From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors—A Multimodal Neuroimaging Narrative Review
Simple Summary
Abstract
1. Introduction
2. Tumor-Specific Patterns of Functional Network Disruption and Reorganization
2.1. Functional Network Disruption in Gliomas
2.2. Functional Network Disruption in Meningiomas
2.3. Functional Network Disruption in Brain Metastases
3. Network Reorganization and Post-Surgical Plasticity
4. Histomolecular Correlates of Functional Heterogeneity
5. Clinical Implications for Surgical Planning and Outcomes
6. Future Directions: Imaging-Guided Therapy and Network-Aware Strategies
6.1. Network-Aware Neurosurgical Navigation
6.2. Imaging-Guided Radiotherapy
6.3. Restorative Neuromodulation
6.4. Connectome-Informed Drug Therapy
6.5. Personalized Connectome Atlases
6.6. Integration with Molecular Therapies
6.7. Technical Limitations and Emerging Imaging Solutions
6.8. Current Limitations and Research Gaps
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2-HG | 2-Hydroxyglutarate |
ANCOVA | Analysis of Covariance |
AUC | Area Under the Curve |
BOLD | Blood-Oxygen-Level Dependent |
cSMN | Contralesional Sensorimotor Network |
DMN | Default Mode Network |
DTI | Diffusion Tensor Imaging |
EEG | Electroencephalography |
FC | Functional Connectivity |
GBM | Glioblastoma |
HA-WBRT | Hippocampal-Avoidance Whole-Brain Radiotherapy |
IDH | Isocitrate Dehydrogenase |
IL-6 | Interleukin 6 |
MEG | Magnetoencephalography |
MGMT | O6-Methylguanine-DNA Methyltransferase |
MoCA | Montreal Cognitive Assessment |
PET-MR | Positron Emission Tomography—Magnetic Resonance |
PTBE | Peritumoral Brain Edema |
rs-fMRI | Resting-State Functional Magnetic Resonance Imaging |
RSNs | Resting-State Networks |
SC | Structural Connectivity |
tDCS | Transcranial Direct Current Stimulation |
TMS | Transcranial Magnetic Stimulation |
TPJ | Temporoparietal Junction |
VEGF | Vascular Endothelial Growth Factor |
WBRT | Whole-Brain Radiotherapy |
WHO | World Health Organization |
References
- Stoecklein, V.M.; Wunderlich, S.; Papazov, B.; Thon, N.; Schmutzer, M.; Schinner, R.; Zimmermann, H.; Liebig, T.; Ricke, J.; Liu, H.; et al. Perifocal Edema in Patients with Meningioma Is Associated with Impaired Whole-Brain Connectivity as Detected by Resting-State FMRI. Am. J. Neuroradiol. 2023, 44, 814–819. [Google Scholar] [CrossRef]
- van Nieuwenhuizen, D.; Douw, L.; Klein, M.; Peerdeman, S.M.; Heimans, J.J.; Reijneveld, J.C.; Stam, C.J.; Hillebrand, A. Cognitive Functioning and Functional Brain Networks in Postoperative WHO Grade I Meningioma Patients. J. Neurooncol. 2018, 140, 605–613. [Google Scholar] [CrossRef]
- Bartolomei, F.; Bosma, I.; Klein, M.; Baayen, J.C.; Reijneveld, J.C.; Postma, T.J.; Heimans, J.J.; Van Dijk, B.W.; De Munck, J.C.; De Jongh, A.; et al. How Do Brain Tumors Alter Functional Connectivity? A Magnetoencephalography Study. Ann. Neurol. 2006, 59, 128–138. [Google Scholar] [CrossRef]
- Moody, J.F.; Adluru, N.; Alexander, A.L.; Field, A.S. The Connectomes: Methods of White Matter Tractography and Contributions of Resting State FMRI. Semin. Ultrasound CT MRI 2021, 42, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Sparacia, G.; Parla, G.; Lo Re, V.; Cannella, R.; Mamone, G.; Carollo, V.; Midiri, M.; Grasso, G. Resting-State Functional Connectome in Patients with Brain Tumors Before and After Surgical Resection. World Neurosurg. 2020, 141, e182–e194. [Google Scholar] [CrossRef]
- Yeh, C.H.; Jones, D.K.; Liang, X.; Descoteaux, M.; Connelly, A. Mapping Structural Connectivity Using Diffusion MRI: Challenges and Opportunities. J. Magn. Reson. Imaging 2021, 53, 1666–1682. [Google Scholar] [CrossRef]
- Sotiropoulos, S.N.; Zalesky, A. Building Connectomes Using Diffusion MRI: Why, How and But. NMR Biomed. 2019, 32, e3752. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, R.; Hu, X.; Ding, S.; Qian, J.; Lei, T.; Cao, X.; Tao, L.; Qian, Z.; Liu, H. Disturbed Small-World Networks and Neurocognitive Function in Frontal Lobe Low-Grade Glioma Patients. PLoS ONE 2014, 9, e94095. [Google Scholar] [CrossRef]
- Briganti, C.; Sestieri, C.; Mattei, P.A.; Esposito, R.; Galzio, R.J.; Tartaro, A.; Romani, G.L.; Caulo, M. Reorganization of Functional Connectivity of the Language Network in Patients with Brain Gliomas. Am. J. Neuroradiol. 2012, 33, 1983–1990. [Google Scholar] [CrossRef]
- Smits, A.; Zetterling, M.; Lundin, M.; Melin, B.; Fahlström, M.; Grabowska, A.; Larsson, E.M.; Berntsson, S.G. Neurological Impairment Linked with Cortico-Subcortical Infiltration of Diffuse Low-Grade Gliomas at Initial Diagnosis Supports Early Brain Plasticity. Front. Neurol. 2015, 6, 137. [Google Scholar] [CrossRef]
- Silvestri, E.; Moretto, M.; Facchini, S.; Castellaro, M.; Anglani, M.; Monai, E.; D’Avella, D.; Della Puppa, A.; Cecchin, D.; Bertoldo, A.; et al. Widespread Cortical Functional Disconnection in Gliomas: An Individual Network Mapping Approach. Brain Commun. 2022, 4, fcac082. [Google Scholar] [CrossRef]
- Altieri, R.; Bianconi, A.; Caneva, S.; Cirillo, G.; Cofano, F.; Corvino, S.; de Divitiis, O.; Pepa, G.M.D.; De Luca, C.; Fiaschi, P.; et al. Quantitative evaluation of neuroradiological and morphometric alteration of inferior Fronto-Occipital Fascicle across different brain tumor histotype: An Italian multicentric study. Acta Neurochir. 2025, 167, 71. [Google Scholar] [CrossRef] [PubMed]
- Armocida, D.; Bianconi, A.; Zancana, G.; Jiang, T.; Pesce, A.; Tartara, F.; Garbossa, D.; Salvati, M.; Santoro, A.; Serra, C.; et al. DTI fiber-tracking parameters adjacent to gliomas: The role of tract irregularity value in operative planning, resection, and outcome. J. Neuro-Oncol. 2025, 171, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Douw, L.; Schoonheim, M.M.; Landi, D.; van der Meer, M.L.; Geurts, J.J.G.; Reijneveld, J.C.; Klein, M.; Stam, C.J. Cognition Is Related to Resting-State Small-World Network Topology: An Magnetoencephalographic Study. Neuroscience 2011, 175, 169–177. [Google Scholar] [CrossRef]
- Mallela, A.N.; Peck, K.K.; Petrovich-Brennan, N.M.; Zhang, Z.; Lou, W.; Holodny, A.I. Altered Resting-State Functional Connectivity in the Hand Motor Network in Glioma Patients. Brain Connect. 2016, 6, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Alexandersen, C.G.; Douw, L.; Zimmermann, M.L.M.; Bick, C.; Goriely, A. Functional Connectotomy of a Whole-Brain Model Reveals Tumor-Induced Alterations to Neuronal Dynamics in Glioma Patients. Netw. Neurosci. 2025, 20, 280–302. [Google Scholar] [CrossRef]
- Jütten, K.; Weninger, L.; Mainz, V.; Gauggel, S.; Binkofski, F.; Wiesmann, M.; Merhof, D.; Clusmann, H.; Na, C.H. Dissociation of Structural and Functional Connectomic Coherence in Glioma Patients. Sci. Rep. 2021, 11, 16790. [Google Scholar] [CrossRef]
- Kesler, S.R.; Noll, K.; Cahill, D.P.; Rao, G.; Wefel, J.S. The Effect of IDH1 Mutation on the Structural Connectome in Malignant Astrocytoma. J. Neuro-Oncol. 2017, 131, 565–574. [Google Scholar] [CrossRef]
- Stoecklein, V.M.; Stoecklein, S.; Galiè, F.; Ren, J.; Schmutzer, M.; Unterrainer, M.; Albert, N.L.; Kreth, F.W.; Thon, N.; Liebig, T.; et al. Resting-State FMRI Detects Alterations in Whole Brain Connectivity Related to Tumor Biology in Glioma Patients. Neuro Oncol. 2020, 22, 1388–1398. [Google Scholar] [CrossRef]
- Pasquini, L.; Jenabi, M.; Yildirim, O.; Silveira, P.; Peck, K.K.; Holodny, A.I. Brain Functional Connectivity in Low- and High-Grade Gliomas: Differences in Network Dynamics Associated with Tumor Grade and Location. Cancers 2022, 14, 3327. [Google Scholar] [CrossRef]
- Kesler, S.R.; Harrison, R.A.; Rao, V.; Dyson, H.; Petersen, M.; Prinsloo, S. Predicting Overall Survival in Diffuse Glioma from the Presurgical Connectome. Sci. Rep. 2022, 12, 18783. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, B.; Daniel, A.G.S.; Lee, J.J.; Marcus, D.S.; Shimony, J.S.; Leuthardt, E.C. Machine Learning Analytics of Resting-State Functional Connectivity Predicts Survival Outcomes of Glioblastoma Multiforme Patients. Front. Neurol. 2021, 12, 642241. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, C.; Philbrick, B.D.; Adamson, D.C. Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines 2021, 9, 319. [Google Scholar] [CrossRef]
- Tamiya, T.; Ono, Y.; Matsumoto, K.; Ohmoto, T. Peritumoral Brain Edema in Intracranial Meningiomas: Effects of Radiological and Histological Factors. Neurosurgery 2001, 49, 1046–1052. [Google Scholar] [CrossRef]
- Meskal, I.; Gehring, K.; van der Linden, S.D.; Rutten, G.J.M.; Sitskoorn, M.M. Cognitive Improvement in Meningioma Patients after Surgery: Clinical Relevance of Computerized Testing. J. Neurooncol. 2015, 121, 617–625. [Google Scholar] [CrossRef]
- Fink, K.; Fink, J. Imaging of Brain Metastases. Surg. Neurol. Int. 2013, 4, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Hua, B.; Ding, X.; Xiong, M.; Zhang, F.; Luo, Y.; Ding, J.; Ding, Z. Alterations of Functional and Structural Connectivity in Patients with Brain Metastases. PLoS ONE 2020, 15, e0233833. [Google Scholar] [CrossRef]
- Angstwurm, P.; Hense, K.; Rosengarth, K.; Strotzer, Q.; Schmidt, N.O.; Bumes, E.; Hau, P.; Pukrop, T.; Wendl, C. Attenuation of the BOLD FMRI Signal and Changes in Functional Connectivity Affecting the Whole Brain in Presence of Brain Metastasis. Cancers 2024, 16, 2010. [Google Scholar] [CrossRef]
- Towle, V.L.; Syed, I.; Berger, C.; Grzesczcuk, R.; Milton, J.; Erickson, R.K.; Cogen, P.; Berkson, E.; Spire, J.P. Identification of the Sensory/Motor Area and Pathologic Regions Using ECoG Coherence. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 30–39. [Google Scholar] [CrossRef]
- Van Swearingen, A.E.D.; Siegel, M.B.; Anders, C.K. Breast Cancer Brain Metastases: Evidence for Neuronal-like Adaptation in a “breast-to-Brain” Transition? Breast Cancer Research 2014, 16, 6–8. [Google Scholar] [CrossRef]
- Schwartz, H.; Blacher, E.; Amer, M.; Livneh, N.; Abramovitz, L.; Klein, A.; Ben-Shushan, D.; Soffer, S.; Blazquez, R.; Barrantes-Freer, A.; et al. Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation. Cancer Res. 2016, 76, 4359–4371. [Google Scholar] [CrossRef]
- Medaglia, J.D.; Pasqualetti, F.; Hamilton, R.H.; Thompson-Schill, S.L.; Bassett, D.S. Brain and Cognitive Reserve: Translation via Network Control Theory. Neurosci. Biobehav. Rev. 2017, 75, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, G.; Yu, Y.; Jiang, Z.; Yang, K.; Hu, X.; Li, Z.; Liu, D.; Zou, Y.; Liu, H.; et al. Structural and Functional Reorganization Within Cognitive Control Network Associated with Protection of Executive Function in Patients With Unilateral Frontal Gliomas. Front. Oncol. 2020, 10, 794. [Google Scholar] [CrossRef] [PubMed]
- Noll, K.R.; Chen, H.S.; Wefel, J.S.; Kumar, V.A.; Schomer, D.F. Alterations in Functional Connectomics Associated with Neurocognitive Changes Following Glioma Resection. Neurosurgery 2021, 88, 544–551. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, N.; Gong, F.; Wang, X.; Yan, J.; Lu, J.; Wu, J. Longitudinal Assessment of Network Reor-ganizations and Language Recovery in Postoperative Patients with Glioma. Brain Commun. 2022, 4, fcac046. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.G.; Garlinghouse, M.; Warren, D.E.; Aizenberg, M.R. Longitudinal Changes in Brain Connectivity Correlate with Neuropsychological Testing in Brain Tumor Resection Patients. Front. Neurosci. 2025, 19, 1532433. [Google Scholar] [CrossRef]
- Shalan, M.E.; Soliman, A.Y.; Nassar, I.A.; Alarabawy, R.A. Surgical Planning in Patients with Brain Glioma Using Diffusion Tensor MR Imaging and Tractography. Egypt. J. Radiol. Nucl. Med. 2021, 52, 110. [Google Scholar] [CrossRef]
- Saviola, F.; Zigiotto, L.; Novello, L.; Zacà, D.; Annicchiarico, L.; Corsini, F.; Rozzanigo, U.; Papagno, C.; Jovicich, J.; Sarubbo, S. The Role of the Default Mode Network in Longitudinal Functional Brain Reorganization of Brain Gliomas. Brain Struct. Funct. 2022, 227, 2923–2937. [Google Scholar] [CrossRef]
- Poologaindran, A.; Ai, L.; Mg, H.; Santarius, T.; Price, S.; Me, S.; Seidlitz, J. Cellular, Connectomic, and Cognitive Impact of Glioma and its Surgical Resection. medRxiv 2025, 1–23. [Google Scholar] [CrossRef]
- Tu, W.; Ma, Z.; Zhang, N. Brain Network Reorganization after Targeted Attack at a Hub Region. Neuroimage 2021, 237, 118219. [Google Scholar] [CrossRef]
- Kesler, S.R.; Watson, C.L.; Blayney, D.W. Brain Network Alterations and Vulnerability to Simulated Neurodegeneration in Breast Cancer. Neurobiol. Aging 2015, 36, 2429–2442. [Google Scholar] [CrossRef] [PubMed]
- Mormina, E.; Longo, M.; Arrigo, A.; Alafaci, C.; Tomasello, F.; Calamuneri, A.; Marino, S.; Gaeta, M.; Vinci, S.L.; Granata, F. MRI Tractography of Corticospinal Tract and Arcuate Fasciculus in High-Grade Gliomas Performed by Constrained Spherical Deconvolution: Qualitative and Quantitative Analysis. Am. J. Neuroradiol. 2015, 36, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Arnemann, K.L.; Chen, A.J.W.; Novakovic-Agopian, T.; Gratton, C.; Nomura, E.M.; D’Esposito, M. Functional Brain Network Modularity Predicts Response to Cognitive Training after Brain Injury. Neurology 2015, 84, 1568–1574. [Google Scholar] [CrossRef]
- Kong, N.W.; Gibb, W.R.; Badhe, S.; Liu, B.P.; Tate, M.C. Plasticity of the Primary Motor Cortex in Patients with Primary Brain Tumors. Neural Plast. 2020, 2020, 3648517. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Li, L.; Weng, S.; Guo, Y.; Zhong, Z.; Fan, X.; Jiang, T.; Wang, Y. Contralesional Sensorimotor Network Participates in Motor Functional Compensation in Glioma Patients. Front. Oncol. 2022, 12, 882313. [Google Scholar] [CrossRef]
- Johnson, G.W.; Doss, D.J.; Englot, D.J. Network Dysfunction in Pre and Postsurgical Epilepsy: Connectomics as a Tool and Not a Destination. Curr. Opin. Neurol. 2022, 35, 196–201. [Google Scholar] [CrossRef]
- Armstrong, T.S.; Grant, R.; Gilbert, M.R.; Lee, J.W.; Norden, A.D. Epilepsy in Glioma Patients: Mechanisms, Management, and Impact of Anticonvulsant Therapy. Neuro Oncol. 2016, 18, 779–789. [Google Scholar] [CrossRef]
- Guo, X.; Gu, L.; Li, Y.; Zheng, Z.; Chen, W.; Wang, Y.; Wang, Y.; Xing, H.; Shi, Y.; Liu, D.; et al. Histological and Molecular Glioblastoma, IDH-Wildtype: A Real-World Landscape Using the 2021 WHO Classification of Central Nervous System Tumors. Front. Oncol. 2023, 13, 1200815. [Google Scholar] [CrossRef]
- Park, J.W. Metabolic Rewiring in Adult-Type Diffuse Gliomas. Int. J. Mol. Sci. 2023, 24, 7348. [Google Scholar] [CrossRef]
- Chen, H.; Judkins, J.; Thomas, C.; Wu, M.; Khoury, L.; Benjamin, C.G.; Pacione, D.; Golfinos, J.G.; Kumthekar, P.; Ghamsari, F.; et al. Mutant IDH1 and Seizures in Patients with Glioma. Neurology 2017, 88, 1805–1813. [Google Scholar] [CrossRef]
- Sprugnoli, G.; Rigolo, L.; Faria, M.; Juvekar, P.; Tie, Y.; Rossi, S.; Sverzellati, N.; Golby, A.J.; Santarnecchi, E. Tumor BOLD Connectivity Profile Correlates with Glioma Patients’ Survival. Neurooncol. Adv. 2022, 4, vdac153. [Google Scholar] [CrossRef]
- Reszec, J.; Hermanowicz, A.; Rutkowski, R.; Turek, G.; Mariak, Z.; Chyczewski, L. Expression of MMP-9 and VEGF in Meningiomas and Their Correlation with Peritumoral Brain Edema. Biomed. Res. Int. 2015, 2015, 646853. [Google Scholar] [CrossRef] [PubMed]
- Brokinkel, B.; Hess, K.; Mawrin, C. Brain Invasion in Meningiomas-Clinical Considerations and Impact of Neuropathological Evaluation: A Systematic Review. Neuro Oncol. 2017, 19, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.L.; He, Z.Y.; Chen, Y.; Zhou, D.; Tang, K.; Wang, P.; Zhan, S.Q.; Wu, S.G. Clinical Features of Brain Metastases in Small Cell Lung Cancer: An Implication for Hippocampal Sparing Whole Brain Radiation Therapy. Transl. Oncol. 2017, 10, 54–58. [Google Scholar] [CrossRef]
- Kircher, D.A.; Silvis, M.R.; Cho, J.H.; Holmen, S.L. Melanoma Brain Metastasis: Mechanisms, Models, and Medicine. Int. J. Mol. Sci. 2016, 17, 1468. [Google Scholar] [CrossRef]
- Nygaard, V.; Prasmickaite, L.; Vasiliauskaite, K.; Clancy, T.; Hovig, E. Melanoma Brain Colonization Involves the Emergence of a Brain-Adaptive Phenotype. Oncoscience 2014, 1, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, K.; Martirosian, V.; Nakamura, B.N.; Iyer, M.; Julian, A.; Eisenbarth, R.; Shao, L.; Attenello, F.; Neman, J. Neuronal Exposure Induces Neurotransmitter Signaling and Synaptic Mediators in Tumors Early in Brain Metastasis. Neuro Oncol. 2022, 24, 914–924. [Google Scholar] [CrossRef]
- Derks, J.; Kulik, S.; Wesseling, P.; Numan, T.; Hillebrand, A.; van Dellen, E.; de Witt Hamer, P.C.; Geurts, J.J.G.; Reijneveld, J.C.; Stam, C.J.; et al. Understanding Cognitive Functioning in Glioma Patients: The Relevance of IDH-Mutation Status and Functional Connectivity. Brain Behav. 2019, 9, e01204. [Google Scholar] [CrossRef]
- Samuel, N.; Vetkas, A.; Pancholi, A.; Sarica, C.; Loh, A.; Germann, J.; Harmsen, I.E.; Tasserie, J.; Milano, V.; Yamamoto, K.; et al. A Network-Based Approach to Glioma Surgery: Insights from Functional Neurosurgery. Cancers 2021, 13, 6127. [Google Scholar] [CrossRef]
- Kumar, V.A.; Heiba, I.M.; Prabhu, S.S.; Chen, M.M.; Colen, R.R.; Young, A.L.; Johnson, J.M.; Hou, P.; Noll, K.; Ferguson, S.D.; et al. The Role of Resting-State Functional MRI for Clinical Preoperative Language Mapping. Cancer Imaging 2020, 20, 47. [Google Scholar] [CrossRef]
- Dierker, D.; Roland, J.L.; Kamran, M.; Rutlin, J.; Hacker, C.D.; Marcus, D.S.; Milchenko, M.; Miller-Thomas, M.M.; Benzinger, T.L.; Snyder, A.Z.; et al. Resting-State Functional Magnetic Resonance Imaging in Presurgical Functional Mapping. Neuroimaging Clin. N. Am. 2017, 27, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Moretto, M.; Luciani, B.F.; Zigiotto, L.; Saviola, F.; Tambalo, S.; Cabalo, D.G.; Annicchiarico, L.; Venturini, M.; Jovicich, J.; Sarubbo, S. Resting State Functional Networks in Gliomas: Validation with Direct Electric Stimulation of a New Tool for Planning Brain Resections. Neurosurgery 2024, 95, 1358–1368. [Google Scholar] [CrossRef] [PubMed]
- Panesar, S.S.; Abhinav, K.; Yeh, F.C.; Jacquesson, T.; Collins, M.; Fernandez-Miranda, J. Tractography for Surgical Neuro-Oncology Planning: Towards a Gold Standard. Neurotherapeutics 2019, 16, 36–51. [Google Scholar] [CrossRef]
- Luckett, P.H.; Olufawo, M.O.; Park, K.Y.; Lamichhane, B.; Dierker, D.; Verastegui, G.T.; Lee, J.J.; Yang, P.; Kim, A.; Butt, O.H.; et al. Predicting Post-Surgical Functional Status in High-Grade Glioma with Resting State FMRI and Machine Learning. J. Neurooncol. 2024, 169, 175–185. [Google Scholar] [CrossRef]
- Wei, Y.; Li, C.; Cui, Z.; Mayrand, R.C.; Zou, J.; Wong, A.L.K.C.; Sinha, R.; Matys, T.; Schönlieb, C.B.; Price, S.J. Structural Connectome Quantifies Tumour Invasion and Predicts Survival in Glioblastoma Patients. Brain 2023, 146, 1714–1727. [Google Scholar] [CrossRef]
- Martínez-Molina, N.; Siponkoski, S.T.; Kuusela, L.; Laitinen, S.; Holma, M.; Ahlfors, M.; Jordan-Kilkki, P.; Ala-Kauhaluoma, K.; Melkas, S.; Pekkola, J.; et al. Resting-State Network Plasticity Induced by Music Therapy after Traumatic Brain Injury. Neural Plast. 2021, 2021, 6682471. [Google Scholar] [CrossRef] [PubMed]
- Clare, L.; Wu, Y.T.; Teale, J.C.; MacLeod, C.; Matthews, F.; Brayne, C.; Woods, B. Potentially Modifiable Lifestyle Factors, Cognitive Reserve, and Cognitive Function in Later Life: A Cross-Sectional Study. PLoS Med. 2017, 14, 3. [Google Scholar] [CrossRef]
- Wefel, J.S.; Kayl, A.E.; Meyers, C.A. Neuropsychological Dysfunction Associated with Cancer and Cancer Therapies: A Conceptual Review of an Emerging Target. Br. J. Cancer 2004, 90, 1691–1696. [Google Scholar] [CrossRef]
- Meyers, C.A.; Hess, K.R.; Yung, W.K.A.; Levin, V.A. Cognitive Function as a Predictor of Survival in Patients with Recurrent Malignant Glioma. J. Clin. Oncol. 2000, 18, 646. [Google Scholar] [CrossRef]
- Friedrich, M.; Filss, C.P.; Lohmann, P.; Mottaghy, F.M.; Stoffels, G.; Weiss Lucas, C.; Ruge, M.I.; Shah, N.J.; Caspers, S.; Langen, K.-J.; et al. Structural Connectome-Based Predictive Modeling of Cognitive Deficits in Treated Glioma Patients. Neuro-Oncol. Adv. 2023, 6, vdad151. [Google Scholar] [CrossRef]
- Landers, M.J.F.; Meesters, S.P.L.; van Zandvoort, M.; de Baene, W.; Rutten, G.-J.M. The Frontal Aslant Tract and Its Role in Executive Functions: A Quantitative Tractography Study in Glioma Patients. Brain Imaging Behav. 2022, 16, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Henderson, F.; Abdullah, K.G.; Verma, R.; Brem, S. Tractography and the Connectome in Neurosurgical Treatment of Gliomas: The Premise, the Progress, and the Potential. Neurosurg. Focus 2020, 48, E6. [Google Scholar] [CrossRef] [PubMed]
- Boelders, S.M.; De Baene, W.; Postma, E.; Gehring, K.; Ong, L.L. Predicting Cognitive Functioning for Patients with a High-Grade Glioma: Evaluating Different Representations of Tumor Location in a Common Space. Neuroinformatics 2024, 22, 329–352. [Google Scholar] [CrossRef]
- Zangrossi, A.; Silvestri, E.; Bisio, M.; Bertoldo, A.; De Pellegrin, S.; Vallesi, A.; Della Puppa, A.; D’Avella, D.; Denaro, L.; Scienza, R.; et al. Presurgical Predictors of Early Cognitive Outcome after Brain Tumor Resection in Glioma Patients. NeuroImage Clin. 2022, 36, 103219. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H. Stimulation mapping of white matter tracts to study brain functional connectivity. Nat. Rev. Neurol. 2015, 11, 255–265. [Google Scholar] [CrossRef]
- Louis, R.G.; Steinberg, G.K.; Duma, C.; Britz, G.; Mehta, V.; Pace, J.; Selman, W.; Jean, W.C. Early Experience with Virtual and Synchronized Augmented Reality Platform for Preoperative Planning and Intraoperative Navigation: A Case Series. Oper. Neurosurg. 2021, 21, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Hu, G.; Cao, B.; Liu, X.; Zhang, Z.; Dadario, N.B.; Shi, Q.; Fan, X.; Tang, Y.; Cheng, Z.; et al. Non-Traditional Cognitive Brain Network Involvement in Insulo-Sylvian Gliomas: A Case Series Study and Clinical Experience Using Quicktome. Chin. Neurosurg. J. 2023, 9, 16. [Google Scholar] [CrossRef]
- Gondi, V.; Pugh, S.L.; Tome, W.A.; Caine, C.; Corn, B.; Kanner, A.; Rowley, H.; Kundapur, V.; DeNittis, A.; Greenspoon, J.N.; et al. Preservation of Memory with Conformal Avoidance of the Hippocampal Neural Stem-Cell Compartment during Whole-Brain Radiotherapy for Brain Metastases (RTOG 0933): A Phase II Multi-Institutional Trial. J. Clin. Oncol. 2014, 32, 3810–3816. [Google Scholar] [CrossRef]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance during Whole-Brain Radiotherapy plus Memantine for Patients with Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef]
- Tu, W.; Ma, Z.; Ma, Y.; Dopfel, D.; Zhang, N. Suppressing Anterior Cingulate Cortex Modulates Default Mode Network and Behavior in Awake Rats. Cereb. Cortex 2021, 31, 312–323. [Google Scholar] [CrossRef]
- To, W.T.; De Ridder, D.; Hart, J.; Vanneste, S. Changing Brain Networks through Non-Invasive Neuromodulation. Front. Hum. Neurosci. 2018, 12, 128. [Google Scholar] [CrossRef]
- Ngetich, R.; Jin, D.; Li, W.; Song, B.; Zhang, J.; Jin, Z.; Li, L. Enhancing Visuospatial Working Memory Performance Using Intermittent Theta-Burst Stimulation Over the Right Dorsolateral Prefrontal Cortex. Front. Hum. Neurosci. 2022, 16, 752519. [Google Scholar] [CrossRef]
- Pamplona, G.S.P.; Heldner, J.; Langner, R.; Koush, Y.; Michels, L.; Ionta, S.; Scharnowski, F.; Salmon, C.E.G. Network-Based FMRI-Neurofeedback Training of Sustained Attention. Neuroimage 2020, 221, 117194. [Google Scholar] [CrossRef]
- Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L.; et al. Electrical and Synaptic Integration of Glioma into Neural Circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef]
- Yagi, C.; Tatsuoka, J.; Sano, E.; Hanashima, Y.; Ozawa, Y.; Yoshimura, S.; Yamamuro, S.; Sumi, K.; Hara, H.; Katayama, Y.; et al. Anti-tumor Effects of Anti-epileptic Drugs in Malignant Glioma Cells. Oncol. Rep. 2022, 48, 216. [Google Scholar] [CrossRef]
- Kirkman, M.A.; Ekert, J.O.; Hunn, B.H.M.; Thomas, M.S.C.; Tolmie, A.K. A Systematic Review of Cognitive Interventions for Adult Patients with Brain Tumours. Cancer Med. 2023, 12, 11191–11210. [Google Scholar] [CrossRef]
- Munsell, B.C.; Wee, C.-Y.; Keller, S.S.; Weber, B.; Elger, C.; da Silva, L.A.T.; Nesland, T.; Styner, M.; Shen, D.; Bonilha, L. Evaluation of Machine Learning Algorithms for Treatment Outcome Prediction in Patients with Epilepsy Based on Structural Connectome Data. Neuroimage 2015, 118, 219–230. [Google Scholar] [CrossRef]
- Anbarasi, J.; Kumari, R.; Ganesh, M.; Agrawal, R. Translational Connectomics: Overview of Machine Learning in Macroscale Connectomics for Clinical Insights. BMC Neurol. 2024, 24, 364. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Tan, G.; Zhong, L.; Jiang, H.; Smith, S.M.; Wang, H.Z. A Comprehensive Neuroimaging Review of the Primary and Metastatic Brain Tumors Treated with Immunotherapy: Current Status, and the Application of Advanced Imaging Approaches and Artificial Intelligence. Front. Immunol. 2024, 15, 1496627. [Google Scholar] [CrossRef] [PubMed]
- Maknojia, S.; Churchill, N.W.; Schweizer, T.A.; Graham, S.J. Resting State fMRI: Going Through the Motions. Front. Neurosci. 2019, 13, 825. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.; Gao, Y.; Janve, V.; Stepniewska, I.; Landman, B.A.; Anderson, A.W. Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? NMR Biomed. 2017, 30, 3787. [Google Scholar] [CrossRef]
- Barisano, G.; Sepehrband, F.; Ma, S.; Jann, K.; Cabeen, R.; Wang, D.J.; Toga, A.W.; Law, M. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br. J. Radiol. 2019, 92, 20180492. [Google Scholar] [CrossRef]
- Aiello, M.; Cavaliere, C.; Salvatore, M. Hybrid PET/MR Imaging and Brain Connectivity. Front. Neurosci. 2016, 10, 64. [Google Scholar] [CrossRef]
- He, Y.; Hong, Y.; Wu, Y. Spherical-deconvolution informed filtering of tractograms changes laterality of structural connectome. Neuroimage 2024, 303, 120904. [Google Scholar] [CrossRef]
- Douw, L.; Klein, M.; Fagel, S.S.; van den Heuvel, J.; Taphoorn, M.J.; Aaronson, N.K.; Postma, T.J.; Vandertop, W.P.; Mooij, J.J.; Boerman, R.H.; et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: Long-term follow-up. Lancet Neurol. 2009, 8, 810–818. [Google Scholar] [CrossRef]
- Deprez, S.; Amant, F.; Smeets, A.; Peeters, R.; Leemans, A.; Van Hecke, W.; Verhoeven, J.S.; Christiaens, M.-R.; Vandenberghe, J.; Vandenbulcke, M.; et al. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J. Clin. Oncol. 2012, 30, 274–281. [Google Scholar] [CrossRef]
- Song, K.W.; Scott, B.J.; Lee, E.Q. Neurotoxicity of Cancer Immunotherapies Including CAR T Cell Therapy. Curr. Neurol. Neurosci. Rep. 2023, 23, 827–839. [Google Scholar] [CrossRef]
Key Area | Tumor Type | Mechanisms of Network Disruption | Reorganization Patterns | Histomolecular Influences | Clinical Implications |
---|---|---|---|---|---|
Tumor-Specific Patterns | Gliomas | Infiltration along white matter tracts; long-range disconnection; hub disruption | Partial functional preservation; structural–functional decoupling; contralesional compensation | IDH-wildtype: severe disconnection; IDH-mutant: partial preservation | Functional connectivity may inform prognosis and surgical planning |
Meningiomas | Mass effect; edema-induced disconnection; cortical compression | Partial post-resection normalization; gradual cognitive recovery | VEGF-driven edema; pial blood supply affects FC loss | Even benign cases with edema can show global FC loss; cognitive testing recommended | |
Metastases | Focal disruption; diaschisis; network fragmentation with multiple lesions | Limited reorganization; interhemispheric imbalance | Subtype-specific neurotropism; molecular profiles under study | Multiple lesions increase cognitive burden; planning around hubs essential | |
Post-surgical Plasticity | All | Surgery disrupts hubs, tracts, and connectivity nodes | Rewiring via contralesional recruitment, local reactivation, and modular reformation | Post-IDH surgery recovery better; FC rebound linked to histology | Recovery depends on pre-op connectivity; tractography aids surgical strategy |
Histomolecular | Gliomas | Varies by IDH, 1p/19q, MGMT; influences severity of disconnection | IDH-mutant allows better network preservation; plasticity potential higher | Histology informs prognosis and network vulnerability | Histomolecular profile predicts recovery and guides treatment intensity |
Meningiomas | Cortical invasion rare; edema modulated by VEGF, IL-6 | Minimal plasticity unless cortical invasion | VEGF, IL-6 secretion linked to edema and FC disruption | Invasive meningiomas resemble gliomas in FC terms; more aggressive care warranted | |
Metastases | Tumor-neuron synapses; hemorrhage (e.g., melanoma) | Sparse data; limited evidence of large-scale reorganization | Tumor origin (e.g., breast, lung) may affect neuron interaction | Profile-specific predictions of network disruption emerging |
Main Takeaways |
---|
1. Redefinition of Surgical Goal: Focus on maximal tumor resection while preserving functional brain networks during surgery (functional/connectome-aware neurosurgery). |
2. Preoperative Mapping: rs-fMRI allows mapping of whole functional networks, even in those unable to cooperate with task-based imaging or examination. |
3. Diffusion Tractography and Structural Connectomes: Identification of white matter tracts and simulation of resections help guide surgical planning by revealing critical networks that should be preserved. |
4. Prognostic Value of Connectivity: Preoperative brain connectivity correlates with postoperative functional outcomes, survival, and rehabilitation, making it a valuable tool for guiding treatment decisions. |
5. Awake Surgery and Connectomics Integration: Awake mapping safeguards key functions, while preoperative connectome data highlights risks to broader, non-testable networks. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez Lozada, P.S.; Pozo Neira, J.; Leon-Rojas, J.E. From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors—A Multimodal Neuroimaging Narrative Review. Cancers 2025, 17, 2174. https://doi.org/10.3390/cancers17132174
Martínez Lozada PS, Pozo Neira J, Leon-Rojas JE. From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors—A Multimodal Neuroimaging Narrative Review. Cancers. 2025; 17(13):2174. https://doi.org/10.3390/cancers17132174
Chicago/Turabian StyleMartínez Lozada, Pablo S., Johanna Pozo Neira, and Jose E. Leon-Rojas. 2025. "From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors—A Multimodal Neuroimaging Narrative Review" Cancers 17, no. 13: 2174. https://doi.org/10.3390/cancers17132174
APA StyleMartínez Lozada, P. S., Pozo Neira, J., & Leon-Rojas, J. E. (2025). From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors—A Multimodal Neuroimaging Narrative Review. Cancers, 17(13), 2174. https://doi.org/10.3390/cancers17132174