano-Micro Lett. 2023, 15, 108. [Google Scholar] [CrossRef]
- Ganji, N.; Reardon-Lochbaum, C.A.; Ambade, S.B.; Anastasia, C.M.; Eckhert, P.M.; Rosenzweig, Z.; Fairbrother, D.H. Stability of Ti3C2Tx MXenes in engineered environments. Environ. Sci. Nano 2024, 11, 494–506. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, K. The preparation of high-performance and stable MXene nanofiltration membranes with MXene embedded in the organic phase. Membranes 2021, 12, 2. [Google Scholar] [CrossRef]
- Solangi, N.H.; Mubarak, N.M.; Karri, R.R.; Mazari, S.A.; Kailasa, S.K.; Alfantazi, A. Applications of advanced MXene-based composite membranes for sustainable water desalination. Chemosphere 2023, 314, 137643. [Google Scholar] [CrossRef]
- Alfahel, R.; Azzam, R.S.; Hafiz, M.; Hawari, A.H.; Pandey, R.P.; Mahmoud, K.A.; Elzatahry, A.A. Fabrication of fouling resistant Ti3C2Tx (MXene)/cellulose acetate nanocomposite membrane for forward osmosis application. J. Water Process Eng. 2020, 38, 101551. [Google Scholar] [CrossRef]
- Subash, A.; Sen, S.; Naebe, M.; Kandasubramanian, B.; Kulthe, M.; Kore, A. MXene—Reclaimed Cellulose Acetate Composites for Methylene Blue Removal Through Synergistic Adsorption and Photocatalysis. Polym. Adv. Technol. 2024, 35, e6622. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, Y.; Huang, R.; Li, S.; He, J.; Fu, R.; Lai, C.; Liu, C.; Shen, L.; Zhang, S. Anti-swelling polyethyleneimine-modified MXene nanofiltration membranes for efficient and selective molecular separation. EcoMat 2023, 5, e12300. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Q.; Tan, M.; Zhang, P.; Sun, S.; Wu, D.; Huang, X. Spongy and anti-pollution MXene/Ag2S/cellulose acetate membrane for sustainable solar-driven interfacial evaporation and water purification. Chem. Eng. J. 2024, 489, 151441. [Google Scholar] [CrossRef]
- Azam, R.S.; Almasri, D.A.; Alfahel, R.; Hawari, A.H.; Hassan, M.K.; Elzatahry, A.A.; Mahmoud, K.A. MXene (Ti3C2Tx)/cellulose acetate mixed-matrix membrane enhances fouling resistance and rejection in the crossflow filtration process. Membranes 2022, 12, 406. [Google Scholar] [CrossRef]
- Pandey, R.P.; Rasheed, P.A.; Gomez, T.; Azam, R.S.; Mahmoud, K.A. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. J. Membr. Sci. 2020, 607, 118139. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, W.; Xu, H.; Yang, W.; Kong, Q.; Wang, A.; Ding, M.; Shang, J. Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets. Int. J. Env. Res. Public Health 2019, 16, 4659. [Google Scholar] [CrossRef]
- Kallem, P.; Elashwah, N.; Bharath, G.; Hegab, H.M.; Hasan, S.W.; Banat, F. Zwitterion-Grafted 2D MXene (Ti3C2TX) Nanocomposite Membranes with Improved Water Permeability and Self-Cleaning Properties. ACS Appl. Nano Mater. 2023, 6, 607–621. [Google Scholar] [CrossRef]
- Liu, J.; Gu, Z.; Duan, M.; Li, P.; Li, L.; Jiang, J.; Chen, L. Ultrafast ion sieving in two dimensional graphene oxide membranes. arXiv 2022, arXiv:2210.13707. [Google Scholar] [CrossRef]
- Ounifi, I.; Guesmi, Y.; Ursino, C.; Santoro, S.; Mahfoudhi, S.; Figoli, A.; Ferjanie, E.; Hafiane, A. Antifouling Membranes Based on Cellulose Acetate (CA) Blended with Poly(acrylic acid) for Heavy Metal Remediation. Appl. Sci. 2021, 11, 4354. [Google Scholar] [CrossRef]
- Zahid, A.; Nawaz, H.H.; Siddique, A.; Ahmed, B.; Razzaque, S.; Liu, X.; Razzaq, H.; Umar, M. Enabling improved PSF nanocomposite membrane for wastewater treatment with selective nanotubular morphology of PANI/ZnO. Mater. Adv. 2024, 5, 9471–9487. [Google Scholar] [CrossRef]
- Alotaibi, A.A.; Shukla, A.K.; Mrad, M.H.; Alswieleh, A.M.; Alotaibi, K.M. Fabrication of Polysulfone-Surface Functionalized Mesoporous Silica Nanocomposite Membranes for Removal of Heavy Metal Ions from Wastewater. Membranes 2021, 11, 935. [Google Scholar] [CrossRef]
- Dai, Z.; Ottesen, V.; Deng, J.; Helberg, R.M.L.; Deng, L. A Brief Review of Nanocellulose Based Hybrid Membranes for CO2 Separation. Fibers 2019, 7, 40. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Z.; Ahmad, M.; Miao, M. Fabrication of Porous MXene/Cellulose Nanofibers Composite Membrane for Maximum Osmotic Energy Harvesting. Int. J. Mol. Sci. 2024, 25, 13226. [Google Scholar] [CrossRef] [PubMed]
- Abedi, F.; Dubé, M.A.; Emadzadeh, D.; Kruczek, B. Improving nanofiltration performance using modified cellulose nanocrystal-based TFN membranes. J. Membr. Sci. 2023, 670, 121369. [Google Scholar] [CrossRef]
- Mallya, D.S.; Dumée, L.F.; Muthukumaran, S.; Lei, W.; Baskaran, K. 2D nanosheet enabled thin film nanocomposite membranes for freshwater production–a review. Mater. Adv. 2021, 2, 3519–3537. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, Y.; Chen, C.; Zhao, H.; Zhao, Y.; Jia, Y.; Li, Z. Preparation and characterization of a thin-film composite membrane modified by mXene nano-sheets. Membranes 2022, 12, 368. [Google Scholar] [CrossRef]
- Xia, M.; Gao, J.; Xu, P.; Fang, J.; Yang, Q.; He, Q.; Chen, Y. Bio-inspired high-strength supramolecular fiber membrane by ice-dissolving-regeneration for achieving self-healing, self-cleaning and water purification. Chem. Eng. J. 2024, 485, 150023. [Google Scholar] [CrossRef]
- Pantuso, E.; Ahmed, E.; Fontananova, E.; Brunetti, A.; Tahir, I.; Karothu, D.P.; Alnaji, N.A.; Dushaq, G.; Rasras, M.; Naumov, P.; et al. Smart dynamic hybrid membranes with self-cleaning capability. Nat. Commun. 2023, 14, 5751. [Google Scholar] [CrossRef]
- Xue, Q.; Lim, Y.J.; Zhang, K. Engineering multi-channel water transport in surface-porous MXene nanosheets for high-performance thin-film nanocomposite membranes. J. Membr. Sci. 2025, 728, 124151. [Google Scholar] [CrossRef]
- Oldal, D.G.; Topuz, F.; Holtzl, T.; Szekely, G. Green Electrospinning of Biodegradable Cellulose Acetate Nanofibrous Membranes with Tunable Porosity. ACS Sustain. Chem. Eng. 2023, 11, 994–1005. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Liang, X.; Yuan, J.; Yang, H.; Wang, S.; Ren, Y.; Wu, H.; Pan, F.; Jiang, Z. Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 2021, 50, 5468–5516. [Google Scholar] [CrossRef] [PubMed]
- Shahbabaei, M.; Tang, T. Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Phys. Chem. Chem. Phys. 2022, 24, 29298–29327. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, A.; Zhang, Z.; Xu, Y.; Li, G.; Hankoy, M.; Zhang, J. Thin film nanocomposite nanofiltration with tannic acid-Fe(III) complexes functionalized Ti3C2Tx for enhanced divalent-salinity-water separation with a superior durability. J. Membr. Sci. 2024, 693, 122333. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, X.; Luo, X.; Guo, Y.; Liu, Y.; Yang, L.; Liang, H. MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport. Environ. Sci. Technol. 2020, 55, 1270–1278. [Google Scholar] [CrossRef]
- Xue, Q.; Meng, W.; Fang, Q.; Zhu, J.; Zhang, K. Water nanochannels in MXene polyamide nanofiltration membranes: Implications for permeability. ACS Appl. Nano Mater. 2023, 6, 11282–11290. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Issaoui, M.; Jellali, S.; Zorpas, A.A.; Dutournie, P. Membrane technology for sustainable water resources management: Challenges and future projections. Sustain. Chem. Pharm. 2022, 25, 100590. [Google Scholar] [CrossRef]
Physicochemical Property | Characteristics | Ref. |
---|---|---|
Structure | Layered, 2D nanolayers with high specific surface area | [22] |
Surface groups | Functionalized with –OH, –O, –F groups depending on the synthesis method | [23] |
Mechanical strength | Young’s modulus for the Ti3C2Tx monolayer is 0.484 ± 0.013 TPa, close to the theoretical value (0.502 TPa) | [24] |
Electrical conductivity | Electrical conductivity of the Ti3C2Tx monolayer reaches up to 11,000 S·cm−1, indicating high current conductivity | [25] |
Hydrophilicity | Exhibits high hydrophilicity due to terminal groups | [26] |
Surface charge | Negative surface charge (depends on pH and terminal groups) | [27] |
Stability | Prone to oxidation in aqueous media | [28] |
Method | Conditions/Reagents | Advantages | Limitations | Effect on Membrane Properties | Ref. |
---|---|---|---|---|---|
Chemical etching | HF, LiF/HCl; room temp. −60 °C | Produces multilayer MXene; relatively simple | Use of toxic HF, structural defects | Enhances hydrophilicity, dispersibility; improves water flux, selectivity; reduces fouling | [21,29,30,32] |
Electro- chemical etching | Electrolytes (NH4Cl, HCl, NaClO4); applied voltage | Safer than HF; scalable; controllable | Requires precise voltage/current control | Generates defect-rich MXene; increases active sites; improves ion transport and rejection | [33,34,35] |
Mechano- chemical treatment | High-energy ball milling with additives (salts, polymers) | HF-free; low cost; environmentally friendly | Non-uniform flakes, possible contamination | Improves polymer compatibility; enhances stability; antifouling | [35,36] |
CVD growth | CH4, TiCl4, H2, Ar; 800–1000 °C | High-quality, uniform films | High temperature, expensive equipment | Stable MXene films; increases selectivity and conductivity | [31] |
Functional Group | Chem. Structure | Properties | Effect on Membrane Characteristics | Ref. |
---|---|---|---|---|
Hydroxyl | –OH | High reactivity, ability to form hydrogen bonds | Enhances membrane hydrophilicity, improves interaction with other materials | [45] |
Carboxyl | –COOH | High acidity, ion exchange capability | Improves selective retention of heavy metal ions, increases surface charge | [46] |
Sulfate | –OSO3H | Strong acidity, high solubility in water | Improves nanocellulose water solubility, enhances suspension stability, affects electrostatic properties | [47] |
Aldehyde | –CHO | High reactivity, prone to oxidation | Enables further chemical modification of membranes, enhances bonding with other polymers | [48] |
Method | Type of NC | Principle | Advantages | Disadvantages | Membrane-Related Properties | Ref. |
---|---|---|---|---|---|---|
Alkaline hydrolysis | CNF | Alkaline medium removes lignin and hemicellulose | Improved mechanical properties | Not eco-friendly, possible damage | Reveals OH groups, hydrophilicity | [49,50] |
Acid hydrolysis | CNC | H2SO4 or HCl removes amorphous regions | High crystallinity, stable | Aggressive acids, neutralization needed | Compact CNC, strength, permeability | [51,52] |
Bacterial synthesis | BNC | Fermentation by Komagataeibacter | Eco- friendly, pure cellulose | Slow (7–14 d), costly | 3D networks, tunable porosity, high flux | [53,54] |
Enzymatic hydrolysis | CNC, CNF | Cellulolytic enzymes hydrolyze cellulose | Eco-friendly, mild, high quality | Expensive enzymes, slow | Stable cellulose, low surface charge | [55,56,57,58] |
Mechanical grinding | CNF | Physical fiber size reduction | Simple, no chemicals | High energy/equipment cost | Surface area, needs pretreatments | [59,60] |
Ultrasonic treatment | CNF | Sound waves break fibers | Eco-friendly, good dispersion | Costly, fiber damage | Dispersion, better pores | [61,62,63] |
Homogenization | CNF | High-pressure mechanical dispersion | Uniform fibers, stable | Pretreatment and high energy | Dense networks, good rejection | [64,65] |
TEMPO oxidation | CNF | C6–OH → COOH (TEMPO/NaBr/NaClO) | Controlled, high dispersibility | Expensive reagents, env. issues | Dispersion, carboxyl groups | [66,67] |
Type of Composite Membrane | Fillers/Modifiers | Key Properties/Applications | Ref. |
---|---|---|---|
Polymer composite membranes with functionalized nanomaterials | MXene, TiO2 nanoparticles | Improved hydrophilicity, ion selectivity, mechanical and thermal stability, suitable for water purification and gas separation | [69,70] |
Hybrid membranes with inorganic fillers | MOFs, zeolites, TiO2/ZrO2 | High selectivity, pressure resistance, effective for gas and liquid separation | [71,72,73] |
Nanostructured membranes | GO, CNTs | Controlled pore size, efficient ion transport, ultrapermeability with low energy input | [74,75] |
Biomimetic membranes | Aquaporins, bio-inspired coatings | High permeability, fouling resistance, natural-like filtration mechanisms | [76] |
Ionic liquid-based membranes | Ionic liquids, IL–chitosan | Antifouling, high selectivity for ions and organic molecules, chemical resistance | [77] |
Filler Type | Main Properties | Effect on Membrane | Application Area | Ref. |
---|---|---|---|---|
Carbon nanomaterials (GO, CNTs) | High mechanical strength, electrical conductivity, large surface area | Improves hydrophilicity and membrane selectivity | Water purification, gas separation, biomedicine | [89,90] |
Metal oxides (TiO2, Fe3O4, ZrO2) | Photocatalysis, magnetic properties, high chemical stability | Adds antibacterial properties, improves heavy metal removal | Water and air purification, catalysis | [91] |
Zeolites | High porosity, high selectivity | Enhances sorption of pollutants | Gas and liquid separation, water purification | [92,93] |
MXene | High conductivity, unique mechanical properties | Enables fabrication of highly conductive membranes | Smart membrane systems, energy storage | [94] |
Functional nanoparticles (Ag, Au, etc.) | Antibacterial and catalytic activity | Improves fouling resistance | Biomedicine, water disinfection, sensors | [95,96] |
No. | Membrane Composition | Pollutant | Permeability (L·m−2·h−1·bar−1) | FRR (%) | Removal Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
1 | MXene/Ag2S/ cellulose | methylene blue | — | — | 93.3 | [110] |
2 | MXene (Ti3C2Tx)/ cellulose | MG, BSA | — | 67.3 | 99.49 | [111] |
3 | Ti3C2Tx (MXene)/cellulose acetate | E. coli, B. subtilis | 256.85 | — | 98 | [112] |
4 | PSF/MXene | BSA | 450 | 76.1 | >90 | [113] |
5 | PES/Zwitterion-MXene | BSA | 480 | 94 | 90 | [114] |
6 | MXene/ceramic substrate | Humic acid | 331.9 | — | 86.5 | [115] |
7 | PAN/CS/Fe3O4 | Humic acid | 25.5 | — | 96.5 | [116] |
8 | PAN/ZnO-NPs | Mn7+ | 136.3 | 87.4 | 96.21 | [117] |
9 | PES/mesoporous Si | Cd2+ | ~80 | — | 91 | [118] |
10 | PES/mesoporous Si | Zn2+ | 20 | — | 94 | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleimenova, M.; Tabynbayeva, A.; Toshtay, K.; Tauanov, Z. Composite Membranes Based on MXene and Nanocellulose for Water Purification: Structure, Efficiency, and Future Prospects. Membranes 2025, 15, 293. https://doi.org/10.3390/membranes15100293
Suleimenova M, Tabynbayeva A, Toshtay K, Tauanov Z. Composite Membranes Based on MXene and Nanocellulose for Water Purification: Structure, Efficiency, and Future Prospects. Membranes. 2025; 15(10):293. https://doi.org/10.3390/membranes15100293
Chicago/Turabian StyleSuleimenova, Madina, Aidana Tabynbayeva, Kainaubek Toshtay, and Zhandos Tauanov. 2025. "Composite Membranes Based on MXene and Nanocellulose for Water Purification: Structure, Efficiency, and Future Prospects" Membranes 15, no. 10: 293. https://doi.org/10.3390/membranes15100293
APA StyleSuleimenova, M., Tabynbayeva, A., Toshtay, K., & Tauanov, Z. (2025). Composite Membranes Based on MXene and Nanocellulose for Water Purification: Structure, Efficiency, and Future Prospects. Membranes, 15(10), 293. https://doi.org/10.3390/membranes15100293