Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (212)

Search Parameters:
Keywords = functional neurosurgery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 379 KiB  
Article
Preoperative Suffering of Patients with Central Neuropathic Pain and Their Expectations Prior to Motor Cortex Stimulation: A Qualitative Study
by Erkan Kurt, Richard Witkam, Robert van Dongen, Kris Vissers, Yvonne Engels and Dylan Henssen
Healthcare 2025, 13(15), 1900; https://doi.org/10.3390/healthcare13151900 - 4 Aug 2025
Abstract
Objective: This study aimed to improve the understanding of the lives of patients with chronic neuropathic pain planned for invasive motor cortex stimulation (iMCS) and assess their expectations towards this intervention and its impact. Methods: Semi-structured face-to-face interviews were conducted until [...] Read more.
Objective: This study aimed to improve the understanding of the lives of patients with chronic neuropathic pain planned for invasive motor cortex stimulation (iMCS) and assess their expectations towards this intervention and its impact. Methods: Semi-structured face-to-face interviews were conducted until saturation of data was reached. Patients were recruited from one university medical center in the Netherlands. All interviews were audio-recorded, transcribed verbatim, and subjected to thematic analysis using iterative and inductive coding by two researchers independently. Results: Fifteen patients were included (11 females; mean age 63 ± 9.4 yrs). Analysis of the coded interviews revealed seven themes: (1) the consequences of living with chronic neuropathic pain; (2) loss of autonomy and performing usual activities; (3) balancing energy and mood; (4) intimacy; (5) feeling understood and accepted; (6) meaning of life; and (7) the expectations of iMCS treatment. Conclusions: This is the first qualitative study that describes the suffering of patients with chronic neuropathic pain, and their expectations prior to invasive brain stimulation. Significant themes in the lives of patients with chronic pain have been brought to light. The findings strengthen communication between physicians, caregivers, and patients. Practice Implications: The insights gathered from the interviews create a structured framework for comprehending the values and expectations of patients living with central pain and reveal the impact of symptoms due to the central pain. This knowledge improves the communication between physicians and caregivers on one side and the patient on the other side. Furthermore, the framework enhances the capacity for shared decision-making, particularly in managing expectations related to iMCS. Full article
(This article belongs to the Special Issue Pain Management Practice and Research)
Show Figures

Figure 1

15 pages, 1218 KiB  
Article
Using Artificial Neural Network Models (ANNs) to Identify Patients with Idiopathic Normal Pressure Hydrocephalus (INPH) and Alzheimer Dementia (AD): Clinical Psychological Features and Differential Diagnosis
by Lara Gitto, Carmela Mento, Giulia Massini, Paolo Massimo Buscema, Giovanni Raffa, Antonio Francesco Germanò and Maria Catena Ausilia Quattropani
Medicina 2025, 61(8), 1332; https://doi.org/10.3390/medicina61081332 - 23 Jul 2025
Viewed by 423
Abstract
Background and Objectives: Patients with idiopathic normal pressure hydrocephalus (INPH) present similar symptoms as other diseases, such as dementia (AD). However, while dementia is not reversible, INPH dementia can be treated through neurosurgery. This study aims to assess the Rorschach method as [...] Read more.
Background and Objectives: Patients with idiopathic normal pressure hydrocephalus (INPH) present similar symptoms as other diseases, such as dementia (AD). However, while dementia is not reversible, INPH dementia can be treated through neurosurgery. This study aims to assess the Rorschach method as a valid tool to identify INPH patients. Materials and Methods: The perception characteristics of a small sample of patients (n = 19) were observed through the Rorschach Inblok test. Artificial neural network (ANN) models allowed us to analyze the correlations between patients’ cognitive functions and perception characteristics. Results: The results obtained revealed significant insights about the independent traits in patients’ patterns of response with INPH and AD. In performing the test, patients with INPH and AD concentrated more on the cards displayed and what they perceived, while other patients concentrated on reactions related to the image proposed. Conclusions: The Rorschach test is a valid predictor tool to identify INPH patients who could successfully be treated with neurosurgery. Hence, this methodology has potential in differential diagnosis applied to a clinical context. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
Show Figures

Figure 1

15 pages, 266 KiB  
Article
Correlates of Rehabilitation Length of Stay in Asian Traumatic Brain Injury Inpatients in a Superaged Country: A Retrospective Cohort Study
by Karen Sui Geok Chua, Zachary Jieyi Cheong, Emily Yee and Rathi Ratha Krishnan
Life 2025, 15(7), 1136; https://doi.org/10.3390/life15071136 - 18 Jul 2025
Viewed by 321
Abstract
Background: While Asia contributes 44.3% of traumatic brain injuries (TBI) worldwide, data regarding Asian TBI inpatient rehabilitation length of stay (RLOS) is scarce. A retrospective cohort study was conducted to determine correlates of inpatient RLOS (days) and prolonged RLOS >30 days (PRLOS > [...] Read more.
Background: While Asia contributes 44.3% of traumatic brain injuries (TBI) worldwide, data regarding Asian TBI inpatient rehabilitation length of stay (RLOS) is scarce. A retrospective cohort study was conducted to determine correlates of inpatient RLOS (days) and prolonged RLOS >30 days (PRLOS > 30). (2) Methods: Data extraction of discharged inpatient records was performed from 2018 to 2024. Dependent variables included RLOS (days) and PRLOS > 30. Independent variables included demographic characteristics, TBI severity (emergency-room Glasgow Coma Scale-GCS), admission/discharge Functional Independence Measure (FIM), intra-rehabilitation complications, post-traumatic amnesia (PTA) duration, and discharge placement. (3) Results: Altogether, 289 data sets were analysed, median (IQR) age, 64 (28) years, 78.9% (228/289) males, and 79.6% (230/289) Chinese. Median (IQR) RLOS was 28 (21) days, with PRLOS >30 at 39.8% (115/289); RLOS of 44 (19.5) days. PRLOS > 30 was significantly associated with PTA duration >28 days (OR 4.01, 95% CI 1.90–8.45, p < 0.001), admission FIM ≤ 40/126 (OR 4.71, 95% CI 2.32–9.59, p < 0.001), delayed neurosurgical complications (OR 4.74, 95% CI 1.28–17.6, p = 0.02) and discharge to non-home destination (OR 2.75. 95% CI 1.12–6.76, p = 0.03). (4) Conclusion: PRLOS >30 was significantly associated with longer PTA > 4 weeks, lower admission FIM score, delayed neurosurgical complications, and discharge to a nursing home. Full article
25 pages, 1441 KiB  
Review
From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors—A Multimodal Neuroimaging Narrative Review
by Pablo S. Martínez Lozada, Johanna Pozo Neira and Jose E. Leon-Rojas
Cancers 2025, 17(13), 2174; https://doi.org/10.3390/cancers17132174 - 27 Jun 2025
Viewed by 512
Abstract
Intracranial tumors such as gliomas, meningiomas, and brain metastases induce complex alterations in brain function beyond their focal presence. Modern connectomic and neuroimaging approaches, including resting-state functional MRI (rs-fMRI) and diffusion MRI, have revealed that these tumors disrupt and reorganize large-scale brain networks [...] Read more.
Intracranial tumors such as gliomas, meningiomas, and brain metastases induce complex alterations in brain function beyond their focal presence. Modern connectomic and neuroimaging approaches, including resting-state functional MRI (rs-fMRI) and diffusion MRI, have revealed that these tumors disrupt and reorganize large-scale brain networks in heterogeneous ways. In adult patients, diffuse gliomas infiltrate neural circuits, causing both local disconnections and widespread functional changes that often extend into structurally intact regions. Meningiomas and metastases, though typically well-circumscribed, can perturb networks via mass effect, edema, and diaschisis, sometimes provoking global “dysconnectivity” related to cognitive deficits. Therefore, this review synthesizes interdisciplinary evidence from neuroscience, oncology, and neuroimaging on how intracranial tumors disrupt functional brain connectivity pre- and post-surgery. We discuss how functional heterogeneity (i.e., differences in network involvement due to tumor type, location, and histo-molecular profile) manifests in connectomic analyses, from altered default mode and salience network activity to changes in structural–functional coupling. The clinical relevance of these network effects is examined, highlighting implications for pre-surgical planning, prognostication of neurocognitive outcomes, and post-operative recovery. Gliomas demonstrate remarkable functional plasticity, with network remodeling that may correlate with tumor genotype (e.g., IDH mutation), while meningioma-related edema and metastasis location modulate the extent of network disturbance. Finally, we explore future directions, including imaging-guided therapies and “network-aware” neurosurgical strategies that aim to preserve and restore brain connectivity. Understanding functional heterogeneity in brain tumors through a connectomic lens not only provides insights into the neuroscience of cancer but also informs more effective, personalized approaches to neuro-oncologic care. Full article
Show Figures

Figure 1

17 pages, 3086 KiB  
Review
Comprehensive Meta-Analysis of Differentially Expressed Proteins in Cerebrospinal Fluid Associated with Multiple Sclerosis
by Elif Sakiz, Elnaz Amanzadeh Jajin, Liza Cubeddu, Roland Gamsjaeger and Timucin Avsar
Int. J. Mol. Sci. 2025, 26(13), 6171; https://doi.org/10.3390/ijms26136171 - 26 Jun 2025
Viewed by 347
Abstract
To advance our understanding of multiple sclerosis (MS), accurate identification of protein expression profiles as biomarkers for MS in cerebrospinal fluid (CSF) is critical. However, proteomic studies investigating MS have yielded inconsistent findings due to variability in sample sizes, diagnostic criteria, and data [...] Read more.
To advance our understanding of multiple sclerosis (MS), accurate identification of protein expression profiles as biomarkers for MS in cerebrospinal fluid (CSF) is critical. However, proteomic studies investigating MS have yielded inconsistent findings due to variability in sample sizes, diagnostic criteria, and data processing methods. We aimed to tackle these challenges by performing a thorough meta-analysis of proteomics datasets sourced from multiple independent studies. We conducted a thorough database search to gather all relevant studies using appropriate keywords. We screened articles using defined inclusion and exclusion criteria, and finally, six studies were included. We retrieved and combined data from five CSF datasets for discovery and two additional datasets for validation in 368 MS patients and controls. After data preprocessing, we calculated Z-scores for all datasets and for the integrated dataset. We used logistic regression models using training and validation datasets. We identified 11 differentially expressed proteins in the integrated dataset, revealing significant alterations in key pathways involved in immune response, neuroinflammation, and synaptic function. Notably, IGKC exhibited strong diagnostic potential, with an AUROC of 0.81. These findings highlight the value of re-analysing publicly available proteomics data to develop robust biomarker panels for MS diagnosis. Full article
(This article belongs to the Special Issue Molecular Insights into Multiple Sclerosis)
Show Figures

Figure 1

17 pages, 2351 KiB  
Article
The Value of Optical Coherence Tomography in Patients with Pituitary Adenoma and Its Association with Clinical Features: A Pilot Study
by Monika Duseikaite, Alvita Vilkeviciute, Igne Dumbliauskaite, Brigita Glebauskiene, Indre Zostautiene, Vita Rovite, Sheng-Nan Wu, Arimantas Tamasauskas and Rasa Liutkeviciene
J. Clin. Med. 2025, 14(12), 4318; https://doi.org/10.3390/jcm14124318 - 17 Jun 2025
Viewed by 1021
Abstract
Background: The main mechanism of optic nerve damage in patients with pituitary adenoma (PA) is the pressure of optic chiasm. The retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL)+, and GCL++ thickness measurement by optical coherence tomography (OCT), visual function [...] Read more.
Background: The main mechanism of optic nerve damage in patients with pituitary adenoma (PA) is the pressure of optic chiasm. The retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL)+, and GCL++ thickness measurement by optical coherence tomography (OCT), visual function evaluation, and magnetic resonance imaging (MRI) can be used to predict visual function recovery. In our study, we investigated the associations between visual acuity (VA), visual field (VF), RNFL, GCL changes, and the findings of MRI in patients with PA. Methods: This study was conducted in the Departments of Ophthalmology and Neurosurgery of the Lithuanian University of Health Sciences Hospital. A total of 25 patients diagnosed with PA were included in the study group, and 27 healthy subjects were included in the control group. The thickness of the RNFL and ganglion cell layer (GCL+, GCL++) and optic nerve disc diameter was analysed with OCT. Moreover, an MRI was performed for patients with PA. Results: The RNFL thickness around the optic disk measured preoperatively was reduced significantly in the temporal quadrant in PA patients compared with the control group (median (min; max); mean rank: 73.5 (52; 109); 58.39 vs. 69.5 (16; 168); 46.14; p = 0.038). We found that it was reduced significantly only in the inferior quadrant of the macro-PA group compared to the micro-PA group (median (min; max); mean rank: 99.5 (61; 115); 21.07 vs. 106.5 (90; 121); 32.15), p = 0.008, respectively). The RNFL thickness was reduced significantly only in the inferior quadrant of the non-active PA group compared to the active PA group (median (min; max); mean rank: 118.5 (49; 144); 17.42 vs. 130.5 (77; 156); 28.05), p = 0.028, respectively). RNFL thickness was reduced significantly only in the temporal quadrant in the PA with suprasellar extension group compared to the PA without suprasellar extension group (median (min; max); mean rank: 67.5 (16; 99); 21.66 vs. 72 (58; 168); 30.39), p = 0.036, respectively). Furthermore, GCL++ thickness was reduced significantly in total and in superior and inferior sectors of the PA with suprasellar extension group compared to the PA without suprasellar extension group (median (min; max); mean rank: 98.5 (57; 113); 21.8; 101 (61; 121); 21.48 and 102.5 (59; 116); 21.71 vs. 103.5 (95; 115); 30.2; 106.5 (90; 115); 30.61 and 104.5 (95; 113); 30.32), p = 0.043; p = 0.028 and p = 0.038, respectively). In the control group, significant positive correlations were found between optic disc area and the total RNFL thickness (r = 0.440, p < 0.001). In the PA group, significant correlations were observed between optic rim area and total RNFL thickness (r = 0.493, p < 0.001) and all quadrants, with the strongest in the nasal quadrant (r = 0.503, p < 0.001). A moderate to strong negative correlation was found between visual field (VF) defects and RNFL thickness, with the strongest correlation observed in the superior quadrant. Conclusions: OCT offers a detailed insight into the microscopic structural and functional changes throughout the entire visual pathway in patients with PA. Our findings demonstrate a significant negative correlation between RNFL thickness and visual field defects, highlighting the clinical relevance of OCT measurements in visual function assessment. Moreover, the results suggest that optic rim area may be a more reliable indicator of RNFL thickness variations than optic disc area in patients with PA. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

35 pages, 994 KiB  
Review
Understanding the Radiobiology of Central Nervous System Diseases in the Golden Age of Radiosurgery—Does It Matter?
by Fred C. Lam, John Byun, Santosh Guru, Deyaldeen AbuReesh, Yusuke S. Hori, Elham Rahimy, Erqi Liu Pollom, Scott Soltys, David J. Park and Steven D. Chang
Brain Sci. 2025, 15(6), 649; https://doi.org/10.3390/brainsci15060649 - 17 Jun 2025
Viewed by 1026
Abstract
Stereotactic radiosurgery (SRS) deploys image-guidance to deliver multiple beams of highly focused ionizing radiation to tightly conformed anatomical targets, leading to precise dosing of radiation-induced cellular injury and predictable biological responses that can be applied to treat a multitude of central nervous system [...] Read more.
Stereotactic radiosurgery (SRS) deploys image-guidance to deliver multiple beams of highly focused ionizing radiation to tightly conformed anatomical targets, leading to precise dosing of radiation-induced cellular injury and predictable biological responses that can be applied to treat a multitude of central nervous system (CNS) disorders. Herein we review the principles of CNS radiobiology, comparing differences between SRS and conventional radiation therapy. We then review the radiobiology of SRS as it pertains to the treatment of CNS tumors and vascular malformations and the emerging application of SRS for the treatment of functional and psychiatric neurological disorders. Finally, we look toward the future in combining SRS with other novel technologies to improve treatment outcomes for patients with CNS disorders. Full article
Show Figures

Figure 1

23 pages, 862 KiB  
Review
Shaping the Future of Psychiatric Neurosurgery: From Connectomic Precision to Technological Integration
by Cristina V. Torres Díaz, Marta Navas García, Paloma Pulido Rivas, Mónica Lara Almunia and José Antonio Fernández Alén
Brain Sci. 2025, 15(6), 647; https://doi.org/10.3390/brainsci15060647 - 16 Jun 2025
Viewed by 692
Abstract
Psychiatric neurosurgery is undergoing a profound transformation, propelled by advances in neurotechnology, connectomics, and personalized medicine. Once controversial, surgical interventions are now guided by detailed functional brain mapping and precise neuromodulation techniques, such as deep brain stimulation (DBS), which offer therapeutic options for [...] Read more.
Psychiatric neurosurgery is undergoing a profound transformation, propelled by advances in neurotechnology, connectomics, and personalized medicine. Once controversial, surgical interventions are now guided by detailed functional brain mapping and precise neuromodulation techniques, such as deep brain stimulation (DBS), which offer therapeutic options for patients with severe, treatment-resistant psychiatric disorders. This manuscript reviews the current techniques, including lesion-based procedures and DBS, and explores their mechanisms of action, from synaptic plasticity to large-scale network modulation. It highlights recent progress in neuroimaging, connectomic targeting, and artificial intelligence applications for surgical planning and the prediction of treatment responses. Ethical considerations—including informed consent, identity, and long-term follow-up—are critically examined in light of these advances. Furthermore, the growing role of minimally invasive procedures and wearable integrated neurotechnologies is discussed as part of a shift toward dynamic and adaptive interventions. Although still investigational, psychiatric neurosurgery is emerging as a technologically sophisticated field that demands rigorous clinical evaluation, ethical accountability, and an individualized approach to restoring function and autonomy in some of the most disabling mental illnesses. Full article
Show Figures

Figure 1

25 pages, 1486 KiB  
Article
Functional Enrichment Analysis of Rare Mutations in Patients with Brain Arteriovenous Malformations
by Elena Zholdybayeva, Ayazhan Bekbayeva, Karashash Menlibayeva, Alua Gusmaulemova, Botakoz Kurentay, Bekbolat Tynysbekov, Almas Auganov, Ilyas Akhmetollayev and Chingiz Nurimanov
Biomedicines 2025, 13(6), 1451; https://doi.org/10.3390/biomedicines13061451 - 12 Jun 2025
Viewed by 489
Abstract
Background/Objectives: Brain arteriovenous malformations (bAVMs) are rare vascular anomalies characterized by direct connections between arteries and veins, bypassing the capillary network. This study aimed to identify potential genetic factors contributing to the development of sporadic bAVMs. Methods: Three patients (AVM1–3) from Kazakhstan [...] Read more.
Background/Objectives: Brain arteriovenous malformations (bAVMs) are rare vascular anomalies characterized by direct connections between arteries and veins, bypassing the capillary network. This study aimed to identify potential genetic factors contributing to the development of sporadic bAVMs. Methods: Three patients (AVM1–3) from Kazakhstan who underwent microsurgical resection at the National Centre for Neurosurgery (NCN) in Astana, Kazakhstan, were analyzed. Brain AVMs were diagnosed using magnetic resonance imaging (MRI). Genomic DNA was isolated from whole venous blood samples, and whole-exome sequencing was performed on the NovaSeq 6000 platform (Illumina). Variants were filtered according to standard bioinformatics protocols, and candidate gene prioritization was conducted using the ToppGene tool. Results: In silico analysis further revealed candidate genes likely associated with lesion development, including COL3A1, CTNNB1, LAMA1, NPHP3, SLIT2, SLIT3, SMO, MAPK3, LRRK2, TTN, ERBB2, PARD3, and OBSL1. It is essential to focus on the genetic variants affecting the following prioritized genes: ERBB2, SLIT3, SMO, MAPK3, and TTN. Mutations in these genes were predicted to be “damaging”. Most of these genes are involved in signaling pathways that control vasculogenesis and angiogenesis. Conclusions: Defects in genes associated with ciliary structure and function may be critical to the pathogenesis of brain AVMs. These findings provide valuable insights into the molecular underpinnings of bAVM development, emphasizing key biological pathways and potential candidate genes. Further research is needed to establish robust correlations between specific genetic mutations and clinical phenotypes, which could ultimately inform the development of improved diagnostic, therapeutic, and prognostic approaches. Full article
(This article belongs to the Special Issue Exploring Human Diseases Through Genomic and Genetic Analyses)
Show Figures

Figure 1

15 pages, 3393 KiB  
Article
Stereotactically Guided Microsurgical Approach for Deep-Seated Eloquently Located Lesions
by Jun Thorsteinsdottir, Sebastian Siller, Biyan Nathanael Harapan, Robert Forbrig, Jörg-Christian Tonn, Tobias Greve, Stefanie Quach and Christian Schichor
J. Clin. Med. 2025, 14(12), 4175; https://doi.org/10.3390/jcm14124175 - 12 Jun 2025
Viewed by 375
Abstract
Background/Objectives: Advancements in neuronavigation and intraoperative imaging have made gross-total resection of deep-seated lesions more feasible. However, in eloquently located regions, brain shift can lead to unintentional damage of functionally critical tissue during the approach. This study analyzes the feasibility and outcomes [...] Read more.
Background/Objectives: Advancements in neuronavigation and intraoperative imaging have made gross-total resection of deep-seated lesions more feasible. However, in eloquently located regions, brain shift can lead to unintentional damage of functionally critical tissue during the approach. This study analyzes the feasibility and outcomes of a stereotactically guided microsurgical approach supported by intraoperative CT (iCT) for such lesions. Methods: Patients with deep-seated, eloquently located lesions treated between 03/2017 and 04/2023 at the Department of Neurosurgery, Ludwig-Maximilians-University (LMU) Munich, Germany, were included. Frame-based, image-guided stereotaxy was used for trajectory planning and catheter placement, verified by iCT. Microsurgical resection was conducted along the catheter trajectory using 2 mm conical blade retractors and continuous neurophysiological monitoring. Postoperative MRI assessed the extent of resection. Neurological outcomes were evaluated postoperatively, at 6 weeks, and at long-term follow-up in 12/2023. Results: A total of 12 patients were treated using the stereotactically guided microsurgical approach described in this study. In all cases, the implanted catheter precisely matched the preoperative trajectory, as confirmed by fused iCT data. Median durations were 23 min for stereotaxy and 3 h 7 min for microsurgery. Complete resection was achieved in all cases. One patient experienced transient hemiparesis and aphasia, both of which were fully resolved. All other patients showed neurological improvement or remained seizure-free at long-term follow-up. Conclusions: In selected cases, a stereotactically guided microsurgical approach with iCT enabled intraoperative localization of the target with high spatial accuracy and without immediate procedure-related complications in this limited cohort. Our findings support the feasibility of the technique; however, conclusions regarding clinical efficacy or broader applicability are limited by the small sample size and non-comparative study design. Full article
Show Figures

Figure 1

19 pages, 5895 KiB  
Article
Brain Structural Correlates of EEG Network Hyperexcitability, Symptom Severity, Attention, and Memory in Borderline Personality Disorder
by Andrea Schlump, Bernd Feige, Swantje Matthies, Katharina von Zedtwitz, Isabelle Matteit, Thomas Lange, Kathrin Nickel, Katharina Domschke, Marco Reisert, Alexander Rau, Markus Heinrichs, Dominique Endres, Ludger Tebartz van Elst and Simon Maier
Brain Sci. 2025, 15(6), 592; https://doi.org/10.3390/brainsci15060592 - 31 May 2025
Viewed by 779
Abstract
Introduction: Previous neuroimaging studies have reported structural brain alterations and local network hyperexcitability in terms of increased slow-wave electroencephalography (EEG) activity in patients with borderline personality disorder (BPD). In particular, intermittent rhythmic delta and theta activity (IRDA/IRTA) has drawn attention in mental [...] Read more.
Introduction: Previous neuroimaging studies have reported structural brain alterations and local network hyperexcitability in terms of increased slow-wave electroencephalography (EEG) activity in patients with borderline personality disorder (BPD). In particular, intermittent rhythmic delta and theta activity (IRDA/IRTA) has drawn attention in mental health contexts due to its links with metabolic imbalances, neuronal stress, and emotional dysregulation—processes that are highly pertinent to BPD. These functional disturbances may be reflected in corresponding structural brain changes. The current study investigated cortical thickness and subcortical volumes in BPD and examined their associations with IRDA/IRTA events per minute, symptom severity, and neuropsychological measures. Methods: Seventy female BPD patients and 36 age-matched female healthy controls (HC) were included (for clinical EEG comparisons even 72 patients were available). IRDA/IRTA rates were assessed using an automatic independent component analyses (ICA) approach. T1-weighted MRI data were obtained using a MAGNETOM Prisma 3T system and analyzed with FreeSurfer (version 7.2) for subcortical structures and CAT12 for cortical thickness and global volume measurements. Psychometric assessments included questionnaires such as Borderline Symptom List (BSL-23) and Inventory of Personality Organization (IPO). Neuropsychological performance was evaluated with the Test for Attentional Performance (TAP), Culture Fair Intelligence Test (CFT-20-R), and Verbal Learning and Memory Test (VLMT). Results: Between-group comparisons exhibited no significant increase in IRDA/IRTA rates or structural abnormalities between the BPD and HC group. However, within the BPD group, cortical thickness of the right isthmus of the cingulate gyrus negatively correlated with the IRDA/IRTA difference (after minus before hyperventilation, HV; p < 0.001). Furthermore, BPD symptom severity (BSL-23) and IPO scores positively correlated with the thickness of the right rostral anterior cingulate cortex (p < 0.001), and IPO scores were associated with the thickness of the right temporal pole (p < 0.001). Intrinsic alertness (TAP) significantly correlated with relative cerebellar volume (p = 0.01). Discussion: While no group-level structural abnormalities were observed, correlations between EEG slowing, BPD symptom severity, and alertness with cortical thickness and/or subcortical volumes suggest a potential role of the anterior cingulate cortex, temporal pole, and cerebellum in emotion regulation and cognitive functioning in BPD. Future research employing multimodal EEG-MRI approaches may provide deeper insights into the neural mechanisms underlying BPD and guide personalized therapeutic strategies. Full article
(This article belongs to the Special Issue Application of MRI in Brain Diseases)
Show Figures

Figure 1

20 pages, 7865 KiB  
Article
Design and Performance of a Neurosurgery Assisting Device
by Karla Nayeli Silva-Garcés, Marco Ceccarelli, Matteo Russo and Christopher René Torres-SanMiguel
Biomimetics 2025, 10(6), 345; https://doi.org/10.3390/biomimetics10060345 - 23 May 2025
Viewed by 2447
Abstract
This paper presents a new design solution for a neurosurgery-assisting device (NeurADe) based on a 3-RPS parallel kinematic mechanism. The NeurADe design employs compact linear actuators to accurately insert a cannula into specific areas of the brain. The CAD design and assembly of [...] Read more.
This paper presents a new design solution for a neurosurgery-assisting device (NeurADe) based on a 3-RPS parallel kinematic mechanism. The NeurADe design employs compact linear actuators to accurately insert a cannula into specific areas of the brain. The CAD design and assembly of a prototype are discussed in this paper. The preliminary NeurADe prototype features 3D printed parts and incorporates mechanical and electrical components, which are designed for ease of use and lightweight functionality. For design validation and operational characterization, sensors measuring current, acceleration, and force data were utilized, and testing results are discussed to prove the feasibility of the proposed design. Full article
(This article belongs to the Special Issue Recent Advances in Bioinspired Robot and Intelligent Systems)
Show Figures

Figure 1

13 pages, 1344 KiB  
Article
Long-Term Outcomes of Sacral Neuromodulation for Refractory Interstitial Cystitis/Bladder Pain Syndrome: A Retrospective Cohort Study
by Martina Rekatsina, Matteo Luigi Giuseppe Leoni, Veerle Visser-Vandewalle, Marco Mercieri, Giustino Varrassi and Georgios Matis
J. Clin. Med. 2025, 14(11), 3647; https://doi.org/10.3390/jcm14113647 - 22 May 2025
Viewed by 807
Abstract
Background: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic condition characterized by persistent bladder-related pain and urinary symptoms, often refractory to conventional treatments. Sacral neuromodulation (SNM) has emerged as a promising therapeutic option for managing refractory IC/BPS. Methods: This retrospective study [...] Read more.
Background: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic condition characterized by persistent bladder-related pain and urinary symptoms, often refractory to conventional treatments. Sacral neuromodulation (SNM) has emerged as a promising therapeutic option for managing refractory IC/BPS. Methods: This retrospective study included 24 patients with IC/BPS treated with SNM between 2017 and 2022. Baseline and follow-up data were collected on pain, opioid use, urinary symptoms, and quality of life. Patients underwent a trial of tonic stimulation before permanent implantation. Continuous variables were reported as median (IQR) and categorical data as counts and percentages. Pre- and post-SNM differences were analyzed using the Wilcoxon rank-sum test. Kaplan–Meier analysis evaluated lead survival, and a Sankey diagram illustrated employment status transitions. Results: Patients had a median age of 54.5 years (IQR: 47–61), with 92% female. Subtypes included Type 1 IC/BPS (8.3%), Type 2 (45.8%), Type 3 (37.6%), and unknown type (8.3%). Median pain duration was 4.5 years (IQR: 3–7.3). SNM resulted in significant improvements in pain (NRS: baseline 8 [IQR: 8–9], last follow-up 3 [IQR: 2–4], p < 0.0001), opioid use (MME: baseline 20 [IQR: 10–40], last follow-up 0 [IQR: 0–10], p < 0.0001), urinary function (24-h voids: baseline 19 [IQR: 14.5–25.8], last follow-up 8 [IQR: 6–12], p < 0.0001), and quality of life (QOL) (EQ-5D-5L: baseline 0.50 [IQR: 0.36–0.56], last follow-up 0.83 [IQR: 0.76–0.89], p < 0.0001). Employment rates increased from 43.5% to 50%, and unemployment decreased from 8.7% to 4.2%. The median follow-up was 35 months (IQR: 28–53). Conclusions: SNM significantly improved pain, urinary symptoms, quality of life, and employment outcomes in patients with refractory IC/BPS. These findings highlight its efficacy as a minimally invasive and reversible option for managing this challenging condition. Full article
Show Figures

Figure 1

18 pages, 1935 KiB  
Review
Progress in CRISPR Technology for Antiviral Treatments: Genome Editing as a Potential Cure for Chronic Viral Infections
by Fatemeh Nouri, Farnaz Alibabaei, Behina Forouzanmehr, Hamed Tahmasebi, Valentyn Oksenych and Majid Eslami
Microbiol. Res. 2025, 16(5), 104; https://doi.org/10.3390/microbiolres16050104 - 20 May 2025
Viewed by 1721
Abstract
The CRISPR–Cas system has transformed molecular biology by providing precise tools for genome editing and pathogen detection. Originating from bacterial adaptive immunity, CRISPR technology identifies and cleaves genetic material from pathogens, thereby preventing infections. CRISPR–Cas9, the most widely utilized variant, creates double-stranded breaks [...] Read more.
The CRISPR–Cas system has transformed molecular biology by providing precise tools for genome editing and pathogen detection. Originating from bacterial adaptive immunity, CRISPR technology identifies and cleaves genetic material from pathogens, thereby preventing infections. CRISPR–Cas9, the most widely utilized variant, creates double-stranded breaks in the target DNA, enabling genetic disruptions or edits. This approach has shown significant potential in antiviral therapies, addressing chronic infections, such as HIV, SARS-CoV-2, and hepatitis viruses. In HIV, CRISPR–Cas9 edits the essential viral genes and disrupts latent reservoirs, while CCR5 gene modifications render the T cells resistant to viral entry. Similarly, SARS-CoV-2 is targeted using CRISPR–Cas13d to inhibit the conserved viral genes, significantly reducing viral loads. Hepatitis B and C treatments leverage CRISPR technologies to target conserved genomic regions, limiting replication and expression. Emerging innovations, such as the PAC-MAN approach for influenza and base-editing systems to reduce off-target effects, further highlight the therapeutic versatility of CRISPR. Additionally, advances in Cas12a and Cas13 have driven the development of diagnostic platforms like DETECTR and SHERLOCK, which provide rapid and cost-effective viral detection. Innovative tools like AIOD-CRISPR enable accessible point-of-care diagnostics for early viral detection. Experimental approaches, such as targeting latent HSV-1 reservoirs, highlight the transformative potential of CRISPR in combating persistent infections. Full article
Show Figures

Figure 1

15 pages, 3334 KiB  
Article
80N as the Optimal Assistive Threshold for Wearable Exoskeleton-Mediated Gait Rehabilitation in Parkinson’s Disease: A Prospective Biomarker Validation Study
by Xiang Wei, Jian Sun, Guanghan Lu, Jingxuan Liu, Jiuqi Yan, Xiong Wei, Hongyang Cai, Bei Luo, Wenwen Dong, Liang Zhao, Chang Qiu, Wenbin Zhang and Yang Pan
Healthcare 2025, 13(7), 799; https://doi.org/10.3390/healthcare13070799 - 2 Apr 2025
Viewed by 669
Abstract
Background and Objectives: Robotic exoskeletons show potential in PD gait rehabilitation. But the optimal assistive force and its equivalence to clinical gold standard assessments are unclear. This study aims to explore the clinical equivalence of the lower limb exoskeleton in evaluating PD [...] Read more.
Background and Objectives: Robotic exoskeletons show potential in PD gait rehabilitation. But the optimal assistive force and its equivalence to clinical gold standard assessments are unclear. This study aims to explore the clinical equivalence of the lower limb exoskeleton in evaluating PD patients’ gait disorders and find the best assistive force for clinical use. Methods: In this prospective controlled trial, 60 PD patients (Hoehn and Yahr stages 2–4) and 60 age-matched controls underwent quantitative gait analysis using a portable exoskeleton (Relink-ANK-1BM) at four assistive force levels (0 N, 40 N, 80 N, 120 N). Data from 57 patients and 57 controls were analyzed with GraphPad Prism 10. Different statistical tests were used based on data distribution. Results: ROC analysis showed that exoskeleton-measured velocity had the strongest power to distinguish PD patients from controls (AUC = 0.9198, p < 0.001). Other parameters also had high reliability and validity. There was a strong positive correlation between UPDRS-III lower extremity sub-score changes and gait velocity changes in PD patients (r = 0.8564, p < 0.001). The 80 N assistive force led to the best gait rehabilitation, with a 58% increase in gait velocity compared to unassisted walking (p < 0.001). Conclusions: 80 N is the optimal assistive threshold for PD gait rehabilitation. The wearable lower limb exoskeleton can be an objective alternative biomarker to UPDRS-III, enabling personalized home-based rehabilitation. Full article
Show Figures

Figure 1

Back to TopTop